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The canonical leading light-cone contribution 8&4+ {x)P,f (& p} +. . to the electroproduction
[V(q) + a(p) aqytbtng; @=photon, a=hadron] matrix element (&(p)~ J&(x)J„(0)~S(p)) is such
that fp), by virtue of the 4&J'„operator-product expansion {OPE), is analytic for small ~.
The corresponding contribution 8&4+ {~)p„f {x P) + to the annihilation [e+e -y{q)—h(P)
+ anything) matrix element (O~B(J&(x)&(p))R(J„(x)8 (-p)) ~0), where S(p) is the Fourier trans-
form of a source operator S{y) for h(p), is such that f p) can be singular for &-0; fp) -~ 0.
Vfe show how the multiple OPE's among the operators involved can determine the degree o of
this short-distance singularity provided long-distance effects are not important. We refer to o
as the "slant" of the matrix element and we explicitly calculate o in terms of the minimal di-
mension d of the source S{y). In the canonical case, we find 0 =d - 2 if h is a pseudoscalar
particle and o =d -1 if h is a spinor particle. These singularities imply that the scaling func-
tions behave like &u for u) —=qt/2q P —~ and that the multiplicities behave like (vqt) t for qt. These results provide handles on the heretofore elusive source dimensions d. For exam-
ple, if logarithmic or greater multiplicities are observed {a«3) along with canonical scaling,
it can be concluded that d cannot have its canonical elementary value {d= ~ for spinors, d =3
for scalars) but rather d « —{spinors) or d «4 {scalars). These results can be readily gen-
eralized to noncanonical cases. For example, they lead to simple explanations of known
results in renormalized perturbation theory {(QI)

3 theory, Q
4 theory, pseudoscalar-meson

theory, quantum electrodynamics). Since ~ {and &) is dimensionless, the dimensional analy-
sis involved in our treatment is on a different footing from that which determines the usual
short-distance and light-cone singularities of current products. The slants are nevertheless
simple functions of the field and source dimensions. Phenomenologically, the operatorial
nature of our approach makes it easily extendable to the treatment of other inclusive lepton-
hadron processes with one or more particles observed in the final state.

I. INTRODUCTION

r(q) +)t(p) -)t'(p') +anything, (1.2)

where h'(P') represents the detected final hadron.
Indeed, many investigations of' such processes

The development of operator-product expansions
(OPE's)' ' represents a significant advance in
quantum field theory, enabling definite predictions
to be made in many areas of particle physics:
current algebra, ' semihadronic scattering process-
es, ' broken symmetry, ' vector-meson dominance, '
radiative corrections. "OPE's are in general
relevant in any physical process involving current
operators at large virtual mass, and so it is natu-
ral to apply them to inclusive processes involving
currents when one or more hadrons are detected
in the final state. ~ical of processes of this
type, which are of great current interest, are e'e
annihilation (via single-photon exchange, illustrat-
ed in Fig. 1),

y(q) —&(p) +anything,

and one-particle inclusive electroproduction,

have been m3de both within '2 and outside' the
OPE framework.

One crucial difference exists between these pro-
cesses and other cases of successful applications
of the ideas of OPE's. In all the previous cases'
it is sufficient to consider the operatorial nature
of the product of two current operators at short
distance (SD) or on the light cone (LC), because
the important quantities can always be expressed
as matrix elements of products of two currents.
For illustration consider a (II)' theory with scalar
photons and hadrons. The electroproduction pro-
cess

y(q) + It (p) - anything

is completely specified by the matrix element

~() f""&(II)(*,)&(o=)(l&)",
where the variables are (& =-q', v-=q p, and g(&)
=:&ps(x): . In the 8jorken limit & - ~ with «) =- -«/2&(
fixed the process is described in terms of the LC
expansion'~
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nything

FIG. 1. Electron-positron &nubilation via single-
photon excb~~~e into one hadron of momentum p plus
"anything" X.

j(x)j(0)"&.(x): V(x)4(0):
=6,(x)gx" x""8")...„(0), (1.5)

with dim(I) =1, dim) =2, dim8'"~=a+2, so that
level 8 "' —= dim8 "' —spin8t" = 2."s Then W(a', v)
scales in the Bjorken" limit,

vW(x, v) —E((d)), 0 ~ &u& 1

where

d( )=d j dXe '"f(Z),

$(d, 0; d) = J dy dd d"'" 'd((j(Ã)S(d)N() (n)d'(d)),

(1.10)

where 8 denotes the retarded commutator, S is a
source operator for h, and v—= (I p. Process (1.2)
is then described by the same operator 8 between
IP). It has been convincingly argued"'"'" that
the LC singularities of (1.10} are the same as that
of the LC expansion (1.5), so that

vW(s, v) E((()), 1 ~ (d) ~ ~

where (v =-+)(/2v for the annihilation process,

E(( ) = s d)(. e" "f()(.), (1.12)

f () ) = (oI (x, o-; p) I o) 1.2=„

a(*, ()d) -=Jdy d* d"'* 'd(d(*ld(d))&(d(())d'(d)&

(1.14)

and )). —= x p, (v =- -((/2v. The amplitude in, for ex-
ample, the annihilation process (1.1), while an ap-
propriate discontinuity of (pl T[j(x)j(0)]Ip), is,
however, mt directly expressible in any similar
way. Instead "'

(V (d, ) = J dd d" '(OI 8(* tl d) ( 0)

w'ith

and $(x, 0; p) is regular as x' -0. Interesting
quantities like multiplicities in such processes
turn out to be controlled by the behavior of E(~)
as (()-~, or equivalently by the behavior of f(X)
as A. -O. In this paper we shall investigate pos-
sible singularities in f(A} as )(-0 with the aid of
QPE's."

Model-independent information on such singu-
larities has previously been lacking. This is in
contrast with electroproduction where the coef-
ficient function f(x p) is presumably analytic"
for small x.P and exhibits Begge behavior for
large x P. Our purpose here is to attempt to
supply this model-independent information.

We will show in this paper that, as long as infra-
red effects are not dominant, the degree 0f th, e
singularity is actually determined by the dimen-
sions of the currents and hadronic sources h(p)
This means that in scale-invariant theories or
limits, both the nature of tlie scaling [e.g. , the
power a in W(q', v} —v'E((v)] and the asymptotic
behavior of the structure functions [e.g. , the power
h in E((v) -sP for (v-~] are determined by dimen-
sional analysis, even though ~ is dimensionless.
These two limits are quite distinct: The first is
determined by the leading LC singularity (more
precisely, by the smallest-level" fields in the
current-current OPE) and is independent of the
source dimension, whereas the second involves
all nonleading LC singularities and depends on the
(minimal) source dimension. Nevertheless, we
shall see that the second limit is determined by
the largest value of a new quantity which we shall
call the "slant" and which we calculate as an ex-
plicit function of the current and source dimen-
sions and the minimal levels. Our results thus
make possible the experimental determination of
the heretofore elusive dimensions of hadronic
sources. They also lead to model-independent
determinations of inclusive quantities such as
multiplicities. The operator nature of our anal-
ysis makes it readily applicable to any inclusive
process.

To make progress in this direction, we have to
face the problem of the nature of the expansion of
quadrilocal operators like (1.10) or (1.14). A

simple example illustrates the subtlety involved.
If one has the complete SD expansion of the oper-
ator product (t)(x,)(())(x,) ~ ~ ~ (t)(x„), it is possible to
obtain equal-time commutators of any combination
of III) and composite operators formed from (I}'s.
Conversely it is possible to infer some properties
of these operator products from the known com-
mutation relations of the various operators. " The
following relations hold in a model considered in
Ref. 23:

[(t)(x), (p(0)] 6(x') = —t6'( ), x (1.15)
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[j(x), 4(0)] 5(x') =0,

[Z(x), 4 (0)] 5(x') ~ f5'(x)j(0),

(1.16)

(1.17)

where lH(P)) is an (in or out) state consisting of
a single H particle of momentum P and mass
m= ~p'. Then we can choose

where j(x), J(x) are composite operators formed
by an appropriate limiting process from pP and

QQQ, respectively. lt is easy to see" that the
OPE j(x,)Q(x, )g&(x,) must contain a term

&014(y)IH{j))=e"' (1.22)

An 8-matrix element involving 8 as an external
particle is then the residue of the pole at p' =ng'

of the Green's function

+ ~ ~ ~ (1.18)

Q= dye'~'~ ~ ~ 0 T 4 Y
~ ~ ~ l0

In terms of the source operator

(1.23)

f(A) ~ (const) (A) (1.19)

(1.20)

where D=dimS, n =dime (=1 canonically). We

shall refer to singularities occurring only at SD

and not on the LC as slant singularities. We see
that such singularities are expected on the basis
of dimensional analysis alone. "

In view of the role played in our analysis of
hadronic sources and their dimensions, some re-
marks on their significance are in order. We re-
call that a local (scalar} field 4(y) is a good inter-
polating field for the (scalar) hadron H if"

&0I~(~) IHu)) ~0, (1.21)

in order to satisfy (1.15)-(1.17). Thus there can
be singularities in the variables (x, +x,)' which
become felt only as x& x, -0 in addition to those
at x&'=x&'=0. The point is that while in products
of two operators, SD singularities imply LC sin-
gularities, there can be singularities in products
of more than two operators at SD which do not
manifest themselves on the LC.

Motivated by this, we shall attempt to deduce
the SD singularities of the above type in (1.10) or
(1.14) from the knowledge of OPE's involving two

operators. The Fourier transform would convert
these singularities into singularities in X in (1.14},
even as (8 is nonsingular on the LC. In these con-
siderations we shall continue to be guided by the
lessons learned from OPE's of two operators:
dimensional analysis, and that nature is well de-
scribed by the LC expansions deduced canonically
from the quark-gluon model' provided composite
operators are consistently defined, "'"although

the formalism is clearly still applicable outside
the canonical framework.

We show that, in the absence of infrared-diver-
gence effects, the degree of the A, singularity is
given in terms of the quantity which we call the

slant, and which can be computed explicitly in any

given field theory, provided one is given as input

the scale dimension of the hadronic source S(y).
In the scalar theory,

S(V) =(&+»~')4 (y)

for H, the S-matrix element has the form

(1.24)

8= dye'~' 0 g 8 y ~ ~ ~ 0

4'(y) =„,, &4'(u) .1 (1.26)

These different fields give, of course, different
off-shell extrapolations of (1.23) and (1.25).

Suppose now that the theory is (asymptotically)
scale-invariant so that dimensions can be assigned
to the local fields. " Given a good interpolating
field &I) of some dimension, it is easy to construct
(infinitely many) other good interpolating fields
of higher dimension„as, for example, in (1.26),
and so no physical significance can be attached to
source dimensions. There is, however, no method
for arbitrarily decreasinI. the dimension of a local
field. It therefore makes sense to speak of the
interpolating field of min~mal dimension among the
class of good interpolating fields. (It is irrelevant
to us if there is more than one such field. ) Such
fields always exist in perturbation theory and solv-
able models —they are the fields occurring in the
usual Lagrangians. We shall assume the existence
of minimal-dimensional interpolating fields and

sources. " These minimal dimensions are phys-
ically significant. Physical consequences of val-
ues of these dimensions for the pseudoscalar octet
have been discussed at length by Wilson. ""Our
result (1.19} is an explicit illustration of this sig-
nificance. The amplitude (1.9) is on-shell with re-
gard to H and is therefore independent of the
source 8 used, but its behavior is, nevertheless,
dependent upon the minimums possible source di-
mension D.

In spite of their importance, the values of these
dimensions have been particularly elusive. Partial

+ (equal-time commutator s). (1.25)

There is, however, an enormous freedom in choos-
ing 4 (y) and S(y)—any field satisfying (1.22) can
be used in (1.25) without changing S." An obvious
example is
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conservation of axial-vector current (PCAC) tells
us that the dimension b, of the pion field satisfies
1 ~n &4.' (6 = 1 in the o model and n =3 in the
gluon model. ) The nucleon field dimension is even
more elusive. The presumed bound-state nature
of these hadrons contributes to the elusiveness.
A major consequence of our analysis is the handle
it puts on these dimensions. Inclusive semiha-
dronic processes such as e'e annihilation are
seen to be excellent probes of minimal hadronic
dimensions.

It must be stressed that our use of sources
should not be confused with the dubious application"
of LC expansions with sources to exclusive pro-
cesses such as electromagnetic form factors or
photoproduction amplitudes. Such applications,
for example, suggest the form-factor behavior

produced particles are also discussed. It is found
that if logarithmic or greater multiplicity is ob
served (along saith canonical scaling and the ab-
sence of dominant infrared contributions), one
must have d ~ and D ~ 4 so that canonical ele-
mentary sources (d =-,', D =3) would be ruled out.

Generalizations to noncanonical theories are
considered in Sec. V. Section VI contains general
discussions, conclusions, and suggests extensions
to other processes.

II. REVIEW OF DEEP-INELASTIC SCATTERING
AND ANNIHILATION

To establish notation and conventions, and for
subsequent reference, we review in this section
the space-time approach to deep-inelastic scatter-
ing and annihilation. More details can be found in
the original papers" and the recent extensive re-
views. '

a/2-a
K ~On

where D =dimS. Using the field 4, one, however,
finds

(.(&, p') =- dxe"*{p~r[j{x)4(0)]~0)

A. Canonical formalism

%e begin with the canonical scalar Q' theory
with scalar photons y(q) coupled to the scalar cur-
rent j=: (t)': and a scalar target H(p) of mass p'
=M'. The amplitude

which has no pole in p'. One finds in fact that
C = 0 if the OPE for jS is obtained from that of j4.
Infinitely many nonleading LC singularities are
in fact needed to buiM up the pole."

The following sections are organized as follows.
Notations and conventions are established in Sec.
II with a review of relevant aspects of deep-in-
elastic scattering and annihilation. The single-
particle spectrum in deep-inelastic annihilation is
treated in Sec. III for the canonical scalar case.
The SD behavior (1.19) is derived from the
SDOPE's involved in (1.14) (including all nonlead-
ing terms) and discussed in detail in Sec. IIIA.
The specific integrations involved are performed
in the Appendix. Consequences of this result are
discussed in Sec. III B„where a comparison with
perturbation theory is made. These results are
generalized to vector currents in Sec. III C.

The (physically interesting) canonical spinor
case in which the currents are constructed out of
spinor fields is treated in Sec. IV. The sources
are either (pseudo) scalar (dimension D} or spinor
(dimension d). In Sec. IVA the appropriate formal-
ism is given and in Sec. IV 8 the SD singularities
are derived (i.e., the slants are determined).
The physical consequences are discussed in Sec.
IVC. The asymptotic behavior of F,((d) is deduced
and compared with perturbation theory. The in-
teresting implications for the multiplicities of the

»'(, )=f s e"'(H(&)]l[)(x)j( )]l&(()(),)"- (2.()

for the inclusive process y(q}+H(p)- anything is
the discontinuity in v of the amplitude

(2 2)

for the forward exclusive reaction y(q) +H(p)- y(q)
+H(p) in the physical region «&0, v&0,
variables are x=q', v=q ~ p. W can also be ex-
pressed in terms of the operator (1.10) as"

~(, )= J d* "'(0[+(,o;-&')lo) (2.3)

The canonical LCOPE (1.5} gives the scaling be-
havior (1.6)-(1.8) in the Bjorken limit v- ~ with
(d = -«/2v fixed in the physical region 0 «u & 1.
The scaling function F(u&) can also be exp~essed
in terms of the operator (1.14) as

r( )= J ue '"(ala (x, o;-()l 0),".'", .

With further plausible and, in the physical (vec-

The representation (1.7) is more informative than

(2.4) in that it expresses F(&u) or the Fourier trans-
form of a function f(X) which, by virtue of the
LCOPE, is analytic, at least for sufficiently small
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tor photon) case, experimentally suggested, "as-
sumptions, much more can be said about F(u&).
For au-0, the Regge behavior'

F((d) ~ Gl (2 5)

where e is the leading Regge-pole intercept at t =0,
is expected to occur as a consequence of the Regge
behavior W(», v) - P(»)v" of W in the Regge limit
v- ~ with x fixed, and for ~-1, the threshold be-
havior'4

charge matrix Q: Z~ =:gy„gg: . The target can
either be a scalar particle H(P), with source S(y),
or a spinor particle h(P}, with source s(y), al-
though in the latter case a spin average will always
be understood. The inclusive amplitude has the
form (2.9) and satisfies the scaling laws (2.11).
The canonical LCOPE is ""

&„(A4(0) fg— 8». (x)-': Q(x) y'0'0(0)

—0(0) r '0'0(x) 1:,
F((o) ~ (1 —u))~", (2.6)

with

(2.13)

f(z) ~ A. (2.7}

and this, together with the analyticity of f(X) for
small P, specifies f(X) in the asymptotic domains
of interest.

In the physically more interesting case with vec-
tor photons coupled to the conserved vector current

j~ =1:Q 8 ~$:, (2.1) becomes

W = chal' 0 p j„x},j„0) a p 2.8

(2.9)

The canonical LCOPE becomes

&" (x)j "(y)--~ (» ) y' 3sIe-'(x)e(y)+e'(y)e(x)l

(2.10)

where p specifies the decrease of the transition
form factor (H(p)I j(0)IH*(p'}) -(p ~ p') ~, is ex-
pected to occur as a consequence of the resonance
dominance of W near threshold according to duality.
Thus much of the structure of F(a&) is understand-
able on the basis-of field-theoretic results like
LCOPE's and phenomenological principles like
Regge behavior and duality. In x space, Eqs.
(1.7) and (2.5) give

g~ote =

gulag

vs + gv ages - gpv gas ~

which implies the relation

2(uF, (s)) = F,((u),

in good agreement with experiment. "

(2.14)

(2.15)

B. Generalizations

The only known field theories in which the purely
canonical formalism outlined above is valid are
free-field theories. It is therefore important to
consider generalizations of this formalism. It
might be hoped that a suitable generalization is
provided by a formal use of scale-invariant, can-
onical field equations Ie.g. , (Cl+M')Q =g: Q': in Q'

theory or (iP'-m)g=g@ in the vector-gluon mod-
el], and canonical equal-time field commutation
relations. The LCOPE's so generated do have the
forms (1.5), (2.10), and (2.13). This approach is
unfortunately inconsistent —the assumptions are
mutually inconsistent so that the currents cannot
be simple Wick products and the bilocals in (1.5),
(2.10), and (2.13) must have further I C singular-
ities unless the theories are free (g=0). The only
known generalization which is not inconsistent in
this sense and which gives the scaling laws (2.11)
are R-invariant" theories with reducible' scale
invariance. " In the scalar (Q') version of such
theories, the scalar current is given by

and the consequent scaling laws are

vW, (», v) —F,(ru), W, (», v) —F,(&u} . (2.11)

4(x+ 5)4(x) —~.(t')j x =lim (2.18)

F,((u) = 4(u'F(u)), - (2.12)

Because of the explicit structure of (2.10}, one
finds further that F,(w) —= 0. This result, in dis-
agreement with experiment, "is a consequence of
the charged scalar constitution of j„. Equation
(2.10) also gives

and the LCOPE has the form

j(x)j(0)-n, (») g x ~ x "8 . . . (0)

=-~, (x)j(x;0) . (2.17)

The bilocal j(x; 0) is not given by a simple Wick
product as in (1.5), but rather by~

with F(u&) given by (2.3) and (1.14).
Vfe come finally to the most physically relevant

case in which the conserved vector currents J„are
constructed out of spinor fields $ with electric

( . 0) I,. I,. 0( +$)4(0)
ln(x+ t'P

Another form of the bilocal is'~

(2.18)
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(2.19)

In this theory, the scaling function E(v) is the
Fourier transform of j(x;0) and is therefore a
simple generalization of (1.7). Similar remarks
apply to the gluon version of this class of theories.

Further departures from the naive canonical
framework involve greater singularities and con-
sequently violate the scaling laws (2.11). It is
nevertheless worthwhile to consider such depar-
tures both because we can then compare our gen-
eral analysis with known results in perturbation
theory and because the scaling laws might break
down at higher energies. The simplest departure
is renormalized perturbation theory itself, which
has the great advantages of explicitness and known

consistency. In finite orders of renormalized the-
ories, the above canonical results are violated by
logarithmic factors, (lnx'}" in position space and

{lnK) in momentum space, with the power K in-
creasing as the order of perturbation theory in-
creases. This represents a breakdown of asymp-
totic scale invariance. The breakdown is, how-
ever, weak and the general results we obtain as-
suming canonical dimensions will be valid in these
theories apart from similar logarithmic factors,
In the superrenormalizable A.Q' theory, the scaling
laws (2.11) are satisfied in each order even though,
because of the dimensional coupling constant X, the
theory is not scale-invariant, %hat happens is that,
because of infrared effects, the effective coupling
constant becomes the dimensionless quantity X'/M',
at least for the ladder diagrams.

A further departure from the canonical frame-
work is provided by scale-invariant theories with
anomalous (i.e., noncanonical) dimensions. In
such theories, the scaling laws (2.11) and canoni-
cal LCQPE's can be violated by powers of K and x',
respectively. It is even possible that the levels of
the fields in the LCQPE's are not constant, so that
expansions look like

j(x)j(0}-~,(x) g (x'}-"x ~ x"8'„"'.. .„(0),
(2.20)

and bi1.ocals cannot be defined. Examples of theo-
ries with anomalous dimensions are Gell-Mann-
Low eigenvalue theories, ~ conformally invariant
perturbation theories, "and theories of critical
indices in statistical mechanics. " The application
of our results to such theories will be discussed in

Sec. V.

hadrons observed: y(q)-anything. The total cross
section is'~'

16 m

t &= —3, }~*e'-(o~l~„t*M'(0

(2.21)

with e the fine-structure constant. The behavior
for K- ~ is given by the c-number piece of the
Z„(x)Z,(0) (LC or SD-they are the same here)
QPE. The canonical result is

Z„(xli,(0)-A(8„8, -g„„p}, . 2 I1
(x' ie x-,}2

+ operators, (2.22)

where I is the unit operator, and the constant A is
model-dependent, and is not of interest to us.
Equation {2.22) implies the scaling behavior

(2.23}

Since J„and I must have canonical dimensions,
(2.23) follows from scale invariance alone. Log-
arithmic and/or power deviations can occur in the
non-scale-invariant theories mentioned in subsec-
tion B. Present experiments are consistent with
(2.23), but, because of low energies and large
errors, are not compelling.

III. CANONICAL SCALAR CASE

A. Short-distance singularities

The formalism relevant for the canonical scalar
case is given in Eqs. (1.9)-(1.14). Our purpose
here is to determine the c-number SD singularities
of

8(x, 0; p) =

dydee

e"" "R(P(x)S(y))R(g(0)S (z)).

(3 1)

These will give us the singularities of

The one-particle spectrum in deep-inelastic an-
nihilation [process (1.1)] will be considered in this
section under the simplifying assumptions that only
scalar fields are involved and only canonical LC
and SD singularities appear. The resulting simpli-
fications are notational only, and will be removed
in Secs. IV and V. In subsections A and B, we take
the photon to be scalar for further simplicity. The
simple extension to vector photons is given in sub-
section C.

C. Annihilation f(x p, x')-=(Oidl(x, O;p)i0), (3.2)

The simplest inclusive semileptonic process is
electron-positron annihilation into hadrons with no

which, for x' =0, will give us the singularities of
(1.13) for X-0.
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To determine the small-X behavior of f (X), we
use the SDOPE

y t~ x+y -z lmn ~& ~m

Here me have mritten

~ =dimy, D =dimS, d, =dime"',

(3.3)

(8 4)

and g indicates the retarded i~ prescription. For
notational simplicity, me have not indicated the
Lorentz index structure in (8.3) (e.g., x ze may
be x 'x"x 6 s). All nonleading terms are included
in (8.3), but terms involving mass factors have
been omitted since they wiQ be seen to be irrele-
vant. Similarly,

ff(4(0}S'(z))-g (-z)'--'-'6'(. ) (-,'z),

x 6 """'(0), (3.6)

where d, „„=dim(P(' "'. We shall substitute (3.3),
(8.5), (3.6), into (3.1) to determine the singulari-
ties in (3.2). This procedure is certainly incor-
rect if only a finite number of terms were kept in
(3.3) or (3.5) since less singular terms are accom-
panied by higher-dimensional operators which
yield more singular contributions to (3.6)." We
assume, however, as is true in perturbation theo-
ry, that the procedure is correct if all terms are
kept.

For the vacuum expectation value (3.2), only the
(dimension zero) unit operators 5"' "' =c, „I in
(3.6) contribute and we obtain

(8 7)

where W indicates the Wightman iz prescription.
The terms in (3.7) are written somewhat symboli-
cally in that (contracted} Lorentz indices have not
been indicated (e.g., (x-y)'z' could be [(x-y) ~ z]').
A sum over all possible such contractions with ar-
bitrary coefficients consistent with the indicated
dimensions should be understood in (S.V).

The integrations in (8.7) are explicitly performed
in the Appendix. The result is

f(x p, x')- X (a+b Inx'+oink)

where

+O(x') +O(1/x*), (3.8)

(3.9)

We refer to Z as the (vacuum, or level zero) slant
of (8.1). We have assumed in (3.8} that Z ~ 0."
Here a, b, and c are constants contributed to by
each term in (3.7) with c, „00 for each arrange-
ment of the Lorentz contractions. Any of these
constants may vanisli but me assume, as is true
in perturbation theory, that they are not infinite.
If a =b =c =0, then the next-leading term, with
slant Z -1, must be kept. The lnx' term in (3.8)
is signaling the inconsistency of the naive canoni-
cal framework mentioned in Sec. II8. It would not
occur if the current were properly defined, as, for
example, in (2.16). The limit in (2.18}or the line
integral in (2.19) explicitly removes this term. We
will put b = 0, reserving a more careful treatment
for Sec. V. For simplicity we also put c =0 since
the ink. factor does not affect our results.

The O(1/xz) terms in (3.8) occur if Z &0 and have

the f»m (x') '", &=0, 1, 2, .. . , Z -1. The scal-
ing assumptions (1.11) require that the coefficients
of the light-cone singularities vanish.
space-time limit of interest is x'-0 first and then
X- 0, the O(x') terms in (8.8) do not contribute.
To avoid possible confusion, however, we note
that their associated slants may be greater than
(3.9). The O(x') term, for example, has an asso-
ciated slant of 2+2. This is important if one is
interested in the differentiation C]„f(x p). It does
not follow from (3.8) that H„f(x p)- X r '. The
O(x') contribution to (3.8) also gives a term A.

r '
to 0,f [since U, (a 'x') -8a '+ ] and these
terms cancel, leaving g ~ '.

With these understandings, we obtain from (3.8)
the important result

f(A) ~ aX (3.10)

%e have thus determined the maximum possible
SD sirq~larity. It is specified by the combination
(3.9) of current and source dimensions which con-
stitute the sla, nt. It is important to emphasize that,
because of the possibility that a =0, Z only gives
the maximal possible singularity. This is well il-
lustrated by considering the use in the above anal-
ysis of a source 8'(y) of dimension D' greater than
D We would then. obtain f - a'A. with Z '=D'
+6 -3&Z. Since we are free to use any source
forH [i.e., f(X), being on-shell with regard toH,
must be independent of the chosen source], con-
sistency requires that a' =0. The first possibly
nonvanishing coefficient a occurs for Ne source
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of minimal dimension D. A specific example is
provided by the source S'(y) = El „S(y) of dimension
D' =D+2. Since the OPE's (3.3)-(3.6) commute
with differentiations, ' the effect of using S' rather
than S is to replace (3.7) by the same expression
mith C3„U, before the summation sign. Integration
by parts reveals that f is changed by the factor
(P '}'(P') =1; i.e., f is unchanged (as it must be}.
Thus we again obtain (3.10) (as we must), and the
maximum possible leading term a'A, ~ is not

present because a' =0. There is no such reason
for the coefficient a associated with the source 8
of minimal dimension D to vanish and, in fact, in
perturbation theory it does not vanish.

If we worked with hadronic fields 4 (y) rather
than sources S(y) = (Cl+1)C (y), then we would only
be interested in slant singularities associated with

double poles (P' -1) '. The use of all the nonlead-

ing terms in the SD expansions enables such poles
to occur. [This is quite distinct from the dubious
use (cf. Sec. I) of leading I C singularities of
source-current products to determine on-shell
quantities like electromagnetic form factors or
photoproduction amplitudes. A finite number of
singularities cannot give rise to the necessary
pole in the field-current amplitude. ] If such poles
did not occur with slant Z,"then a would vanish in

(3.10). Again, Z is the maximal possible slant.
%e should remark that we have obtained Eq.

(3.10}by taking the limits in (3.1}in a definite or-
der. Taking the limits in other orders does not in-
crease the slant.

The singularity (3.10) results from the short-
distance singularities in (3.3), (8.5), (3.6) although
our inclusion of all terms makes the multiple ex-
pansion in (8.7) valid away from the short-distance
region. The slant singularity would still be the
same even if the region of integration in (3.7) were

8. Consequences

Using (3.10) in (1.12) gives the desired asymptot-
ic behavior

E(~) constx&a~ ', Z = D+a -3. (3.11}

This is the promised result that this behavior is
determined by dimensional analysis.

Our result (3.11) can be nicely illustrated in
(scalar) perturbation theories. The simplest ex-
ample is massive A,P' theory. This theory is not
(asymptotically} scale-invariant since dime =1,
but for the ladder diagrams infrared effects ren-
der the effective coupling constant to be the di-
mensionless quantity X/m, where m is the mass
of the (II particle. Qur results are therefore ap-
plicable. The source is S=:P':, so that

D =2, n, =1, Z =0 (p' theory)

and (8.11) becomes

(3.12)

restricted to only some compact neighborhood of
the origin. This would mean that we need only as-
sume a finite radius of convergence in the short-
distance expansions (8.5) and (3.6). For sufficient-
ly small values of the exponents in (3.7), however,
the integral becomes infrared (large distance) sin-
gular. Such infrared contributions can lead to
larger slants than (3.10). We must ignore such
contributions since they come from regions of in-
tegration in (3.1) where (3.3), (3.5), (8.6) are not
necessarily valid. Infrared effects are never pres-
ent canonically and may lead to violations of the
scaling laws. The presence of such effects would

invalidate our conclusions. They are, however,
present in perturbation theory and our methods
are easily generalized to include their effect. Dis-
cussion mill be given in a forthcoming publication. 4'

E((a&) ~ constx&g) ' (y~ theory). (3.13}

The lowest-order contribution to E(~}, corre-
sponding to the Feynman diagram of Fig. 2, has
been evaluated in Ref. 14 and the result is in ex-
act agreement with (3.13). Also, the asymptotic
behavior of E(&o) in the ladder model has been
evaluated in Ref. 67, and the result is again (3.13).

%e consider next p' theory. This theory is for-
mally scale-invariant but the perturbation expan-
sion breaks the invariance by logarithmic factors.
Qur results are therefore only valid up to such
factors. The source is S =:~t)': so that

FIG. 2. Lowest-nontrivial-order contribution to e+e

&(P) + anything in P3 theory with scalar photons.

D =3, 6 =1, Z =+1 (g' theory)

and (3.11) becomes

E(e) ~ const (P' theory).

(8.14)

(3.15)



1S26 RICHARD A. BRANDT AND NG WING-CHIU 10

The lowest-order contribution to E(a&), corre-
sponding to the Feynman diagram of Fig. 3, has
been evaluated in Ref. 14 and the result agrees
with (3.15).

C. Vector currents

The generalization of the above analysis to the
case of conserved vector currents j =i: P~ a„p:
is straightforward. The amplitude W„„can be de-
composed as in (2.9} into two scalar amplitudes
W»(», v) which yield two scaling functions F»(&o)
as in (2.11). The relevant LCOPE is given in E(l.
(2.10). As in electroproduction, we find E,(&u) = 0
and

I
I
)
I
I
I r
)

F,((o) = -4uPF((u),

with E((») given by (1.12)-(1.14). Thus

E2((d ) ~ collat X ((&

IU. CANONICAl. SI'INOR CASE

(3.16)

(3.17) FIG. 3. Lowest-nontrivial-order contribution to e e
h(P) + anything in $4 theory with scalar photons.

The amplitude is decomposed as usual:
In this section, we continue to work within the

context of the canonical framework but we use vec-
tor currents constructed out of charged spinor
fields, e.g. , guarks. Such a construction is indi-
cated by the electroproduction experiments. " %e
allow the observed final hadron to be either (pseu-
do) scalar (e.g., a pion) or spinor (e.g., a nucle-
on).

A. Formalism

The electric current is now' J„=:gy„gg: and the
final hadron is either a spinor particle |t(p) with
source s~(y) (see Ref. 46) or a scalar particle
H(P) with source S(y). An average over the spin
of h will always be taken. The dimensions will
be written4'

P~ — " P„— ' S'2 lc, v

(4.2)

2u)E&(u)) =E,(u&}. (4.4)

For the spinor source, we have the representa-
tion

W'„, = dxe" " 0 S„„xOp 0 (4.5)

and the scaling laws are

vW, (», v)-F, (((&), W, (», v)-F&(((&), 1 ~(d ~~

(4.3)
with

5 =dim/, d =dims, D =dimS. (4.1) where"

(4.6)

Using the LCOPE (2.13) in the scaling limit gives rise to the operator

~~(* 0'& )= f d)'&*e" " 't)t('t) (&)& ) R( b()) &(*))O—~t*—0))(&„t&');(&t-t)., (4.7)

7 ( )= f die'

fthm),

1 (4.9)

We define

(0I(9„(»,0;P)10}.~=. = P,f(» P)+»„Z(» P}

(4.8}

the scaling function of interest is given by"

F,((u) =(uFr((d). (4.10)

For the scalar source, everything is the same
with s(s)(P-1)s(y) replaced by S (z)S(y). We shall
denote the double-helicity-flip scaling function in
this case by 5,(~}.
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8. Short-distance singularities

To find the behavior of f (X) for A-O, we must
determine the slant singularities associated with
the operator (4.7). To accomplish this, we need
only repeat the procedure used in Sec. IIIA for the
scalar case, being careful with the spinor indices.
With the spinor source, the relevant OPE's are

comes from terms of the form

s (x+y —z) df d~".

These contribute singularities of the form

(g)3-D-() + 1/2 p (y)5 /2-D- 3
P

to (0 ((8„ i0),2,. Thus

f(A.) ~ /tk

(4.18)

(4.19)

(4.20)

(4.11)

where

(4.21)

(4.12} is the (vacuum) slant of (9„ for a scalar source of
dimension D.

8{() y 6(m) (f z)Its

a p s(z+y-z) '

Using the scalar case result (3.10), we obtain a
contribution to (4.8) of the form

(4.14)

Q(
) 5"""'(0) (4 (3)

n

As in Sec. IIIA, these expressions are somewhat

symbolic in that vector and spinor contractions
have not been explicitly indicated I e.g. f z'6» may
be (z y, f)z "6„].

For (4.8), only the unit operator 6"2(/' = C'fdf/I of
zero dimension contributes. When (4.11}-(4.13)
are substituted into (4.7) and the spinor contrac-
tions are made, the largest slant is seen to come
from terms of the form

C. Consequences

The asymptotic behavior of the scaling function
E2((D) is determined by using (4.16) in (4.9) and
(4.10). We obtain

F2((D) ~ constx (D', (f =d+6-2. (4.22)

s =:Py: (QED) (4.23)

Thus the maximum allowed rate of growth is given
by the slant. This rate is seen to increase with
the source dimension.

Our result (4.22) can be verified in perturbation
theory. Scale invariance in massive quantum elec-
trodynamics (QED) (X, =e:T()I}g:)and pseudosca-
lar-meson theory (PS) (Xf =g: gy2(l/4):) is only log-
arithmically broken in finite order of perturbation
theory and so our result is applicable. " The spin-
or sources are

p, e(y)3 d ()+1
p (g)2 d

f(a) ~ (2A. ',

(4.15)

(4.16}

and

so that

(4.24)

where

(4.17)

is the vacuum slant of (4.7). No rearrangement of
the vector or spinor contractions can give rise to
a greater singularity than (4.16). We note, how-

ever, (see below) that if infrared effects are im-
portant, a larger singularity can be present.

All of the discussion in Sec. IIIA concerning the
scalar case result (3.10) applies to (4.16) as well.
We repeat only the important remark that (4.16)
gives the maximum possible SD singularity and

this occurs for the source s of minimum dimen-
sion d. Even for the source of minimum dimension
the constant a may vanish, although it does not

vanish in perturbation theory. '0

For the scalar source S, the largest slant in „

FIG. 4. Class of diagrams contributU}(g to e e -h{p)
+ anything in quantum electrodynamics or pseudoscalar
theory. Dashed lines may be vector or pseudoscalar.
Solid lines are spinor.
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I
I
i
I
I
I

I

F~(&u}- &u', one can immediately conclude that
the minimal source dimension d satisfies d ~ b +-,'.
This is the most reliable method we know of for
learning about d. From a theoretical point of view,
(4.22) can be used to test field-theoretic models.
Such a model must be consistent with this bound.

One might worry that nonleading contributions to
vS', might make it difficult to experimentally de-
termine b. To investigate this, we include the
first nonleading LC contribution in the scalar cur-
rent-current expansion:

j(x)j(0)-n, (x): p(x)p(0): +(const}m'lnx': p(x)p(0):

+constx(lnx ):j(x)j(0):.
For large v and ~, we obtain

(4.29)

FIG. 5. Diffractive contribution to e+e h(p) + any-
thing in quantum electrodynamics or pseudoscalar theory.
Dashed lines may be vector or pseudoscalar. Solid
lines are spinor.

d =$, 5= /, o =2 (QED, PS)

and (4.22) becomes

E,(+) ~ const x &u' (QED, PS) .

(4.25)

(4.26)

The asymptotic behavior of the diagrams of Fig.
4 have been explicitly evaluated in both @ED and

PS theory. "'" The result is

V W~N'sI (K V} (Inx)N+8 p(N 'yl(R}

with

F," "'((u) const x-(ln(g)" 'uP.

(4.2V}

(4.28}

Thus, apart from the expected logarithmic factor,
(4.28) is in agreement with our result (4.26). The
great amount of work involved in deriving (4.28)
should be compared with the relative ease with

which we derived (4.26).~
In each order of perturbation theory, the (dif-

fractive) diagrams of Fig. 5 are as important as
the (rainbow) diagrams of Fig. 4. The asymptotic
behavior of these diagrams has also been explicitly
evaluated in both QED and PS theory. For PS
theory, the results are again in agreement with

(4.26). For @ED, however, the dominant asymp-
totic behavior [F,(&u) -&u'j is an (noncanonical) in-
frared effect and so is not given by (4.26). This
behavior actually follows from the generalization
of our analysis to include infrared effects, as will
be discussed in a subsequent paper. "

One of the most important consequences of our
result (4.22) is that it provides a heretofore lack-
ing (model-independent) handle on the (minimal)
source dimension d if long-distance effects are not

dominant. Thus, given canonical scaling (5 =$),
from an experimental observation of the form

W(x, v)-const&&v '&u ' '+const&&v m &u

+constxv ~co~"~ '.
With b =1, this becomes

(4.30}

F,(e) ~ constx~~, (4.32)

This result provides a handle on the minimal di-
mension of the produced scalar hadron (e.g. , the
pion). Thus, with canonical scaling (5=/), an ob-
servation F~(+)-~e implies that the minimal
source dimension D satisfies D ~ B+1.

The bound (4.22) is easily converted into a bound
on the (scaling contribution to the) multiplicity of
hadron h in electron-positron annihilation. This
is significant because of the greater ease with

which multiplicities can be measured compared
to asymptotic behaviors such as (4.22). Assuming
that the total annihilation cross section scales
[&r(x)- const' '. See Sec. IIC], the spinor particle
multiplicity IV„(x) satisfies

in&, d+5- 5 =0

const, d + 5 —5 & 0.
(4.33)

W(K, v)-const&&v 'ur '+constxp 'm &o

+constxv 'cuD '. (4.31)
The nonleading contributions are seen to fall faster
with v and not more slowly with +. This argument
can be extended to general nonleading singulari-
ties. Any such singularity is accompanied by op-
erators of proportionately higher dimension and
these effects precisely cancel. We conclude that
nonleading LC contributions are never more im-
portant than the leading LC contributions.

it similarly follows from (4.20) that the asymp-
totic behavior of the scaling function for the case
of the scalar source is
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N (K) -(~~)"'-"" (4.34)

The implications of this result with regard to pro-
duced scalar or pseudoscalar particles are strictly
analogous to the spinor case. Here D ~ 4 is needed
in order to get logarithmic or greater multiplicity
in the canonical scaling case, whereas the canoni-
cal elementary value is D =3.

V. GENERALIZATIONS

It is not difficult to extend our analysis to the
generalizations of the canonical framework men-
tioned in Sec. QB. We mill only explicitly consider
scalar currents and hadrons, the further general-
izations to include spin being obvious. The first

Thds the maximal possible multiplicity is deter-
mined by our dimensional analysis. Note that, ac-
cording to (4.31) (and its generalizations), the con-
tributions of nonleading LC singularities to the
multiplicity are always dominated by the leading
LC contribution (4.33). Note also that, because
energy-momentum conservation requires that N(K)
&MjI(, if d is such that 6+5-5&1, the constant a
in (4.16) must vanish.

The result (4.33}is most interesting because of
the relative smallness of the power 0+5-5. The
point is that it is not possible to obtain the expected
logarithmic (or greater) multiplicity in the canoni-
cal field (5 = $) canonical elementary source (d =$
+I =/) case where 6+5-5=-1. In the canonical
field (5 = $) case, d = $ is needed to get the expected
logarithmic multiplicity, and so if logarithmic or
greater multiplicity is observed (along zvith canon-
ical scaling), it can be concluded that d» $ so that
a canonical etementary source (d = $) u)outd be
ruled out and the existence of bound states of high

er dimension &could be estabLished. In other words,
all that is needed to establish the composite" (i.e.,
nonelementary) nature of the observed (spinor)
hadrans is to observe logarithmic or greater mul-
tiplicity together with canonical scaling. More
generally, an observed multiplicity (v K )" with can-
onical scaling implies that the minimal source di-
mension satisfied d» M+ /.

The above connection between source dimension
and multiplicity is perhaps somewhat surprising.
One might intuitively expect that it is easiest to
produce low-dimensional particles. A physical
way of understanding our result is the folloming.
Given that strongly bound states of high dimen-
sions exist, at a given energy ~, these states mill

be most likely produced since it requires much en-
ergy to break apart the bound state into its con-
stituents.

The corresponding results for the scalar source
S multiplicity are

class of generalizations me will consider are those
theories, such as reducibly scale-invariant 3-in-
variant theories, ""in which the LCOPE has the
form (2.17}with canonical singularities but with
the bilocal j(x; 0) of the form (2.18) or (2.19)." In
such theories, the canonical scaling law (1.11) re-
mains valid but the scaling function is determined
according to (1.12) and

f(x p) =(0]6(x, o; p)]o) i„. ,
by the operator

e(x, 0; p) = lim lim
(9(x+ ~, O; p)

~-o .s-0 ln x+ ]

(5 1)

(5.2)

(5.3)

where &B is still given by (1.14). Our result (3.10)
is still obtained, but nom the extra LC singulari-
ties which occur in (3.8) will be automatically dis-
posed of. This is important since it is nice to
know that (3.10) and its implications are valid in
theories which do not suffer from the inconsisten-
cies" of the naive canonical framemork. It is also
nice to be able to avoid the embarrassment of hav-
ing to arbitrarily lop off the extra singularities in
(3.8). In a properly formulated theory, the cor-
rect current and bilocal definitions, like (2.16)
and (2.18) or (2.19), enable one to derive the scal-
ing law (1.11) and the asymptotic behavior (3.11)
in a purely mathematical fashion.

We consider next theories in which the bilocals
have the previous forms (1.5), (2.18), or (2.19),
but in which there are anomalous dimensions. The
LCOPE becomes

j(x)j(0)—const x (x ') ' "j (x; 0),

and the scaling law becomes

V W(Kq V) E((d) )

(5 4)

(5.5)

with F(~) having the previous definitions and prop-
erties. The result (3.10) is again obtained, but

now b, , as well as D, is a priori unknown.

For use below, we note here an alternate deriva-
tion of our previous results in the canonical case.
Instead of working with the operator (9 [Eq. (1.14)],
which depends on the fields f and sources S, we
could have worked directly with the operator 8
[Eq. (1.10)], which depends on the currents j and

sources S. We could follow the same procedure
employed for in Sec. III and the Appendix, ex-
cept that we would seek the slant associated with

the 1jx' term in (0 ~8 ~0). This term turns out to
have a slant which is one less than the slant of the
constant (in x') term for a given integrand, but

this is made up for by the fact that the dimension
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of j is twice the dimension of P. That is, the pre-
vious appl oach~

and the present approach,

(8) ~ (D+-a6- )31+~2-81, 1
(5.7)

VI. MSCUSSION

The main result of this paper ha, s been the deri-
vation (assuming nondominant infrared effects) of
the short-distance behaviors

f„(X) ~ aA, o=d+5-2
%~0

(6.1a)

give the same scaling law (1.11) (a consequence of
the 1/x' LC singularity) and the same asymptotic
behavior (3.11) (a consequence of the X' slant
singularity). Even at the purely canonical level,
the second approach is useful since it eliminates
the need to know that (8)—n, , (x)() follows from
(1 5).

The real advantage of the second approach is that
it can be used when the bilocal does not have the
form (1.5), (2.18), or (2.19), or even when the bi-
local does not exist, as in (2.20). One need only
insert the OPE's for II(j, s), R(j, s'), etc., into
(8) and evaluate the integrals as we have previ-
ously done. As long as the theory is (asymptotical-
ly) scale-invariant, well-defined LC and slant sin-
gularities will be obtained.

The slants a and Z thus specify the maximum pos-
sible SD singularity associated with the leading
LC singularity.

Both the degree +1 of the leading LC singularity
[h, (x) -(x') '] and the degree o of the leading SD
singularity are determined (in asymptotically
scale-invariant theories with no domina, ting
infrared effects) by dimensional analysis. The
nature of these dimensional analyses are, how-
ever, remarkably distinct. Infinitely many
terms in the OPE's of the operators in 6„, con-
tribute to (6.1). The reason that so simple a re-
sult as (6.1) is nevertheless obtained is that each
of the terms in (3.7) (for each possible contraction
of the Lorentz indices) contributes in the same
way, independently of the intermediate dimensions
d, or l . The precise result (6.1}could not, unlike
the case for the LC singularity in (1.5), be guessed
a priori by matching dimensions —the function f (X)
and the variable A. =x p are dimensionless. An ex-
plicit evaluation, as performed in the Appendix, of
the relevant integrals is necessary to obtain (6.1).

The contrast with the behavior of the coefficient
f(X) of the leading LC contribution to electropro-
duction is especially to be noted. The LCQPE
(1.5) implies that f (X) is analytic (for small A), in-
dependently of the source (i.e., independently of
the matrix element). The behaviors (6.1) are, in
the contrary, singular and significantly dependent
on the nature of the source. This source depen-
dence means that more information is needed in
the annihilation case, but the rewards are com-
mensurate: Annihilation can be used to probe the
(minimal) source dimensions. Also, the small X

behavior is much more useful in the annihilation
case in that it leads to directly observable results
(since (d- ~ is in the physical region for annihila-
tion).

The behavior of the transverse sealing function

f„(x) ~ Ax, Z=D+5 —v' (6.1b}
F ( ) F(e)= f dz ''=,"f(z) (6.4)

8„„(»,0;p} = 5„5.,(»)p„f(z}i+ ~

x 2~0
(6.2)

8„(»,0; p) = p„f(Z}i+ ~

x~~0
(6.3)

of the coefficients of the leading LC singularities
in 8„„[Eq.(4.6)] which contribute to W„„[Eq.
(4.5)], the amplitude for e'e annihilation into had-
ron h (spinor particle with source s of minimal
dimension d} or H (scalar particle with source S
of minimal dimension D) plus anything, when the
electromagnetic current is given by J„=:gy„gg:
(properly defined) with 5 =dim/. In terms of op-
erators,

for large (v is directly determined by (6.1);

F,((v) ~ constx(d' (or ~ for H). (6.5}

So both the scaling limit of W'„„and the asymptotic
behavior of the scaling function are determined by
dimensional analysis. Again the differences in
these dimensional analyses should be stressed:
vW, (», v) is (in the engineering sense) dimension-
less while g and v have dimensions, whereas both
E,((d) and (d are dimensionless. The principal im-
portance of (6.5) is the handle it provides on the
source dimensions. It will be of much interest to
compare (6.5) with other determinations of the
source dimensions, e.g., with the nonleading terms
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in the total annihilation cross section. "
The results (6.5) in turn determine the asymptot-

ic behavior of the multiplicity of h (or H) particles
in annihilation:

iV„(z)- constx(v ~)" ',

KH(K) const x (MK)

(6.6a)

(6.6b)

These results provide an even more accessible
handle on the source dimensions. If canonical
scaling (5 = $) remains valid and if the expected
logarithmic or greatex multiplicity is observed,
then (6.6) imply that the sources in nature cannot
have the canonical elementary dimensions (d = $,
D = 3) but rather d ~ $, D & 4 (always assuming
nondominant infrared effects }.

The multiplicities N(K) will be soon measured at
large a and then (6.6) can be used to learn about
the source dimensions. Until then, all that is
known about the dimension D of the pion source is
the PCAC restriction 3 «D &6, and essentially
nothing is known about the dimension d of the nu-
cleon source. " The information supplied by (6.6)
should therefore be most welcome. The expected
logarithmic or greater multiplicity will imply the
also expected (but as yet unproved) composite
nature of the observed hadrons. The constituent
quark model is, in this connection, suggested.
There, s-P: ggg: and S-Cl: gg:, so that, in the
free-field limit, one has the large dimensions d
=~2' and D=5. In this case the free-field dimen-
sional assignments should not be taken seriously,
however, since the strong binding should apprecia-
bly change the dimensions and since the canonical
value dim/ = ~3 should only be correct for current
quarks and not for constituent quarks. '7'"

The results (6.5) [and, for the scalar case,
(8.11)]provide simple explanations of previous re-
sults in perturbation theory. For example, they
show why the asymptotic behaviors of the scaling
function in the P' and (I)' theories are a power dif-
ferent and why those in PS theory and QED are
similar. " The only perturbation theory which
scales (in four dimensions) is the superrenormal-
izable Q' theory. There our results imply that,
as long as dim(t) is unity, only constant scaling
multiplicity is possible no matter how many dia-
grams one sums. More generally, if a sum of dia-
grams in any renormalizable theory scales, they
can only lead to constant multiplicity for the can-
onical elementary particles. In order to obtain
both scaling and nonconstant multiplicity in pertur-
bation theory, suitably many graphs must be
summed to obtain bound states of high dimensions
or at least noncanonical elementary particles. It
should be noted here that the logarithmic multi-
plicity obtained in some perturbation theory calcu-

lations" is a consequence of scaling violations and
not of compositeness.

Our results are also applicable to conformally
invariant quantum field theories, "whether or not
they lead to Bjorken scaling. Consider such a the-
ory in which either Bjorken scaling does obtain or
at least is only violated by small corrections to the
canonical dimensions of the fields in the current-
current OPE. Then results like (6.5) and (6.6) will
be valid, with d (or D) the anomalous dimension of
the sources corresponding to the basic fields in
the theory. Since the scalar (d, ,) and spinor (5,)
field dimensions in these theories must satisfy the
conditions

F,(&u) ~ P(o' ",
ur ~Q

(6.9)

combined with the reciprocity relation (6.8) (for
large &u) gives

(~) ~ p~lx+2

Z(~) (~i&)"— (6.10)

(6.11)

(6.7)

the multiplicities can be power-behaved. Devia-
tions from Bjorken scaling will increase the pow-
ers." That such power behavior is obtained for
multiplicities in these theories has been argued by
Polyakov. "

Phenomenologically, the results (6.5) put anni-
hilation on the same footing as electroproduction
in that the behaviors of the scaling functions in all
the asymptotic limits can now be predicted with
some reliability. Equation (6.5) is the annihilation
counterpart of the Regge behavior (2.5), and even
the electroproduction threshold behavior (2.6) is
also expected to occur for annihilation. "

The small-~ behavior in electroproduction and
the large-~ behavior in annihilation may be re-
lated by more than analogy. An unexpected rela-
tion was noticed by Gribov and Lipatov" in their
study of perturbation theory, linking the behavior
of F,(&u) and F,(1/&u),

(6.8)

This has been called a reciprocity relation. Equa-
tion (6.8}holds in perturbation theory if the cur-
rent constituents coincide with the physical parti-
cle, but the connection between the behavior of
F, (&u) as ~- 0 (Regge limit) and that of F,(&u) as
&u- ~ given by (6.8) may go deeper than that. Pom-
eron dominance, known to give logarithmic multi-
plicities in the purely hadronic case, ~ when cou-
pled with the reciprocity relation, would predict
logarithmic multiplicities in e'e annihilation,
where the Begge limit is not relevant. More gen-
erally, the Regge behavior
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Comparison with (6.5}then gives

a+2=v =d+6-2 (or=2 =D +6-$ for H),
(6.12)

thus providing a striking connection between Regge
intercepts and minimal. dimensions. " In a canoni-
cal framework this becomes

(6.13)

and could explain why the Pomeron intercept is at
(or near) unity.

Our method, being of an operator nature, is of
course applicable to other processes of current
interest, in particular, to the one-particle spec-
trum in electroproduction (1.2). There, the depen-
dence of the multiparticle amplitude on several
variables complicates the procedure: for example,
one needs the limit x p'- 0, x.p fixed, which is
not just the x"-0 limit. Details of our treatment
of this process are given in a subsequent publica-
tion. ~

It should be kept in mind that, in order to derive
the results (6.1) on which our conclusions are
based, we had to make assumptions vrhich are
considerably stronger than those necessary for
deriving the nature of ordinary SD and LG singu-
larities. These assumptions are, how'ever, cor-
rect in perturbation theory and our conclusions
are readily verifiable experimentally. Taking the
optimistic attitude that the assumptions are cor-
rect in nature, our results constitute a large ex-
tension of the region of applicability of OPE's in
particle physics. Space-time techniques are now

applicable to rather detailed studies of the final
states in inclusive current-hadron processes. The
fundamental questions concerning the dynamical
origin of scaling and the internal structure of the
hadrons unfortunately remain as intractable as
ever.
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APPENDIX: THE SLANT INTEGRAL

where z ~ "=- (z')~ ' = (z' -fez, ) ', etc. Let
(=y+z, g =y-z, and we have

ejP ag d e -jP ~ q' d gg

(2
l

~ )2(a(2 )2lb

1
(5')" ' (A3)

We can now rename the integration variables to
get

$PeX jPag
)za (2z )2b 2c

I, is analytic in a, b, and c. Since the singularity
depends only on a+b +c, we can perform the inte-
gral for certain values of a, b, and c, and analyt-
ically continue to ascertain its value for the same
value of a+5+c. Thus let

I2= dzdye' '8{2z' —y' 5 (2z-y')

so that

1 0 2X[(2„,)2).8(y )~(y ),

a+b+c =n+2.
The dy integral can be evaluated trivially:

J = dy8(2z'-y' 5 2z -y')8 y 5 y'

d&8 2z —y
0 1

"6("-z'IyI +Is} iyI(2) (A7)

Demanding that -1 «e «+1 in the 5 function gives
ao+ [z[ 8 o

ll l 2z8(Z)8(Z ).
~ -)zi

Thus, by renaming 2x-x, we get
(A8)

~P qI, - dydee
{2

(A2 }
Successively let $ -=$'+q, g'=-x -7t, and then

Consider the basic slant integral
I, =-,'w dz e(2'8(zo)8(zz)

[(z -z}2]" ' (A9)

zef~ ~ ~&-g) {x y) -2a{x+y z -2b(z )
-2c I, is most conveniently evaluated in terms of LC

variables, with

(2=x p+[(z p)'-x'p'j"', f) =z p- [(z p)'-z'p']"',

I2 2 tt' dQ dp dye e 8 (cv +p
4 ~ b p

r2 0 1 1
do.dpe'~ ' '8'

8(ll-() [b(s- a)-a)[" ' [(a —a)(ll-ll)]" '} ' (A10)
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The Fourier transforms can be performed with the aid of the formulas"

n-])-i -2 ( &)" ]]2
( p)„= ( 1)!~ Q' -1)!( ]i-) P -

( 1)! "Ei(-P]i) 1

"e ~dx =~ "Ei(-]iP)
x+P (A 1 lb)

dxe"*Ei(ax+(u) =-[Ei(y) -e [22/i Ei(ik]i//X+]i)].
0

The result is

(Al 1 c )

1=- , 1 ((-))" Q(iP )" ~ '(-1)~(j —1)l (- H -(-) ())
e-2 1 n-2

+ (ip'}" ' — Ei(-2p'b)e'2 '- — Ei(-ip'a)e" 'c-5 c b

1 "2 1~—
( 2)! Q (b —1)!(ip')" ' '(-1)' — —(ip')" 'e'2 ' Ei(-ip'a)

I

x Q (!]-1)!(2p')" ' '(-1)" — —(ip')" 'e'2 'Ei(-ip'b)
-k= 1

r2
(p2)11 2

8(» -1)(» -2)!

1 1
11 I& - (~'-*') ')'"I'I~+ (&'-"')'*)'"]"' [1~ (1'-*')')'"1'[1 -(1'-**)')'"I" ')

+ i" ' — . . .„,„,exp{i[A —(X'-x'p')'"]] Ej(-i[g —(](.' «'p')'"]}
g + (g2 «2p2)1/2 2-2

[]] (])2 «2 2)i/2]11 2 e P{2[~+ (Z' -«'p')"']}Ei(-i[A + (X' -x p')"']

ft 2

P lb-1)t(" ' . . .„, -'" 'exP['[& ~ (1' —*')')"']}Ei(-i[&~ (1' —*'/')'"])}
(» -2)!, , ]). + (]].

' -x'p' '" '
f5~2 11)l'" -'. . . , -i" 'axP[i[k- (1'-*') ')' ']}2'(-i[A-(1'-x') ')"'])I . (1)1)a)

Equation (A12a) holds for general » ~ 4. The results for» =1, 2, and 3 are

J )P «2 2 i/2
dy e'2'8 (y2)8 (y2), - -~ — p exp{i[]].—(]]2 -«2p2)'/2]j Ei(-i[A —(X2 —x'p')'"])

(» -y}'

+ ',', , „, " exp{i[a+(]i2-x'p')'"]j Ei(-i[]i+ (X'-x'p')'"]), (A12b}

J)dy 8'2'8(y')8(y2) 2 2 -~(') ( 2 2 2 i/2[exP{i[A —(A2-«2P2}"'])Ei(-i[A. —(P.'-«2P2)'/2]}
[(«y)2 2 2 2 (g2 «2p2)i/2

—exp{i[](.+ (]]2 -«2p2)'"]] Ei(~[X + (X2 —x'p')" 2])]

-e2'i Ei(-i[]i+ (]]2 -x p')'/2]} El(-i[]).- (]]. -x p') ]), (A12c)
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dy 8 )9(y )i (y )[( }E]E

1
(~E „, ,),/, ] (~E „, ,),/, exp{i[a + ()P —x'p')'/E]] Ei(-i[][.+ (X' —x'p')'"]) +, ,

+
[ (. . .}„,] exp(i[a —(~' -x'p')'"]) Ei(-i[~ —(][.' -x'p')'"])

+ . . .)„,] exp[i[X+ (]]E —«EpE)'/E]) Ei(-i[A+ (X' —x'p')'"])

—e" E'(-'[e (e'-e'p')'"])Ei(-'[x —!e' —e'E')"'])) . (A12d}

Another set of relevant integrals is

dy e'~'8(y')5(yE), -2. . .„, exp-[ ,'i[ ]]+-(X' -x'p')'"]}Ei(=,'i[A+ ()P -x'p')'"])

+ exp( ,'i[a —-(XE —«Ep')"') Ei(=,'i[]].—(][E -x'p')'/E]), (A12e)

dy gled'Qg y0 Q y3

2

2 .2 2 i 1 )t24(X -x p } ][.+(X -x]/)2 2 2))./E exp [2 i[& —(&' —«'P')'"]] Ei(--'i[~ —(~' —x'0')"'])

1
exp(-'i[a+ (][.' —x'p')'"]) Ei(=,'x[1+ (][.' —x'p')"'])

(A12f)

dye' "8 y' 6 y'

1 n-1 tl 2

4( 1)[ (gE 2p2)1 2/(P
I
Q ( (E g (]

2 Ep2)1/2 ( } 2

1 n-4-1
—E —!)!([!)"' *(, * * *; ~ !-!)'—.

A, -{A, -gp j x'

fI -1
—(Ei}" ' . . .„, exp[-,'i[a - (][E -x'p')'/E]) Ei(=,'i[A —(][.

' —x'p')'"]}
x + (x' -x'p')'/E

&& exp(E'i[A + (/[E —«EpE)'/E]]. Ei(=E'i[A + (XE —«Ei)E)'/E]) ~, (A12g}

(A12g} being valid for n - 3.
For the purpose of investigating the effect of numerators, it is also useful to have the integral
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„„,„(y') e(y') e(y')0

f(» —y)']"

~( m!(n-0-2)! (-1)'~ (m-))!( -1)! 4"---'
p= 1

1 (J 1)!(n )'2 J' 2) 2 p 2 1
(n —)'2 —2)! + (n —m —j —2)! [](+(]1' —x'p')'/']'

j= l

(n - il -1)i 2--'

)))» 2[»[» (»* —**p*i"*]ln)(-'[»+(»*-*'p*)"I))

(
1 " ' ' (j —1)!(n —)2-j —2)! .„„,,

(n k 2)! Z (n m -j - 2)! '
[]( -(](' - x'P') ']'

j=l
Sn 0-1

exp['[» -i»* —**p')"'])n)(-'[» -(»*—»*p*)~*]))

pn!(n -m —1)! 1

(n —1)! (n -m —1)!

1
( I)n-m ~ 1(+l-)( 1)!) ~ j 2] [~ (]„2 2p2)l/2]p[] + (]

2 2p2)l/2]n-m-2
j=l

1
(»* **p*)"*[ . *)

, ex s A. —A, '-x'p') ' E&(-& X- ~ —x'p }' ' )

, , ~, „„,exp[i[» (»*-»p')~']]2)(-l[»+(»'-»'p*)' ']))[~-(]].'- x'P') ~']"
ft haft

() 1) [ n —m+k —2

(n -m —2)! ~ '
[]).+ (][.' -x'p')~']'

—i" ' exp(i[!(.+(Z' —x'p'}~']) Ei(-i[]1+(]).' —x'p') ']

1
(Q 1 ) f

'fft fat+ 4( ' [! (l
2 2p2)1/2]k

—i' " ' e p['[» —(»'-»'p')"']]'n'(-'[1 —(»'-*'p') '])) ). (A12h)

The variable a=](+(X' —x']))')"'-2(x p) as x'-0
X -0, so that I, indeed possesses slant singulari-
ties. It is also singular as x'-0, but we shall
only be interested in the piece which diverges at
most like In(»2]))2). Then the slant singularity is

in terms of a, b, and c, this means

f((a, b, c) constx]( [''"" ']
1~0

or that the slant is given by

(A14)

x (/(-I}"(" ' 1

2( -1)[2" ." (P}

x(-3 ln2+lllx p —2 ink) . (A13)

The singularities are always the result of diver-
gence of the integral near the origin, and would
not be changed even if the integration is cut off at
a finite distance. This is the basis of our optimis-
tic attitude toward "infrared" effects manifested
in some perturbation-theoretic examples. %'ritten

g =a+b+c —3.
The variable f/= ]( —(](-' —x'P'}'"-x'P'/2k+ ~ ~ as

x'-0, X-0. If the term containing ln(x'P') has
the form jn(»'P')X ', then the 1/x' term will have
the form (I/»')!( "', and so forth. There are
also terms like x'A. ' ' arising from the expansion
of the exponentials. Applying Z, to (Al) increases
the slant only by one, because of these various
canc ellations.

%'e now proceed to consider the effect of insert-
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ing various inner products. We are interested in
three kinds of inner products: (1) linear combina-
tionsofx y, y z, . . . etc. , (2)y p, z p, (3)
y 4' z ~ 4' where 0 is any external vector and x ~ 4

may or may not vanish.
Consider first inserting a factor of y 4 in the

integrand (A5). We take

I, = dzdy e' ' 2z' —y')0( 2z —y)'3

z ~ k 0 2

[(2 z)2] e(y ) &(y ) ' (A19)

Thus we can concentrate on finding the slant of

y z =
I z

I I y I cose,

y =
I yl (sine cosp, sine sing, cose),

y k= Ivl Ikl (sinpsinecosp+cospcose},

where
z k z'lyl —z'-'

Then we find

dy e(2z'- y')5((2z —y)-')(y }t)e(y')5(y2)

(AI5)

(A17)

We choose P =(P', 0), and parametrize

z x=lzllxlcose,

z =
I zl (sine cosQ, sine sing, cose),

z k =
I zl lkl (sinP sine cos@+cosP cose},

where

x k
cosp =

lxllkl
'

(A20)

(A21)

= —,'z(z I2) e(z') e(z') . (AIB) Then,

0 jp zo dl II I2 d( )
(z ~ -lzllklcose«»p)

(4x'+z' -4x'z'+4lxll zl cose)" ' (A22)

We can ignore any factor of x or jx) relative to terms without them, and the leading term in 73 will be

'0 z'I zl Ikl cosP
dlzllzl (4» 4» 4. . . , ,„,+nonleading terms,

I II I)" ' +n n
Izlcosp

X 0
4x'+z2-4xoz'-4 x E "-' (A23)

By contrast,

1 1
dlzllzl

(4 . 2 4, o 4I II I)„,+ nonleading terms. (A24)

The integral has a slant identical to I,. If x 0 -0 also, then I3 would have the same slant as I2. If x 'k4 0,
then in this frame Ikl-x )2/Ixl, and f2 with the extra lkl factor would have its slant increased by one. To

see this succinctly, note that

aI = —iQ —I3 P ep 2&

where I2 given in (A12a} is a function with singularities as x p+[(x p)2-xzp2]'~2-0. Clearly

(A25)

( &)( )- 'f
f(x P [(x P}'-x'P']"') = x ~ f + [, ,]„, f'(x P+[(x.P}'-x'P']"), (A 26)

and the above statement follows since f ' in this
case is one power more singular than f.

In particular we can put k =p, and obtain the re-
sult that z p or y P in the numerator does not

change the slant.

For x y, y z etc. , we notice that by (A18) we

need only consider x ~ z and z'. The insertion of
z' in the numerator of (A24) decreases the slant
by one relative to I,. The effect of x ~ z is obtained
from (A23) by replacing )2 with x: It decreases the
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slant by one.
%e conclude by listing our results:
(1) x y, y ~ s, . . . , etc. decreases the slant by

one;
(2) y p, s ~ p does not change the slant;
(3) y ~ k ~ 0 does not change the slant, for x ~ k

=0.
(4) y ~ h, z 0 increases the slant by one if x

w0.
The independence of the result (3.10) of the may

contractions occur in the integrand in (S.V) is an

immediate consetluence of the result (1) listed
above. For example, the integrands

(~') '(y') '(s') '

(x') ' '(y') ' '(s') ' (~ y)',

( ') ' '(y') ' '( ') ' '(~ y)(~ )(y ),

etc. ,

all give the same s1.ant."
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