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Lee model and source theory: A new method of calcn&ation
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Schwinger's source theory is employed to present a new approach to the Lee model. Topics discussed
include causal analysis and space-time extrapolation, relativistic and nonrelativistic V-particle
propagation function (single-spectral form), and V-particle decay. The technical advantages of source
methods are indicated; unlike previous authors, we derive a completely finite theory, i.e., the
conventional mass- and charge-renormalization procedure becomes obsolete.

I. INTRODUCTION

This article presents a new approach to the Lee
model with the aid of Schwinger's source theory. '
Although Schwinger himself and his collaborators
have applied source methods to reconstruct most
of what is currently known in the realm of parti-
cles and fields, in particular in quantum electro-
dynamics' (QED), we consider it also meaningful
to revisit a soluble model which, among others,
served as a guide to understanding mass and
charge renormalization some years ago, ' Further-
more, the present renaissance in field theory in-
vites a second look at a model which was originally
set up to give some insight into the dynamics of
strong interactions. However, the conventional
approach, using field operators or pure 8-matrix
formalism, will be replaced by the extremely
useful source techniques which Schwinger has
advocated over the past several years. %e em-
phasize that the source approach yields a com-
pletely finite theory. There will be no divergent
expressions nor is there any necessity to intro-
duce renormalization constants. Our approach,
which follows closely that presented by Schwinger
in Hefs. 1 and 2 on QED, will emerge solely from
the principles of causality and space-time unifor-
mity.

Not only formal elegance, but also technical
advantages will be exhibited in the following sec-
tions, which are divided into the construction of
the relativistic modified V-particle propagation
function (Sec. II), extraction of the contents of
the original l.ee model (Sec. III), and, finally,
the V-particie decay process (Sec. IV).

where the action W in the relativistic Lee model
ls glvel) by
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The Lagrange function consists of the free part
2, and the interaction term Z'. Thus,

Z=Z, +2',
where

&0= 7v( f-y S+-~v)0v-7»(-iy S+~»)0»

and m &, m „, and p, are the "observed" masses of
the V, +, and 6 particle, respectively.

The dynamical content of the Lee model is spec-
ified by the primitive interaction

&' = -g($»4*&v + Pv 44»),

which uses the definition Fgx) = P*(x)y'.
Since the local interaction (3) will alter the prop-

agation function of the freely moving particles, we
are first of all interested in the modified propaga-
tion functions, especially that of the V particle.
This can be obtained by the extended- and effec-
tive-source scheme and the following causal anal-
ysis: An extended V-particle source creates an
& and 6 particle by emitting the timelike momen-
tum P. The effective source in emission is then
given by comparing the VA,

(0, 1
0 &

= -@' («)7»(~) 4*(x)lv(x),

II. CAUSAL ANALYSIS, MODIFIED V-PARTICLE

PROPAGATION FUNCTION

The fundamental quantity in source theory is
the vacuum amplitude (VA)

with an equivalent noninteracting two-particle
&-6 source:

«.I 0 ) = i' (d»)(&t)q»(x)n»(») 4*(()J(() . (5)

(O, i 0 )=e'", The VA is evidently derived by expanding
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(P, l 0 ) = exp i J 3 O", X ) exp ( (f Z'e, J)

=exp i „g„exp i Q'J

The VA of interest for the specific causal arrange-
ment &0 xo~ &o ~ &o is then given by

(O, le )= (' q„G'. e
' J'e,z}

The various sources and fields are related as in
Ref. 1, e,g. ,

P (x) = f (Xx')O.'(x - ')e.(x'), where

[id*((})}x(x)]G".(x —x') r2, (E —f'),

y(x) = (dx') n, (x —x')Z(x'),
G",(x- x') = i d&u,„e"~'*"'(m, yP-),

and the free propagation functions satisfy

(-iy 8+m„)G,"(x-x') = 6(x-x'),
(-s'+ i2')n, (x —x') = 5(x —x') .

Comparing the two expressions (4) and (5) gives
the effective source in emission

dp 1
2 (2 )3 2Po

kk( K —f')
APE

iZ($)v}„(x)) „,, = -g6(x —&)())v(x}.

Going to the momentum description, i.e.,
Using the effective-source expressions (6}and

(10) we obtain

)}(P)= (dx)e "*V(x), (0 ~
0 &

= 2 g d(()p d(()2

we obtain

i~(i2)v}x(P}1.11. = -gkv(P),

where &=P+4' represents the total momentum
liberated by the source: -P' =M' & Q.

Likewise, we need the effective source in ab-
sorption for an W and 6 particle by an extended
V-particle source. Again, using the VA, we have

(0, ~ 0 ) =-ig (d»}g(x)@(»)(}„(»), (8)

which is to be compared with

(dx}(d$)~'(()(}g(x}4(4)(})x(x}, (8)

iJ*(i))}x(»)1.1f, .o,. = -g6(» - ()A (x&

or, in momentum space,

id*(-}t)T}N(-P}I .11..2,. = -tv(-P} .

(10)

which yields, when identified with (8), the effective
detection source

x (dx)(dx')(l f,'(»)yo

$(p&+A}(x-s'}

x(m„y Pg)4v(»'}.

Insertion of a unit factor

1 = (2x)35(P —P„—k)
(dP)
(2s)3

d~~dM' 2n)'5 P —P„—k)

and employing the relation

(dP) d P
(2»)' (2w}3

GAP dM'
(2n}' 2P

= dc@~dM',

the VA now takes the form

1

&O, l 0 }= ig' (dx)(d»')yy(x)y' (2)v)' dO)p„d(d2 (m„—y P„)6(P-P„—i2)dM'id&u2e'~(* *') qv(x')

or, in momentum space,

(0,)O &=g' dM2+~, g(-P')yo (2»)3 d(d, d(d„(m „-y P„)6(P -P„-iv) pv(P) .
N
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The integral in the square brackets of Eq. (14) is
most conveniently evaluated in the rest frame of

One then finds the value

(0, ~
0 ) =ig' dM'l(M, m„, }z)id~z, pe( P)-

(2)z)' drub d&ux(m„—y P„)5(P-P„—0)
Xy

M +rnN —P,
2 2 2

N 2M» V )IV

where

mN —,y ~ & IM, mN, P),
2

~
~2+~ 2 ~2

Going back from the field to the source description
via

1 (m„+ zz)'
I(M, m„, y. ) =

(4m}' M'

(m „—}z)'
M

Hence Eq. (14) turns into

(15)

W(P} = Ov(P),
1
+ PRi V

gP ( P}y-' = z}P( P)y-'

then leads to

y. +m„'
At this point it is useful to recall the relation (y P}'= P'=M' o-r equivalently the eigenvalue equation

(y ~ P)' = aM. This allows us to introduce the following decomposition in terms of the eigenvalues of y P:

m„—[(M'+m„' —p, ')/2M'Iy P y P+M m„—(M'+m„' —}z')j2M y P —M m„+(M'+m„' —}z')j2M
(y ~ P+m „}' 2M (M+m „)' —2M (M-m„)'

I y P+M (M-m„)' —}z' y P —M (M+m„)' —y,
'

Elf' 2(M+m„)' 2M' 2(M-m„)'

So far all the calculations have been carried out under the special causal condition g'&g". Now we must
perform the space-time extrapolation. This means essentially the instruction to replace

tP(
idupe -&,(x —&;~ ) =, » . +contact terms.iP(x-x ')

Hence the extrapolated VA (apart from contact terms} is given by

(0,10 )=z .z}5(-P}y' g' dM'i(M, m, } ) M
.

M . q (P)

2 } Lg 2M (» 2(M m) yP+—M ~ 2(M+m } yP —M

(18)

If we add to this expression the one associated with single-V-particle exchange, we obtain the modified
V-particle propagation function

dM (M+ m„)' —Iz' 1 (M m„)' —Z-z' 1

, „;M ' "' 2(M-m„)' yP+M- ie 2(M+m„)' yP —M+ie

where the scalar quantity I(M, m„, p, ) is given by
Eq. (15). Notice that C, (P) is a completely finite
quantity. There are no divergences nor is there
any need for any conventional renormalization
procedure.

Had we stopped at the field description, i.e., at

Eq. (13}, we would have received as contribution
to the VA

(0, ~
0 }= -z (dx)(dx')qy(x)y'm(x )qx, ( )x, -

(20)
where in momentum description
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m(P) =m(rP)

=-g' f(M, m„, p. )
dl

1 (M+m„)' —l).
' (M-m„)' —g'

2 yP+M- ie yP -M+ir

(21)

changed in such a way that the mass of the free
particle remains unchanged, i.e., the second term
in (22) should not have a singularity in the neigh-
borhood of m v +pP = 0, as stated by the boundary
condition

d
m (yp = -m v) = 0,

d(rP)
m(yp=-m, ) =0.

which represents an undesired change in the V-
particle mass and in addition is divergent. The
trouble stems from the creation of a double pole
in the modified propagation function for the V

particle:

~;(p) =
'YP+~ v—

1
m(P)

1
(22)

P+5tv —sE yp+~v—

which is obvious if we remove the fields in (20)
in terms of sources.

The incorrect structure of m(x- x') has to be

This can be achieved by the following choice of
the contact terms:

1 1 1 (yP+mv}+ 2
yP +M- ie yP+M- ie M-m v (M-m„)

(yP+mv)' 1
(M-mv)' yP+M- k '

Likewise

1 (yP +m v)' 1

yp —M+ie (M+mv)' yP —M+ic '

Here, then, is the correct expression for m(P):

m(yP) = (rP+mv-) g' dM 1 (M+m„)' —p' 1 (M-m„)' —p'
(M-m„)' yP+M- ie (M+m, )' yp M+i-e '

which not only contains the right pole structure,
but at the same time makes (23}a convergent ex-
pression. It is also evident that the V-particle
propagation function (19) is obtained by substituting
Eq. (23) into (22).

spectrum, i.e., k'= (k'+)(('-)"'. With these qual-
ifications in mind the mutilated VA which now

emerges is given by

(O„i 0 ) = -g' f (dx)(dx')(t)}(x)G„(x—x')

III. SOURCE- THEORETICAL APPROACH

TO THE ORIGINAL LEE MODEL

After having derived a single spectral form for
the relativistic V-particle propagator (19), we now

want to make contact with the original nonrelativ-
istic Lee model. This can be achieved most easily
by mutilating the various free-particle propaga-
tion functions in the following way: First observe
that the square brackets of Eq. (19) contain ex-
citations of either parity y'= +1. Therefore, a
first step toward a nonrelativistic description
will be the omission of, e.g. , y'=-1. Further-
more, we restrict ourselves to the static limit for
the free + and V particles meaning Pv g =~v g.
The 8 particle is constrained to travel forward in
time, x'&x", however, with a relativistic particle

where

G„(x—x') n, ,(x —x')

2 d PN dk 1
(2v)' (2x)' 2l'

x exp[i p„(x —x') —i( „m&'+)( ' xx")]

d PN j pg'( x- x')
(2w)' (2v)'

der[(g) m )o ~2]zlo -(lv(oo-x'o)

and 8' =m„+4'. Introducing Fourier-transformed
fields, we obtain

(o, ) o ) = ' ,.I o o'(( o'- )* —o*]"' I ), J o*'o*"Oo(p *')—
,

'""""o,(o, *,").
(%g+p)

(24)
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Until now we restricted ourselves to x'& x".
However, the source picture continues to be mean-
ingful also for noncausal arrangements. There-
fore we time-extrapolate the expression for the
propagation function of the particle with energy
8', i.e., we introduce the spectral integral

-&S~so-x'O)eG, (W; x'- x"}=
2m E —8'+ jt

+ contact terms . (25}

The contact terms indicate that Gv(W; x' —x") is
undetermined at x'= x", we can add a finite poly-
nomial in E which is equivalent to the Fourier
transform of 5 functions in time plus finite deriv-
atives. In order to maintain the correct pole
structure of the free V particle, we have to re-
place

1 E —mp ' 1
E+ie —W 8 -alp E+i& —W

duced to avoid spontaneous decay: V-N+6.
If we return to the field description, we obtain

for the modified action of the V particle (in mo-
mentum space f= [—d p/(2x}'](dE/2w))

Sv — — g*$+g*g) v + E —PS v

2 (E )2
dW[(W-m )' — ']""

4w' " " (W-m„)'

1
X

E+iE —8' ' (28)

E-nv-
4m'

[(W-m„)'- j ']"'
(W-m, )' E+ie —W

&((E- m)vGv(E} = 1 .

From here the modified propagation function can
be read off to give

This replacement is necessary if we stay within
the field description. If one prefers to work with
sources, the modified VA is immediately given by

(o lo)= ~ dw[' — "-"']"'
4w' („,„) (W- m v)'

Introducing the positive weight function

g' [(W- m „)'—p']"'
4x' (W-mv)

we can rewrite E(I. (29) in the form

&v(E) = 1
E -mv+ie

(3o)

1 1"-E„.W""""
(26)

x 1 —(E-mv) a(W)
,~) E —W'+ iE

(31)

Together with the original nonrelativistic amplitude

(o, l o }= -
2 ), 2 eP(p, Ejdp dE

1 1"iE+ie-mg E+g~ -mv

we then find the modified V-particle propagation
function:

&v(E) = 1
E —mv+it

g' " „[(W-m„)' —g']"'
4x' (,„))„(W-mv)

1
E- 8'+is'

where the instruction on the lower limit of the
spectral integral, i.e., W=m„+ p, &mv, is intro-

If a(w} is sufficiently small, we are allowed to
expand the second factor. Keeping only the first
terms in the expansion of (31) we obtain

Cv(E) —= . + dWE-mv+ie (,„) E- W+if'

which is precisely the expression (2'I).
If we choose to represent the propagation func-

tion (31) in a form similar to (27) we have to in-
troduce a different weight factor, i.e.,

Gv(E}=, + dW
A. W)

mv+iE E —W+i&

The weight function A(w) can be related to a(w) by
comparing the imaginary parts for E = W' and using

—Ar 6(w' —W) .1 1

This yields

&(W)=- a(W)
u(W() 2

) —(v-na„)p fd)v, +[ (v-na ) (Iv)j'
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where a(W) is defined by Eq. (30).

IV. V-IARTICLEDECAV: V P;+e

Here we want to concentrate on the spontaneous
decay of the V particle. Since source theory can
accommodate stable as well as unstable particles,
we can use the extended source picture to describe
the instabil. ity of the V particle. In particular, we
shall utilize the form of the propagation function
as presented in Eg. (29}. There the W range of
integration excludes the V-particle mass. Now we
remove the restriction E= Wem&. We can cheek
that the mass m& is not displaced by this opera-
tion, provided the double singularity of 1/(W-mv)'
is interpreted as the Cauchy principal value:

1 cf 1
(W- mv}' dms W-my

'

However, for the physical situation of interest,
~& &m„+ p. , one can show that the value of the
real part of the spectral integral in (29), which
is represented by

d '" [(W- m„)' —p']"' 1' dm„„w-m, E- W'

is zero. Therefore the correct pole structure of
the free V particle is preserved.

The imaginary part which describes the instabil-
ity of the V particle is given by

= ma(W)(W- m y)' .
Sufficiently close to resonance, i.e., F-=~&, we
obtain

Hence the time behavior of the V particle is de-
termined by

Taking the absolute square we arrive at the ex-
ponential decay law e "', with

I 2r
I' g'[(mr —m„)' —g']"'

the lifetime of the decaying V particle. Conse-
quently, experimental knowledge of the decay width
I' is sufficient to determine the coupling constant,
a feature which is also shared by other more real-
istic models.

V. CONCLUSION

We used Schwinger's source theory in the context
of the Lee model. The calculation for the V-par-
ticle propagation function was first performed for
a specific causal arrangement and thereafter
space-time extrapolated. Contact was then made
with the original nonrelativistic Lee model, which
was obtained by a specific choice for the various
free-particle propagation functions. Also dis-
cussed are two versions of the single spectral
form for the V-particle propagator and their re-
spective weight functions. Finally, the V-particle
decay was investigated and its time-behavior de-
termined.
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