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Generalized eikonal functions in potential theory
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A potential-theory formalism is described within which exponentialized corrections to
simple Glauber theory may be developed. An alternate formalism with direct generalization
to relativistic fieM theory is developed for potential scattering at a11 angles, and some numer-
ical work is presented to confh m and justify the appraximations employed.

I. INTRODUCTION

One of the perennial problems of theoretical
physics is the derivation of potential-theory scat-
tering amplitudes better than (or at least differ-
ent from} those of a previously published approxi-
mation. Is it possible to improve the Glauber' ei-
konal amplitude in some unique may'P Is the Saxon-
Schiff' formulation for scattering at all angles the
best of the simple approximations' Do these am-
plitudes have generalizations to relativistic poten-
tial theory'P To field theory'P

Recently, there have been a sequence of calcula-
tions defining corrections' to simple Glauber the-
ory, along with some field-theoretic computations4
of high-energy, lar ge-momentum-transfer proton-
proton scattering, representing a relativistic gen-
eralization of the Schiff vide-angle potentia, l-the-
ory approximation. ' These calculations are all
connected, in the sense that they may be reached
starting from the same, fundamental forms for
the scattering amplitude. It is the purpose of
these remarks to exhibit this underlying formal-
ism, and to demonstrate one facet of it by produc-
ing an alternative to the Saxon-Schiff formalism,
one with immediate generalization to relativistic
quantum field theory. %'hen applied to nonrelativ-
istic potential theory one finds a simple approxi-
mation not much better and probably no morse than
those given by other approximation schemes. The
lack of numerical comparisons of different ap-
proximation schemes in the truly wide-angle re-
gion is to be deplored.

It must be emphasized that the techniques em-
ployed here are really not nem; rather, their use
in these contexts is most natural and straightfor-
ward, but does not seem to have appeared in the
potential-theory literature. An important excep-
tion is the recent paper by Harrington, ' with re-
sults analogous to our Eq. (18) of Sec. II. The
soft/hard expansion was introduced in an excellent

paper by Mahanthappa. ' Exact propagator rep-
resentations are well known and have frequently
been used in field theory. '

The plan of this paper is as follows. Section II
contains the basic formalism, defining corrections
to Glauber theory and generating an alternate for-
malism for scattering at all angles. A simplified
derivation of formulas for the latter case is pre-
sented in Sec. DI. Section IV contains some numer-
ical computations carried out for a Gaussian po-
tential, while a final section is devoted to a brief
discussion. Our main result is contained in (29}
and (30) [or (38) and (43)], which exhibits the re-
sult of both the small-angle formulation~ and the
large-angle theory. '

II. FORMALISM

A. Fundamental forms

1 2mf = -4—, ag ((tg, (E-H,)G(,)(E-H,) ((;} (3)

where G(,) -=(E-H, —V+ ie) ' is the exact, poten-

Perhaps the simplest approach begins by writing
down the definition of an amplitude appropriate to
the scattering of a nonrelativistic particle by a
time-independent potential V(r),

f(i„(t)=-4—, (I, )Jd'* ~ ('( ((i( ('*,
(I)

where ((((,)(i) satisfies the formal integral equation

((((() = $(+ (E Ho+ fe) V(l((~) i (2)

with (1(((r) =e'P'' ', ,H=-(K* /2))s~, Ill=I p(l p, =—
and the normalization chosen so that 0 „,
= («/P)imf (p(, p(), d(J!dry = lf)' = (P'/(()(doldt). It
is not difficult to manipulate (1) into an equivalent
form, most suitable for subsequent eikonal pur-
poses,
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10 QENERALIZED EIKONAL FUNCTIONS IN POTENTIAL THEORY

tial-dependent propagator of the problem.
Another and somewhat more convenient approach

begins by writing down an expression for the po-
tential-theory scattering amplitude obtained direct-
ly from the reduction formulas9 of relativistic 8-
matrix theory; with S/(OISIO)=1+ iT, one has

&p'I TIP&=(27r) '(282E') ' '

x d ge dye gQ„
x Z, (y, «IU), (4)

B. An exact propagator representation

What is a useful representation for Z,[UJ'P The
simplest and therefore most frequently performed
operation, generating the Born series, is obtained
by the expansion of Z, [U] in powers of U. A far
more useful form may be obtained by first writing
an exact x epresentation for the partial Fourier
transform,

&,(y, «IU) = g&ylp&& pl(~2 -S'+U —ie)-'I«&,

x.e.,
&,(y, xlU) =(2v)~

x d~p e'~ ' p m - 82+ U - i&) 'I g .

where p, p' are the four-dimensional equivalents of
pl, p~, K, =m2--S„2, and +,[U] represents the ex-
act, relativistic, causal Green's function for a
particle propagating in an external field U(«)-=(2222/I') V(«),

&,(y, «IU)=&yl(m2-()2+U —ie) 'lx&. (5)

The consequence of the independence of V on t has
not yet been extracted from (4), but one may note
the similarity in structure of (3) and (4); in both
cases one is asked to integrate appropriate plane
waves over an exact Green's function, inserting
operators which would, by themselves, vanish on
the energy shell (E-H, -O) or on the mass shell
(K„-m2+p2-0). Since (4} is manifestly relativis-
tic, it is somewhat simpler to begin by studying
an exact representation of Z,[U], and hence of (4),
one which easily leads into subsequent and more
properly relativistic considerations. However,
all steps may be performed in an identical way for
G (,), and the nonrelativistic amplitude of (2). For the
usual situation in which V(x) = V(r), energy is
conserved, and the relation between the f ( pz, pl)
of (1) and the (nonrelativistic approximation to)
(P'I TIP) of (4) is given by

&P'I Tlp&=(2x) '(2E2E') '"{)(E-E')4xf(p/ p )

It is convenient to exponentiate this operator,

& pl (~*-()'+U - ie)-'lx&

dg P e —ic, m' -8'+U) (~
0

2 2=i dte 's + )$(gpx),
0

where

s(g;p;«}=&pie '" e"" -"I«),

and construct a differential equation for $,

@ht pt x)
i&pl ei 22Uei2{D -U)lx&

8$

=-i&pie " Ue'22'e-;(2'e" 2 U lx).

Inserting

1 =+la&&) I

= Q~ P+I && p+h I,

this becomes

X S(t; P + )2; «) .
Finally, since &PIUIP+h&= U(-)t) [if &xlUly&

=()4(x- y)U(x)], and setting S($;p; x)=-e '2'*

xf($; p; «) so that f(0;p; x)= 1, we obtain the rela-
tion

f('(t Pl )
2 d4)t U( p) ill '(2 +222+l al22)f (g, p, x)8(

=-i U x+2Ep+i — 8; p; x .
8P

E{luation (10) has the formal solution

(10)

I' . ', , sf(f; p;x)=
~

exp —i dt'U «+2)'p+i-
ap j, '

sf(t'P'x) . „.. „;,, „.; -l'. -g("22 2)e
8$

Xf((;P+)l; «) .
A somewhat neater equation may be made out of

this by noting that f(t'; p+)t; x}=e' '2i 2f($—;p; x),
and using the Baker-Hausdorff lemma" to replace
e-i){2+2k P)ek 'aiaP by e 'k & ~~+'@~~ and so obtain

where ( ) denotes a "time ordering" of the t' pa-
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9
f(5;p; x)=1 i -d5'U «+2k'p+i , —f(h';p; x)

(12)

Finally, in terms of this function, one has the ex-
act representation

Z(y xlU)=i(2r) ' d'pe'~' ' *

d(e "™~'f(5 p'x)
0

(13)

rameters in the expansion of the exponential of
(11}.Alternatively, f is the solution to the integral
equation

=(2w) ' fd )e'"''""

and therefore

E, t).,(y —x)=6]+(y- x),

x((t,"+m' —te) '

polynomial functionals. Equivalently, since such
polynomials may be obtained by appropriate func-
tional differentiation with respect to a source j(z),
it is sufficient to think of Z, []].U] in the form
exp[]].f d'uj (u) U(u)], in which case (14) follows
immediately.

Note also that

Z,(y, xl xU)l„, = n, (y —x)

C. An exact amplitude representation

It will be most convenient to multiply U by a pa-
rameter ])., where O~a~1, and so consider Z, []].U].
One observes that

and

[x ()] fd'*. (z)=()Z.]A ()1,

a property which obviously holds for any sum of

(14)

d'xe"'Z K, a,(y-«)=e"'(p'+m')=0,4 ~ I

~ ~ c ~ ~~
~ ~

when p is on the mass shell. Hence, in (4), one
may replace Z,(y, x l x U) by

1

Z,(y, xlZU) —~,(y —x) = dZ , Z,(y, xl~U—)

d4z z Zy~ gU
1 ~~

~
4

~

~ ~
c t

0 6 z
1

dZ d'z Z,(y, zlzz U) U(z) Z,(z, xl]].U),

where the last line follows from the easily proven property [6/5U(z}] &,(y, xl U) = -Z, (y, zlU) t],(z, xlU).
Thus one may write

l(p'I r lp)= -(2a)-'(2E2E')-"' d~ d'z d'y e-" "fC, Z, (y, zl ~U) U(z) d4xe' "ff„&,(z, «l ~U}
0

(16)

Each of the bracketed expressions of (16) has a lovely, mass-shell simplification, which follows direct-
ly from (13) and the symmetry property Z, («, y) lU) = b, (y, xlU),

d'xe'~'*K, Z, (x, zl&U)lp, ~=0 =e"'*f(;-pt z} ~
4 ~~ ~ ~

~
~c

t

Hence, (16) simplifies to

1

(p'lTlp)=-(2v} '(2E2E'}-' ' dx d'ze" *f(~;p'; z} U(z)f("; p; z), -
0

where q=p-p' and t= —ltl=-q. Finally, if Udepends on r only, an energy-conserving 6 function ma. ybe
extracted; with the normalization of (6), one finds a representation for the exact scattering amplitude,
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f(p', p)= —— dA. d'ze'~'' I~exp —iA
J~ dtU z+2Q&'+i,

&I U(z)
4w 0 Bp

oo . s
x ~exp —ix dEU z-2' i-—

~p

Note that microscopic reversibility (time reversal) is satisfied, f(p, p} =f(-p, -p ), and will so continue
under any approximation which treats each bracket of (18) in like manner.

D. Eikonal approximations

The simplest eikonal approximation may practically be read off from (18). Physically, one supposes
that p and p' are almost the same, that q /p' «1. This implies that any variations bp, bp' are small, and

hence one expects to be able to drop the s/sp, s/sp' operators of (18). When this is done, the complicated
ordered exponentials become ordinary exponentials, and one has

1

f=f, (q, E) = —— dx d'ze'~''U(z)exp —ia dt[U(z+2@')+U(z 2@)J-
0 0

(19)

Equation (19) is almost in the form of a convention-
al eikonal amplitude, but before completing the
argument it is worthwhile to see how this approxi-
mation may be phrased in terms of the basic Eq.
(9). One thinks of ail [k( components as small
("soft" ) compared to Ipl, so that (9}, with U

is replaced by the approximate relation

f((lpg ) 'g Id3bU( b) k X 2'leak ' p

(20}

which, in effect, leads to a boson version of the
Bloch-Nordsieck approximation scheme. ' A
posteriori, we shall see that this is a reasonable
approximation in the forward direction, ~q «~p.

If one neglects all q/P dependence in (19), the
only q e 0 dependence will remain in the phase
e'~''. In a coordinate system where p=e, P, at
high energy and small angles q, -O(q~'/p) -0, so
that this phase becomes e'"»' &, where z (x, y)
=-b, the impact parameter. The E integral of (19)
is trivial, producing a factor

iA. d 0
exp —2— (2 },U(b»)e'

while the f dz~ may be performed directly, to
yield the form of a perfect differential for the A.

integration. One immediately finds

f (q, z) = P dkb ei & ~ b [1—e'"&b''l],
elk

where

i d~k
iy= ——

( )k
U(b~)e

With U = (2m/I')V, one recovers the familiar ei-

konal amplitude. The basic, self-consistent justi-
fication of the method is that, in the forward direc-
tion, q~'«P, fd'b emphasizes large b, b-q, ',
andthereforeonlysmall k, -b '-q, «Pean enter.
For large P and real V, i}i——iO(P '), and-the
effect is suppressed, so that f -f,„,„. For high-
energy-particle purposes, one may imagine that
V is both absorptive and energy-dependent, effects
required by experiment and which, happily, follow
from numerous field-theoretic calculations'; then

f can be vastly different from its first few Born
approximations.

E. Corrections and refinements

What sort of corrections may be made to this
simplest eikonal amplitude'P Computations using
simple potentials have shown that f.;» is accurate
at forward angles, and is not particula, rly good
at larger angles, as expected. There is no unique

way of developing corrections to f . ; rather,
there are a variety of methods which may be em-
ployed, either to extend the range of q' for which
the approximation is accurate, or to refashion the
entire method and obtain new expressions valid in
other (large) q* regions. Recent work' of Wallace
and Baker deal with the first approach, while the
older works ~ of Schiff, and of Saxon and Schiff,
consider the second. For specific problems of
potential theory, a major consideration is ease of
computation (i.e., minimizing computer time}, a
feature not built into the analysis of this section.

Corrections may be defined by returning to the
exact Eq. (9), and writing the ansats f ($;P; x)
= exp[- i f'dt' g(t';P; x)j. Substitution into (9) then
yields
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i((P;*)=f&'ll()( k)-~ "'*8 '"' '"'"&m —($ d('(i( (' )'&'&) —i(("( *))' (22)

an impossible integral equation. There is no unique method of defining approximations to g, and different
methods generate different approximations. For example, one natural approach is to rewrite (22) as

d( (4("( ;p ~ ')i;*)—I&i((';);*))I, (23)

and expand 4), in powers of A. , (I)~(t';p;x) =+~",a II)(&&(g;p;x). The most glaring lack of uniqueness is the
present expansion of the )t' exponent [this corresponds to different boson Bloch-Nordsieck (BN) expansions'
in field theory]. From (23} one easily computes (I)(», g&», etc. ; the simplest corrections to the previous
estimate of (11}generate

f(";(;*)=exy —if &(( (* ~(((p)2+'( .' i(*+((rp))2~ f~(*J'('('('!((( 2()*))~(&!'()( 2( p)~)
)

.'
0 0 0

(24)

When inserted into (18), for a time-independent
potential, one finds already-exponentiated correc-
tions to the simple theory, which presumably ex-
tend the quality of the approximation to larger val-
ues of q/p.

powers of U„. For any &,[U~], there exists the
equation

&f((;)';*);fd ), ()( k),*-sP -1 *-e'P-Y p)
eg

F. Scattering at all angles

xf (t; p+k;x) ) (26)

Systematic approximation schemes (e.g., that of
Blankenbecler and Sugar'} may be invented to de-
scribe scattering at both small and large momen-
turn transfer. The method employed here first
saw service in wide-angle field-theoretic calcula-
tions (in the hadronic bremsstrahlung models' of
Gaisser, Fried, Raman, Moreno, and Kirby), and

represents a particular application of the decom-
position introduced by Mahanthappa. ' The basic
idea is to split V into two parts, V = V&+ VH, which

are treated differently throughout. If one sets

U(k) -=U(k) e-' + U(k)(1 -e-' ),

where Uz(k)=-e 8 U(k), U„(k)=-(1 —e 8 )U, and

P is a constant to be specified, then effectively
U& contains only k2 values SP ' in any subsequent
integration; and conversely for U~.

One then expands the fundamental propagator in

powers of U»

and for a specific lpl=lp'l=p, one may now choose
p so that Ik I& p

'~' means Ik l«p, i.e., p '«p' or
PP'» 1. This guarantees that the 4 entering the
integrand are always negligible compared to P,
and hence the BN approximation previously used
is correct:

f -f"'(p &)+"

Note that if q is restricted to very small values,
the (8 dependence of f (Ba» is irrelevant, since only
corresponding small k can enter; but away from
the forward direction, the P dependence of f(,"~~

should be retained.
The first correction to f„„may be obtained . by ex-

panding

~.(y, ~IU) = ~.(y, ~IU~)

(m' -e'+U, + U„) '= (m' -s'+U, }-'-
—(m2 -s'+ Ug )

'

x U„(m' -s'+ U~ ) '+

so that the expression (4) for (p'I 7 lp) becomes a
sum of terms corresponding to the expansion in

+ ~ ~ ~ (27)

Performing all previous computations for the first
right-hand-side term of (27) generates fP), for
Pp'»1. The correction term linear in V„, when
substituted into (4), yields
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(d Ir,'„l&z&= (x-z& (-d'dd
&

'z-'f'd z'fd re'-"'"d„zx(r, zl(&, ) r&„(z& fd'*e"'*)(,d(z, zl(&) (28)

whichhas almost the sameformasthe T aof (16), ex-
cept for the absence of all A. dependence. This corre-
sponds to an important difference in counting the in-
teractions of the scattering particle with the poten-
tial, for the single interaction with VH is counted sep-
arately from the multiple V~ interactions. But all
technical manipulations leading up to (19)may be
applied to (28), and without any restrictions on q/p
we can write

where nH denotes the number of VH powers in-
volved, and the superscript P is a reminder that

P 0. The entire amplitude must be independent
of P; but one has the expectation that the different
pieces, specifically f siss) and fPg, provide quality
approximations to the scattering amplitude in the
different regions,

~1 OQ

false)(q, E) = —— d)(. dsz e'"' *Us(z) exp x —i)x dt[Us(z+2tp'}+Us(z —2@)]
~4m' a0

(29)

f [s&(()(q, E) =-4—J
d'ze'~' 'U„(z)exp

~

—i dt[U (zs2+(p') U+( sz 2fp)]

Except for the P dependence, (29) is just (19},
while (30) is analogous to Schiff's wide-range re-
sult. One can argue that for large q', (30} is equiv-
alent to Schiff's result, for if at sufficiently high

energies, a small p may be chosen to satisfy
p& 1/p', then p may be set equal to zero in the

Vg factors which generates Schiff's expression
except for the replacement of his V by VH. How-

ever, at large q, only small z may enter; and

one may expect to be able to neglect the z depen-
dence inside V~. Then, one simply calculates the

Fourier transform of V„(z), and obtains Us(q}
=(1 —e s ~ ) U(q). But if pps & I, and q

' = 4p',
then Pq'& 1, so that U„(q) = U(q). In this way, one

expects f~tss) to reproduce Schiff's wide-angle form.
In fact, qualitative arguments may be given to sug-
gest that [ fp„(» ~ f ass", [ for large q', while the re-
verse is true for small angles. This will be ex-
plicitly shown, for a Gaussian potential, in Sec.
IV. We will also note that (29)+ (30) is nearly P-
independent.

III. A SIMPLER FORMALISM

The derivation of Eqs. (28) and (30}may be

carried out in a somewhat more direct manner.
Using standard forms' of nonrelativistic potential
theory (K=m= c =1),

f = ——d'r 4P Vs@j - 2— dsr4]~) Vs@]')

fs+ Qfs, - (33)

where

(Z+Vs-E)e(+) =0. (34}

First consider f~, which involves only V&. %'e

can solve (34) for 4(s& and evaluate the integral
for fs in several different approximations. Since
we are here mainly interested in the large-angle
behavior of f, we could follow the procedure of
Levy and Sucher~ and Harrington' and obtain

with

p;-p, =(2E)"'-=p.

The differential cross section is o(6, p) =
~ f[s. We

treat the soft component of V to provide the neces-
sary distortions, while VH is to be treated approxi-
mately by the first-order perturbative theory.
Using the two-potential formula, ' we obtain

d, = —
z Jd r"'' r, tr)( '*'—&)('xd '

where

g('tP 3
~ r & C), g(CPf ~ r

y f

1
d)(. d're'"' ' e'""sVs(r), (38)

0

q (')= e, + G(,) ve;, (32} where
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and

Xs= — dE Vs r —EP» +Vs r+)Pf

9=-p» -py

(36}

+g =e' sse ''' (=4'I+)

& = e~&sy e-'Py ' '
f

That is,

2m

(43)

(43)

Alternatively, we may set" either

fs ~ —— d'r e' ~ ' ' Vs(r) e' "si

f = ——d're"' ' V (r)e'"s~'

or

fs= ——d're'~' ' Vs(r)e'"sa,
2m

where

Xso Xs» &

with p» replaced by p„

P»+Pfpa= f
[p + p [—

(38a)

(38b)

(38c)

which is of first order in VH, but the wave func-
tions are distorted initially and finally by the soft
component Vs. This is then very similar to
Schiff's large-angle formula, ' except for the fact
that Vs and VH are now playing different roles in

f„. (In his derivations of the large-angle formula,
Schiff distinguishes hard and soft components. )
Note that the eikonal phase factor e'"s in (43) does
not contain a factor s as compared with (38b). In
fact, for small xs, (381) agrees with (35) to sec-
ond order in Xs. For details of this difference,
we refer to Ref. 12.

The form fs and f„given above may be simpli-
fied further for the purpose of numerical evalua-
tion. Noting that the complexity of these ampli-
tudes arises mainly from the fact that the initial
and final momentum directions are different for
jc0, we may set the average momentum vector
p, for p& and pz. Then, the amplitude f becomes

The form (38c} is the usual Glauber amphtude in
which V is replaced by Vs. It was shown earlier"
that all the forms listed above, (35) and (38), give
cross sections of comparable accuracy at large
values of q.

Incidentally, note that, e.g.,

Xs»=- d4Vs r-4P»
0

g»
dz' Vs(r'),

p «Oo

r'= b+z', -s& xP, =O (40a}

bdb Jo qb

dz Vs r g Qa+VH r g "sa

=-jp Q Jo qQ) g &sa —g+ iXg~e'xsa)
0

fas+f aH y (44)

f -f, = —
3 J d're' ''[Vs(r)e'xs +V„(r)e'"s j

Xs, =- d&Vs r+4Pf

+ ao

Xa(&) =- — Vsd&,
p

+ cc

Xs.(&) = —— Vs «.
P «oo

(45)

1
Q fs fs = - 3—„d'r @ii ' Vs +j'i', (41)

with

r'= b+z', zg—x pg=0. (40b)

The second part of f in (33) is much more diffi-
cult to evaluate, because both %(i' and 4 I'l appear.
We assume again that 4 f'~ is dominated by 4g',
and write

The form (44) involves a double integration as
both Xs, and X„,are functions of the impact pa-
rameter b.

IV. CALCULATIONS

A very extensive study of the various approxima-
tion procedures used in high-energy potential scat-
tering has been carried out previously. " For
ready comparison of the formalism presented in
Secs. II and III, we adopt the same form of the po-
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TABLE I. The amplitudes and the differential cross
secttons If 12 are calculated for the choice P = 10/pt = 2.5.
For each entry in the table, we have listed the value for
fq, fH, f =fq +fz, and the exact amplitude fzx, and the
Glauber amplitude f~ (P =2.0).

TABLE III. A two-dimensional approximation tof,
=f,q +f,g. The parameter p =10/p2, p = 2.0. For each
entry in the table, we have listed the values forf,+, f,z,
fe fax andf.

0.0

0.4

0.8

1.2

Ref

5.99
0.33
6.31
6.31
6.21

3.17
1.51
4.68
4.63
4.59

0.32
1.44
1.76
1.60
1.69

0.078
0.072
0.150
0.065
0.116

0.52
0.50
1.02
1.32
1.31

0.37
0.49
0.86
1.11
1.10

0.14
0.35
0.49
0.63
0.63

0.035
0.128
0.163
0.198
0.218

|fI'

36.1
0.4

40.9
41.5
40.3

10.2
2.5

22.6
22 ~ 7
22.2

0.12
2.19
3.33
3,16
3.26

0.007
0.022
0.049
0.043
0.061

(H)
P +H)
(EX)
(&)

0.0

0.4

0.8

1.2

Ref

6.36
-0.05

6.31
6.31
6.31

3.18
1.49
4.67
4.63
4.68

0.35
1.40
1.75
1.66
1.76

-0.003
0.152
0.149
0.065
0.150

Imf

0.59
0.46
1.05
1.32
1.02

0.41
0.48
0.90
1.11
0.86

0.14
0.37
0.51
0.63
0.49

0.022
0.126
0.148
0.198
0.163

40.8
0.2

40.9
41.5
40.9

10.3
2.5

22.6
22.7
22.6

0.14
2.11
3.33
3.16
3.33

0.001
0.039
0 044
0.043
0.049

5)
(H)
(S +H)
(FX)
(~)

TABLE II. Same as Table I, except thatP =I/P'=$
andP = 2.0.

TABLE IV. Same as Table III, except that p =1/p 2

= 0.25.

Imf Ref

0.0

0.4

0.8

1.2

6.26
-0.04

6.22
6.31
6.21

4.45
0.15
4.61
4.63
4.59

1.46
0.25
1.71
1.66
1.69

0.074
0.042
0.115
0.065
0.116

1.14
0.14
1.28
1.32
1.31

0.91
0.13
1.04
1.11
1.10

.52
0.09
0.61
0.63
0.63

0.218
0.038
0.256
0.198
0.218

40.4
0.0

40.3
41.5
40.3

20.7
0.0

22.3
22.7
22.2

2.40
0.07
3.28
3.16
3.26

0.053
0.003
0.079
0.043
0.061

(~)
(H)

+H)
(EX)
(&)

0.0

0.4

0.8

6.26
-0.04

6.22
6.31
6.22

4.44
0.15
4.59
4.63
4.61

1.45
0.24
1.69
1.66
1.71

0.075
0.042
0.117
0,065
0.115

1.17
0.13
1.30
1.32
1.28

0.97
0.13
1.09
1.11
1.04

0.53
0.10
0.63
0.63
0.61

0.177
0.040
0.217
0.198
0.256

40.5
0.0

40.3
41.5
40.3

20.6
0.0

22.3
22.7
22.3

2.39
0.07
3.26
3.16
3.28

0.037
0.003
0.061
0.043
0.079

5)
(H)
(8 +H)
(EX)
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tential

V(r) =kg» "" (1+pr'),
with

g = —0.4, p =0.3,
A =0.2,

and choose

p =2.0,

(46)

O.l-

8
I 1~~R

all in the units m=4 =c =1. This potential produces
diffraction maxima at q =0 and q = 1.5 and the first
minimum at q = 1.3. The evaluation of V& and V~
is straightforward, and we obtain, with d=-1+4AP,

g» "" ~' 3p p —,'+6AP pr'
-O. l

(46)

and V»(r) -=V(r) —Vz(r). The explicit shapes of V,

V&, and V& are shown in Fig. 1 for the choices

P = 10p 2 and P =P

The evaluation of f» and f„given by (36) and (43)
requires multiple integrations involving four vari-
ables, one integration for the evaluation of X&, and
three integrations over dsr. To simplify the cal-
culation, we chose the s axis to be parallel to p,
in a symmetric way. Then

-0.2

FIG. 1. Vz and V& for different values of p. The
curves S and H correspond to the potentials with P =1/p
while S' and H' are for P =10/P2, where p =2.0 in natural
units. The potential V = V& + Vz is also shown.

evaluate, the result compares well with f, and f„
of Tables I and II. In fact, f, is as simple as the
Glauber amplitude. We expect, however, that the
original form for f, with (38) and (43), should be
more accurate at larger angles than the form (44).

ft i' = (r - (p~)'

+ t P + 2@xsin(z 8) —2@»cos(2 8) ~

R~' = ( r + (p~)'

=r'+ t' p'+ 2 tpx sin(2 8) +2@»cos(2 8),

with

r'=x'+y'+z', q =2p sin(28),

Here, the dydee integrations are for O~y, ~&~,
while the dx integration is still over the range
-~ &x&~. The result of this calculation is pre-
sented in Tables I and G.

Because of the many (4) variables involved in
the integrations for f» and f„, we were not able
to perform a more accurate evaluation of f. This
problem grows severe as q is increased, due to
the oscillatory behavior of the integrand and sub-
sequent cancellations. Thus, our result beyond
q&1.2 is not reliable.

We have also evaluated the approximate ampli-
tudes f~ and f~ of (44), which involve only a dou-
ble integral each. The result is given in Tables
ID and IV. Although f, is extremely simple to

V. DISCUSSION

The result given in Table I clearly shows that
the V& contribution indeed dominates the amplitude
in the low-q region (q ~0.4), while the effect of V„
is large for q ~0.6, all for the choice p = 10/p'.
This feature shows up especially nicely at q = 0.0
and q = 0.8, but less distinctly in other regions
where contributions from both terms in f are ap-
preciable. Therefore, the dominance of V& and V„
in certain regions of q holds only up to a moderate
value of q, beyond which more careful analyses
are required.

The second striking feature of our results is that
the two-potential formula and the approximations
introduced to derive fz and f» are such that the re-
sulting total amplitude f =f»+f„ is insensitive to
the choice of the parameter p. This can be seen
by comparing the results in Tables I and II. This
feature is especially useful in view of the fact that
there is no reliable a prior criterion one can use
to determine the value for P. The results in the
Tables also suggest that the derivatjon of f& and

f» is fairly reliable.
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Although the evaluation of I f I' in the forms (86)
and (48) is rather time-consuming, the resulting
cross sections in the region (q/P) ~ 0.6 are not
much of an improvement over the simple Glauber
amplitude. This fact only confirms the extreme
sensitivity of the large-angle behaviox of the cross
sections to the accuracy of the approximations
made. Owing to numerical difficulty, we were not
able to study the region beyond (q/P) & 0.6.

On the other hand, ) f, ~' of Tables III and IV in-
dicate that both fs and fs can be simplified further
without scattering accuracy too much. In fact, f,
has the same general structure as f&+fs, and yet
is as easy to evaluate as the Glauber form. This
may not be the case for larger q.

Finally, we emphasize that the approximate sep-
aration f =fz+f„, while apparently not appreci-
ably better than the amplitude of other approxima-
tions, has the virtue of possessing an immediate
generalization' to relativistic particle scattering

in a field-theox y context. For potential theory,
different approximations to (88) generate different
corrections to the Glauber amplitude.

One of the noteworthy features of the analysis of
this paper is the natural resolution of the well-
known mismatch between the large-angle ampli-
tude derived by Schiff' and the small-angle for-
mula of Levy and Sucher. 4 As discussed in the
last paper of Ref. 4, the difficulty originally arose
from the assumptions one makes in the counting
procedure" when the perturbation series is
summed. Depending on whether a single hard
collision among the multiple-scattex ing processes
is assumed to make a distinct contribution to the
amp1itude, we obtain two different eikonal ampli-
tudes of the form f~ or f„, but not both, with of
course Vs and V~ replaced by V. %'e have shown
that both these physical pictures are essentially
correct if the interactions responsible for the
soft and hard collisions are carefully defined.
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