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The decay 28&/2 —18~/~+1 photon, in muonic atoms, is considered as a probe of parity-
violating interactions between muons and nucleons. It is shown that a parity-violating in-
teraction, arising from neutral currents, with a strength comparable to the Fermi inter-
action, would induce a small admixture of 2P f/2 state into the 28&/2 state of muonic atoms,
with a magnitude of approximately 10 . Such an admixture would allow the 28f/2 to decay to
18f/2+1 photon by an E1 transition, as well as by the known M1 transition. Since the F-1
matrix element is much larger than the I1 matrix element, the small state admixture will
be enhanced in the decay matrix element. In particular, the circular polarization of the
emitted photon, or the photon angular asymmetry relative to the muon polarization, would be
of order 10 4 in nuclei near Z =30, and so are perhaps measurable. The branching ratio of
the 28~/2- 18~2+1-photon decay to other transitions from the 28&/2 state is considered, and
found to be around 10 3 in nuclei of interest. In an appendix, similar considerations are
given for the 2S&/2 18&/2+1-photon decay of electron hydrogenic ions, where it is found that
the circular polarizations are much smaller, but the branching ratios can be substantially
larger.

I. INTRODUCTION

Empirical evidence exists' that the muon in var-
ious muonic atoms occasionally cascades into the

28„, state from whatever state it is originally
captured into. This fact raises the possibility of
measuring the one-photon transitions from the

2S», state to the 1S,» ground state, a measure-
ment that could furnish quite interesting informa-
tion on a variety of questions. In particular, a
measurement of the rate for the transition 2~»,
-1S»,+1 photon could cast some light on a pos-
sible discrepancy between experiment and theory
for magnetic dipole transitions that has recently
been reported in high-Z heliumlike ions. ' Looking
further ahead, if this transition can be reliably
detected and studied, it may eventually be possible
to detect a small circular polarization of the emit-
ted photon, or equivalently, a small asymmetry of
the photon direction with respect to a residual
muon polarization. This measurement would fur-
nish direct information about the existence of a
parity -violating interaction between neutral cur-
rents involving muons and hadrons, whose exis-
tence is entailed by some recent unified theories
of the weak and electromagnetic interactions. ' lt
could also give a value for the sign of the coupling
constant of this weak interaction.

In this paper, we present some calculations of
the decay ratios and photon distributions in the

muonic decay 2sy/2 1&y/2+ 1 photon %'e discuss
the competition of this decay with other modes,
such as 2y/2 2Py/2 and 2sy/2 lsj/ + 2 photons.
The outline of the paper is as follows. In Sec. II,
we give some qualitative discussion of the relevant
levels of muonic atoms, and their decays. In Sec.
III, we discuss briefly the form and magnitude of
a possible parity-violating interaction of muons
with hadrons and the parity mixing of atomic ener-
gy levels induced by this interaction. In Sec. IV,
we describe detailed calculations of the energy
levels of a variety of decay rates and of the cir-
cular polarization in the decay 2sl/2 1~1/2+1 pho-
ton. In Sec. V, we discuss possible measurability
of some of these transitions, and what information
such measurements could provide. Finally, in a
short appendix, we discuss parity mixing in elec-
tron hydrogenic ions.

II. A QUALITATIVE DESCRIPTION OF LOW-LYING
MUONIC ATOM LEVELS AND DECAYS

The ground state of muonic atoms is of course
always the 1S,» state. The next three higher states
are 2S,/2 2P&/2 and 2P»„which are all raised
above the ground state by the Bohr energy differ-
ence, which is —(Zu)'m. The precise arrangement
and energy difference among these states is the
result of a number of different interactions. How-
ever, for all nuclei with Z& 5, the lowest state is
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2P„„ the next lowest is 2P„„and the highest is
2S«,. This is because the dominant perturbation
is the finite nuclear size, which raises the 2S
state and has small effect on the 2P states. The
size of the splittings between 2S„,and the 2P
states is therefore approximately that of the finite-
size effect, whose order of magnitude is C(Zo)'m,
where C is a numerical factor typically around ~».

In muonic atoms of very low Z, the vacuum polar-
ization becomes comparable to the finite-size ef-
fect, and opposite in sign, so that the magnitude
of the splittings is qualitatively different from this.
However, such light nuclei are not useful to us,
for reasons we discuss below.

As a result of this arrangement of levels, the
2S,» state can decay electromagnetically to the
2P j y2 and 2P3/2 states, as well as to the 1S,»
ground state. The branching ratio for various
transitions depends on several factors, including
the multipolarity of the transitions, the energy
difference of the states, and in some cases, the
magnitude of parity mixing between the states. We
consider next the different transitions possible,
and an estimate of their partial rates.

=i u'rr ~ eu[ P„WBZn + 0((Za)')],

(2.3)

calculated again for a point nucleus. The ratio of
matrix elements is therefore given by

M„1.58 & 10'
M~, Z (2.4)

Since the M1 decay is so highly suppressed, es-
pecially in light elements, it suggests that a rela-
tively small parity mixing in the 2S», (or 1S»,)
states might be detectable, since it would allow
the much larger E1 matrix element to contribute.
In particular, a measurement of either the circu-
lar polarization of the photon, or of the photon
asymmetry relative to a muon polarization, both
of which involve an interference between the E1
and M1 matrix elements, would appear to be likely
candidates for detecting such a parity mixing.
Since the 2S», state has a nearby state of opposite
parity and equal 4, it is plausible to assume that
the mixing would be greatest there. We write

A. ZS1,2~1$„2+1Photon

In the absence of any parity mixing of the states,
or of parity violation in the electromagnetic inter-
action, this is a magnetic dipole transition. Be-
cause of the change in the principal quantum num-
ber, the matrix element is substantially suppress-
ed compared to ordinary M1 matrix elements. It
has been calculated for point nuclei, ' in the context
of hydrogenic ions, and found to be

2$ ~1$+ 1photon &1 @1' (2.6)

The corresponding circular polarization is given
by

(2.5)

to represent the true 2S«2 state as a parity mix-
ture, where we have assumed 0 to be small and 5
is imaginary if time-reversal invariance is satis-
fied. We can then write the total matrix element
for the decay of this state by one photon to the
ground state as

]P[=—2)lm5]x
Nl

(2 7)

= + i &y
' E X $ + Q( (Z&) )

(Zo.)'
$27

(2.1)

which is smaller by a factor (Za)' than ordinary
M1 matrix elements.

This would correspond to a rate, in muonic
atoms, of

(2.2)

We shall see that while this is a correct order of
magnitude, the finite-size corrections reduce this
rate substantially.

We can get some idea of the suppression repre-
sented by this rate by comparing it with the EI
decay of the 2P «, - IS„,+1 photon, with approxi-
mately the same energy release:

It follows that, just as for certain nuclear tran-
sitions, the suppression of M» relative to M,
makes a measurement of circular polarization a
quite sensitive test of any small parity admixture
5. We shall see below that a typical expected value
of 0 might be

5-10 '

so that the circular polarization can be - 10 ' for
Z-30. The prospect of measuring this polariza-
tion is complicated by the fact that several other
transitions can depopulate the 2S«, state, and the
branching ratio for the decay 2S„,—1S„,+ ly is
generally less than 1% for all Z. We next discuss
some of these other transitions, before turning to
more detailed calculations of the 2S]g2 IS«2+ Iy
transition.
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8. 2S„, 1sl/, +2 photons

In electron hydrogenic ions, it is known that: at
least for light elements, the dominant decay mode
of the 2S„, state is 2S„,- 1S„,+ 2(E1) photons.
The rate, calculated nonrelativistically, and for
a point nucleus, in a muonic atom for this transi-
tion, is given by'

A»»„z —- 1.7 10'Z'sec '.
If we assume that this remains approximately

correct for atoms with finite nuclei, we find that

the M1 transition to the 2y transition, implies that
the M1 transition is always less than 1% of the
total rate.

A parity mixing in the atomic states would also
affect these E1 decays. We can write as before

I 2s„,&
=

I 2S„,&+ a, I 2z„,&,

I 2f'i)2&' =
I 2pi, 2&+ 4 I 2S&,2&,

(2.9)

where 5, = —5,*=- 5, by requiring the states to be
orthonormal. The radiative decay matrix element
is now given by

2s 1$+1Y 3 0 y 10—7Z4
~2S ~1$+2y

& 1, for Z&40. (2 g)

&»I'0, I»&'=&2sI/f, . I»&

+s (2sIH„, I»)
—a&2' IH„, I2f»+O(v'). (2.10)

For example, at Z =20, the 1-photon/2-photon
branching ratio is about 5k.

Because the 2-photon decay is essentially the
result of two allowed E1 transitions, its matrix
element is quite insensitive to parity admixtures
in the atomic states, and so it is not a good can-
didate for detection of such effects. This suggests
that experiments to detect the muonic 2S- 1S+ ly
decay are best performed in nuclei with Z & 15. We
shall see that other considerations confirm this,
and also limit Z from above.

C. 251/2 2P1/2 or 2P3/2+1 photon

Both of these decays can occur as E1 transitions,
and the latter as an M2 transition as well. Since
kr- (Zn)' and is fairly small for these transitions
even in heavy elements, the M2 term is small
compared to the E1 term everywhere. In the non-
relativistic, no-retardation approximation, the
ratio of the decay rates to the 2P1/2 Rnd 2P3/2 stRtes
is given by 2[(E,z E,J,„,)/(E, ~--E,z„,)]', a number
of order 1. Therefore, to get an idea of the mag-
nitude of the decay rates, we consider the decay to
the 2P», state. This decay differs from ordinary
E1 decays in that the energy difference is of order
(Zn)~m instead of (Zn)'m, and the corresponding
matrix element is therefore of order (Zn)' instead
of (Zn). The decay rate for the transition is there-
fore of order (Zn)"m, compared to (Zn)'m for an
ordinary El transition. This makes it of the same
order in (Zn) as the Ml, 2S«, -1S«, transition con-
sidered above. Regrettably, the other numerical
factors are such as to make the decay to the 2P1y2
state substantially more rapid than that to the
1S«, state. Detailed calculations, given in Sec. IV,
indicate that the branching ratio decreases slowly
with Z, and is given by

~ 10 for Z&17
28 ~2P1/2+ lg

This result, combined with the previous ratio of

The situation here is reversed because the terms
multiplying 5 are the M1 amplitudes, while the
term of order 1 is the E1 amplitude, which is much
larger. Hence the circular polarization or other
parity-violating observables in the 2S- 2P transi-
tion would be much smaller than in the 2S- 1S
transition, and almost certainly unobservable.

D. 2S1/2 decays via Auger emission

It is known that the decay of the highly excited
states (n 15), -in which the muon is originally
captured by the atom, to low-lying states proceeds
mostly by Auger transitions, rather than by pho-
ton emission. ' However, once the muon reaches
low-lying states, it is believed that radiative
transitions become the main decay modes. This
is essentially because the radiative decay rates
increase rapidly with energy, while the absolute
Auger rates vary relatively slowly with energy.

However R muon r eRchlng the 2S1/2 state wi ll be
anomalous in this regard, because, as we have

seen, the only available radiative decays either
have relatively low energy (2S-2P), or are rela-
tively suppressed by the multipolarity (2S- 1S).
This would suggest that, at least in light nuclei, the
Auger transitions could still compete favorably with
radiative decays from the 2$ state. We have brief-
ly examined this question, with the following re-
sults. The Auger transitions that should be con-
sidered are 2S„,-2P,», 2S„,-2P„„and 2S1/2

The former two go by E1 Auger transi-
tions, while the last goes by M1, and also by the
EO monopole transition allowed whenever initial
and final states have the same spin. ' The 2S-2P
Auger conversion coefficients should be quite sim-
ilar to the internal conversion coefficients for a
hypothetical E1 nuclear transition of the same en-
ergy, in a nucleus with Z' = Z —1, at least for the
K-shell coefficients, which only involve the elec-
tronic S-state wave functions near the origin. This
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is because a muon in the 2S„, state is approxi-
mately part of the nucleus, insofar as the electrons
are concerned. Furthermore, the E-shell internal
conversion coefficients (ICC's) depend very little on

nuclear structure effects. Therefore, we can use
calculated ICC's for nuclear transitions to estimate
the branching ratio of Auger to 2S-2P radiative
transitions. ' Upon doing this, we find that for
10&Z&30, the Auger rate is much larger than the
rate for 2S- 2P radiative transitions. For Z &30,
the Auger rate becomes less than the radiative
decay rates, while for Z&10, the calculation be-
comes substantially more complicated because the
transition energies are comparable to the electron
binding energies in the atom. Consequently, we
can say that for Z&30, the 2S-2P Auger transi-
tions do not greatly alter the branching ratio of
interest to us, which is

~2S ).S+ l.y

+2S ~ anythjog

On the other hand, in the region 10 & Z & 30, this
ratio will be reduced substantially by the Auger
transitions, and the 2S- 1S+ 1y decay will be cor-
respondingly harder to detect. Finally, in the re-
gion Z& 10, the effect of the Auger transitions will
depend on more detailed calculations, which will
be presented elsewhere. In any case, in this re-
gion the branching ratio is already small because
of the large 2S 1S+2y rate.

%e next consider the effect of Auger transitions
in the 2S- 1S decay itself. Since the ener gie s
here are much larger than in 2S-2P, we expect
the ICC to be much smaller. Indeed, for Z-30
the transition energy is 2 MeV, and the M1 ICC is
10 ', which is negligible. A more important con-
tribution comes from the EO decay. This has been
calculated in the nonrelativistic approximation, '
with the result that the EO rate depends only slight-
ly on Z, and is given approximately by

A"""" '-10'sec '
2s )S

In the region Z~ 40, where relativistic effects
become important, this rate can be substantially
increased, essentially because of the large value
of the wave function for the outgoing electron at
the nuclear radius. However even for Z =82,
~,"s ",'s ' is probably ~ 10'" sec '. These val
are still a small fraction of the dominant 2S-2P
decays for large Z. Therefore, it seems safe to
neglect the 2S- LS Auger transitions in calculating
the total decay rates in heavy elements (Z& 20).

On the other hand, for light elements, the 2S 1S
EO Auger transition may be an important part of
the total decay rate. That would raise the inter-
esting possibility of detecting parity mixing in the
2S state through an interference between the EO

Auger transition and the E1 Auger transition that
can occur through the parity mixing. This might
be measurable through a detection of the polariza-
tion of the Auger electron, or the correlation be-
tween the electron direction and the muon polar-
ization. These questions will also be discussed
elsewhere.

%e mention finally the possibility of Auger emis-
sions in 2S- 1S, through conversion of the photons
in the decay 2S- 1S+2y. Since these are both pri-
marily E1 photons, and since the photon energy
ranges between 0 and E» -E», one might think
that the ICC could be quite large for the low-ener-
gy photons, giving a large Auger rate. However,
this does not happen, because the ICC is the ratio
of two weighted integrals over all energies of each
photon, and the low-energy photons contribute
little to either integral. Consequently, the ICC is
approximately that corresponding to an E1 photon
with energy ~(E2z E,~), wh-ich is quite small
(& l0 2) except in very light elements. Therefore,
we can also neglect the contribution of this Auger
process to the total decay rate of the 2S,» state in
elements with Z& 10.

%e should also compare the radiative decays
with the rates for p, capture and p, decay. The
latter is approximately 5X 10' sec ', and is always
small compared to the radiative rates for Z&3.
The capture rate is approximately 35Z' sec ', and
so is always small compared to the radiative rate.
Hence these two effects are unimportant for the
purpose of computing total branching ratios.

%e conclude from this qualitative survey that the

2S„,—1S„,+1y decay is likely to be observable
only in elements with Z& 30. In Sec. IV we shall
give some more precise quantitative estimates of
the branching ratio for this decay.

III. PARITY MIXING IN MUONIC ATOMS

Several of the spontaneously broken gauge mod-
els of weak and electromagnetic interactions in-
volve massive neutral mesons that interact with
neutral baryonic and leptonic currents. " Some
also involve massive neutral spinless mesons in-
teracting with scalar or pseudoscalar combinations
of baryon and lepton fields. The former couplings
are of a strength such that when taken to second
order, they generate approximately local inter-
actions among baryons and leptons, whose strength
is comparable to that of the usual weak Fermi
interaction. The couplings generated by the neu-
tral mesons differ from the Fermi couplings, how-
ever, in that they involve no charge transfer be-
tween the leptons or between the hadrons. Vfe

shall therefore refer to them as neutral-current
interactions. For the moment, we put aside con-
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sideration of second-order couplings generated by
massive scalar mesons.

The precise strength of the neutral-current in-
teractions, as well as the particles involved in
them, depends on the model chosen both through
the gauge group involved and through its realiza-
tion. In the present stage, where there is no con-
vincing evidence about these questions, it is prob-
ably best to adopt a phenomenological approach,
and to ask what information about neutral-current
interactions can be obtained from a given experi-
ment, rather than to attempt to test a specific
model. However, we mention below the form of
the coupling for one such model. Evidently„ex-
periments in muonic atoms can only detect neutral-
current interactions involving muons. Parity-
conserving couplings of the expected strength
would almost certainly be masked by the electro-
magnetic interaction, and not be readily detectable.
Hence we restrict ourselves to parity-violating
interactions of muons, with the nucleons present
in ordinary nuclei. Furthermore, we assume for
the present, as is the case in many spontaneously
broken gauge theories, that CI' invariance is sat-
isfied to a good approximation. Then, there are
3 parity-violating neutral-current interactions to
be considered:

G-
H& —C, ~2 k„var, P„PN&ak~,

+ "doubly forbidden" terms. (3.6)

In these expressions, we have denoted by "forbid-
den" terms involving the small components of the
nuclear wave functions, which are negligible for
our purposes. We see that H, and H, contain only
terms involving nucleon spin, and therefore, un-
less a, single nuclear spin state is observed, will
not contribute to any first-order interaction. This
leaves only H, as a candidate for a parity-violating
first-order interaction in muonic atoms. We shall
therefore concentrate on the interaction H, .

For a complex nucleus, it is necessary to sum

H, over all the nucleons present. Since the con-
stant C, may be different for proton and neutron,
we write

G
4.,4.,)

(3.7)

The quantities P;f~P~, an, d P,g„,. P„,. are just the
number densities of protons and neutrons in the
nucleus. In simple nuclear models, these are
taken to be proportional to each other, with fac-
tors that are just Z and (A —Z). So we can write"

G—
2

—C2~g 4p Wn4„4~Wnl'50», (3.2)

(3.3}

H„= ~2 Pqy, P„—[C~ Z+ C„(A —Z)], (3.S)

where p is a nuclear matter density, normalized
so that

+ "forbidden" terms,

C2GH. —~2 &u&~&u&~«&~

(3 4)

+ "forbidden" terms, (3.5)

In these formulas, g„represents either a neutron
or proton, G is the Fermi constant of p, decay, and

C„C„and C, are dimensionless constants, whose
magnitude measures the strength of the interac-
tion.

The coupling H, may be thought of as an induced

coupling, of the same character as the "weak mag-
netism" in the P-decay interaction. The other
couplings H„H, are direct analogs of the VA cross
terms in the P-decay interaction. To get some
idea of the relative importance of these terms, let
us take the nucleons, but not the muons, to be de-
scribed nonrelativistically. Then only certain
terms will survive in each of H„H„H„and we

find that

CiG—
4u3 4Y5 Pu 4N 4E

pr dr = l.
We sha. ll only consider nuclei with spherically
symmetric p.

We note that for C~ = —C„, the interaction is
proportional to A —2Z, which is much smaller
than A, particularly in light nuclei. This case
corresponds to a purely isovector neutral hadron
current, and therefore the muonic atom transitions
we consider are not very sensitive to such a cur-
rent. If the current is instead isoscalar, C~ = C„,
and the interaction is just proportional to the nu-
cleon number A.

As an example of the values for C~ and C„, we
consider the SU(2) && U(l} model of weak interac-
tions due to Weinberg. ' In this model, a muon-
nucleon interaction of the form lI, is generated by
exchange of a heavy neutral vector meson, the Z
meson. The strength of the coupling depends only
on a single parameter, the Weinberg angle, which
essentially measures the ratio of the Z-meson
mass to the W-meson mass. Specifically, we find
that in this model
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C~ = —,
' {1- 4 sin'8„),

1C„= —2

(3.10)
If we assume a spherical nuclear charge distribu-
tion, we can do the angular integral in Eq. (3.13),
giving

{33in i Hi ~ ~in )
S»2 W«2 E -E

2$&/2 ~1/2

(3.12)

will be the greatest for the 2P,» state. For the
moment we consider only that mixing.

The numerator factor is just the matrix element
of H„evaluated between the two muonic states,

{2S„~lH, l2P, ~, ) = ~[CqZ+ C„(A —Z)]—

where 6)~, the Weinberg angle, is given by cos8~
= m~/mr. This result implies —a & C~ & ~, and so
places some constraint on the size of the parity-
violating muon-hadron interaction. From Eq.
(3.8) we see that the effective coupling is

C~ Z + C„(A —Z) = —,'(1 —4 sin'6~)Z ——,'(A —Z)

= —(2 sin'8„)Z + ~(22 -A) .

(3.11)
Thus in nuclei with A-2Z, the effective coupling
will be negative.

Some other unified gauge models give predictions
for C~ and C„, which are qualitatively similar, but
quantitatively different, from Weinberg's model.
Others have no interaction H, . Thus the detection
of H, would be a useful piece of evidence about
such models.

The interaction H, will have matrix elements
between any two muonic states of equal spin and
opposite parity. In particular, it will have matrix
e1ements between 2S„„and all P»2 states. In all
but the heaviest nuclei, the 2S»2-2P„2 splitting
will be much smaller than the 2S&/2 splitting from
any other P,» state. On the other hand, the ma-
trix elements of H, mill probably not depend so
much on which P&/2 state is involved. Hence the
parity mixing, which is proportional to the ratio

(2&„, lH, l2P„,) =+ ~[C Z+C„{A—Z}]—

r'dx p (r)

[ ARS/2PU& /2$82Pygp]

(3.15}

where g and f are the large- and small-component
wave functions in the field produced by the finite
nucleus. The remaining radial integral has been
evaluated numerically by the method described in
Sec. IV, with results given in Table I.

We also give there, for comparison, the result
in the approximation" in which the nuclear size is
neglected, except that the functions f and g are
evaluated at the actual nuclear radius rather than
at r =0, and only the first terms in their expan-
sions in powers of Zn are kept. It can be seen
from the table that the effect of the finite size is
generally to decrease the radial integral by a
significant extent for large Z. From the known
value for G, we can then express the matrix ele-
ment in terms of the constants C~, C„. This result
can in turn be combined with the calculated or
measured energy differences E~ -E» to give
the parity admixtures 52s„„corresponding to
mixing with the 2P &/2 state These are given in
the last column of Table I. The admixtures are
quite small, but perhaps measurable through the
considerations given above and below.

The order of magnitude of the parity mixing is
determined by a rough estimate of the matrix ele-
ment (3.15):

|"m '
Gly„(r =0)l'Z(Zo)- ~ {Z~)'m„.

We write"

s„, », )

I,I
i %2P1/2 1/2

P(~)d ~4, „,~ 0

g2$ 0, 0

—i (3) f2$ ~I, O

-&(3) 'f2$~1, &

—if2P

(3.13)

This may be compared to the difference E,s„,
-E» = (Zu)'m&, to give an estimate for 5,~ ~1/2
-[Gm„2/4wn] {Zo)~ 10 'Za, in rough agreement
with the calculated values of Table I.

Note that the 52$» coming from the interaction
H, is pure imaginary, in the approximation in
which the decay widths of 2S]/2 and 2P&/2 are ne-
glected. Otherwise, the quantity E,s

the F's are these widths. Actually, in most cases
I',~& 10 '(E,s E,z), and I",~ is ev-en smaller, so
that the approximation neglecting I' is a good one,
except perhaps in the lightest elements. However,
the small change in phase of 5 coming from the
width could be of some value in placing a limit on
a T-violating contribution to 5, which otherwise
is quite hard to detect. See the discussions in
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TABLE I. Parity mixing for various nuc1ea1 charges. '

3
6

11
17
26
32
35
42
50
60
74
82

12S,2P ~F '~

+ 6.87 x 10
+1.07xlo '
+1.09x 10 8

+5.36xao 6

+2.2Vx 10 '
+4.34x 10 5

+5.66x 10 5

+9.48x 10
+1.48x ao~
+2.27x 10
+3.34x 10~
+3.8V x 1O-4

I( (F- )

7.634x 10
1.221 x 10
1.380x 10 6

V.872x lO '
4.307x 10 ~

9.883x 10 ~

1.414x 10 4

2.933x 10
5.891x 10
1.221x 10 3

2,826x 10 '
4.261x 10 3

E» —Z» yreV&
1/2

-1.8xlo 7

+3.84x 1Q ~

+ V.2Vx aO 4

+4.64x 10 3

+2.60xao '
+5.76x 10
+8.08x 10
+1.54 x 1O-'

+2.81x 10 1

+4,99x 10
+9.23x 10
+1.21

~~2S 2P

Cp + C„(A —2)//Z

-5.77 x 10 '
+0.844x lo '

+0.831x 1Q

+ 0.991x 10
+1.14 xao '
+a.22 x 1O-'
+1.24 x 10 '
+1.3Q x 1Q

+1.32 x 1Q

+1.37 x 10
+1.35 xlo '
+1.32 x 10

12sIP f "'d" /I(")(f2sZIP g2sfIP, ) fI' &r p(") =&. Ip)IP=-,' vs (Zn)'m„ ie the
small-nucleus, iow-Zn approximation to y,

I

~25,2P Z 6 Z i2$,2P

C, +C„~i-Z~/Z =~P 4~ E»-E2P
1/2

Sec. V below.
%e next consider briefly the mixing of other

states, both into the 2S1/2 state, and into the j.S,»
final state of the Ml decay. As we mentioned
above, these admixtures should be smaller because
of the much larger energy differences. let us
calculate for example, in the point nucleus, small-
Ze approximation, the mixing of the 2P»2 state
into the 1&1/2 state;

x (Zn)' i') M3m „,
&ss „,-E2p„,= k (zn )'m „(m „&)',

(3.18)

IG m „' [CP +C„(A —Z)/Z] Zn p M3
2S 1/2, 2P1/2 ~2 (m„H„)' '

(3.19)

(2
~ ~

2 )
IGm „' [CP+C(A —Z)/Z]

1/2 1 1/2 0 4m'.

(2P„, iH, i1S„,)
181/2» 1/2 E 1 1/2

ISI/2, 2PI/2 0 15(Z )2A2/3

2$1/2, 2P1/2

(3.20)

Hsp„, -&Is„,= 2 (Zn}'m„,

( ) ) )
IG [CPZ+C„(A —Z)]

x (fleas fisrsp}, =a, -

f.p —
~3

(Znm)"'(-')'"

g,s —2 (Znm)'" .
Therefore

IGm „[C,+C„(A —Z)/Z]
I /2 I I/2 4w

x z(zn)'(')'"m

I'Gm „' [CP+C„(A —Z)/Z]
1S1/2, 2P1/2 ~2 4

x(Zn}'($}'".

(3.16)

(3.17)

This may be compared to the corresponding ex-
pression for 251/„computed in the same approxi-
mation:

5 'S1/2 2P1/2 -0.09.
6

1/2 ' 1/2

(3.21)

Furthermore, the F1 matrix element corre-
sponding to the 2P»2-1S1/2 mixing, which is
(2PI/2 ~

H,.s ( 28 I/2) is also suppressed somewhat
compared to ( 2P„, ~ H„,

~
1S «2), so that this mix-

ing should not alter our estimates significantly. It
therefore seems justified to neglect it, and other
mixings than 2S -2P.

%e consider next some other possible sources
of parity mixing of muonic energy levels. One
such source, which could occur if CP invariance
is violated, would be a muonic electric dipole
(ED) moment or a nuclear electric dipole moment.
%e concentrate on the former effect because less
is known about possible muonic electric dipole
moments. Such a moment corresponds to an in-

For nuclei with Z-30, A. -60, where these approx-
imate expressions are expected to be reasonably
accurate, we obtain
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teraction

(e
H ED n ~4~

&m
p

(3.22)

where E is the electric field of the nucleus, and (
is a dimensionless parameter measuring the
strength of the interaction. The parity mixing
again involves the matrix element of this operator
between opposite parity states, and we expect the
major effect to be mixing of 2S„, and 2P„,. This
effect has been examined long ago, for electrons,
by Salpeter' and by one of the authors, "with the
result that insofar as effect on radiative decays is
concerned, it is indeed true in the electronic case
that the important mixing is between 2S»z and

2P»
For muonic atoms, because the 2S»p 2P»g en-

ergy difference is a much larger fraction of the
Bohr splittings, it is no longer true that the 2Sy,p-

2P», mixing will give the dominant effect. This
is because the matrix element of HKD between

2S„, and 2P„, is suppressed compared to its ma-
trix element between 2S„, and other P„, states,
by about the same factor of (Za)2 that gives the

admixture of all P„, states into 2Sygg will be com-
parable, and of order of magnitude

can occur, where the i has been inserted to make

C, a real dimensionless constant. The interaction
H, will induce parity mixing similar to that of H, .
One important difference is that because of the
extra factor of i, this mixing will again be 90' out
of phase with that due to H, . The other difference
is that C, is probably «1, so that the effect is

We have not computed these accurately, although

it could be done easily from the results of Refs.
13 and 14. However, we note the order of magni-
tude, and also that this admixture is 90 out of
phase with that due to H„a result following from
their different transformations under T. The or-
ders of magnitude of 5 would be comparable for
(-Gm„'/41/n -10, corresponding to a muon

electric dipole moment of 10 "e cm.
Still another source of parity mixing could be an

interaction of muons and hadrons with the neutral
scalar mesons introduced in some gauge theories.
Such interactions ordinarily are taken to be T-in-
variant and then necessarily are also P-invariant.
However, in one model of spontaneous T viola-
tion, "the scalar-meson interactions are not T-
invariant, and hence not P-invariant either. In

that case, a muon-nucleon interaction of the form

G-
H, = iC4 ~ g„y,$„$~gp

correspondingly reduced in size. In Sec. V, we
consider the effect of such a possible imaginary
parity admixture, as well as the real parity mix-
ing coming from H„on various observable quan-
tities in the 2S», -1S„,+1-photon decay.

IV. CALCULATION OF DECAY RATES FOR
THE 2S1/2 STATE

We label the relevant matrix elements for these
decays M, , Mq, M, , M~, i.e. ,

M, =
& 2s1/2112 e exp(ik, r ) I »1/2 &,

M2=(2P„2la ~ e exp(ik2 ~ r)llS», ) 52s„, 2p„, ,

(4.1)

(4.2)

M, =
& 2S», I

o. i exp(ik, r) I 2P„,),
Ms = &2S1/2 fo e exp(iks r) I2P„,&

In these formulas, we have

Ik. f= fk, f=E„„,-E„„,,
Ikc f =E2$1/2 E2p1/2 7

Iks I-E2s„, —Esp„, ~

(4 4)

and 5»» is the quantity defined in Sec. III.
The matrix elements M, M» M, , M, can easily

be reduced to integrals over Ae muonic radial
wave functions. In doing this, we have not ne-
glected retardation effects, i.e., we have not ex-
panded the exponentials, because the quantities
kr, especially k, r, are comparable to 1 in heavy
atoms.

As an example of our procedure, consider M, .
We can write'~

) ( mls u
12 (4„) /2

I

2f,sa ~ ru f-
( R'2s u

I Sl/2) (4~)l 2I/
-2f2so 'ru

(4.5)

where u is the two-component spinor giving the

spin content of the state, while g and f are the

large and small radial wave functions, including

the effects of finite size and of vacuum polariza-
tion. Then

In this section, we describe our calculations of
various radiative decays of the 2$»p state The
decays we have calculated are the following:

(a) 2S„,- 1S», +ly (Ml),
(b) 2S„,- 1S„,+ ly (El through parity mixing),
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M = — r'dr dQ exp(ik r)u~o b x ru
4m I

"(gSsf 'Is+fssgIS) i

r, exp(if' ~ r)dn =ik, rj 1()r3)
1

(4.6)

so that

n ~, k, r g2sfis+ j2sgls r dr (4.9)

Therefore

coskr sinkr
k kr

(4.7)

Similarly, we can evaluate M, and Mb by using

I/2 (4&)I/2 I

(4.8)

j, k, r gg$, $+,sg, s r'«
= outcr k ~run We get

sink, r cosk, r sink, r
M, = iu a ~ e-u r'dr „' (g, s f,P +f,sg, P )+2

C C C

—-&u cT ' Cup

so that

(4.1o)

sink, r cosk, r sink r
Jl

r
)t, r (g»f2P /2+f»gSPI/2/+2 p 2 2 i, 3 3 g2P, fbs

C C C

~ 2 slnkb r coskb r Sln k b r
3 u r

y
(glsf 2PI/2 + f lsg2PI/2) +

y 2 2 l, 3 3 g2PI/2f Is 623 I/2, 2PI/2
b b b

=pu (T'fu

so that

(4.11)

sin kb r cosk, r sink, r
2SI/2, 2PI/2 P (glSf2PI/2 f IS g2P )I/2i 2 2

1 3 3 g2P / fIIS2
b r (4.12)

Note that since 5» &» &, is imaginary if T in-
variance is satisfied and we neglect I',$ and 1",~,
it follows that P is a real quantity under these con-
ditions.

The remaining matrix element M„ is a bit more
complicated to express, since in general it has
both E1 and M2 contributions. Furthermore, there
are four possible final RP,~, states, rather than two
as for the Sy/, or I', ~, states. The calculation of
M can be reduced to the evaluation of three radial
integrals:

I, = r

draco(@sr)

g2P, /, fss„, ~
(z) 2

r'«j 2(&dr) g2P3/2f2S / l

Is '= r dr&2(i3sr)fbp, i,gbs, /

The seven radial integrals appearing in

as the muonic transition energies, were computed
numerically in the following way. The charge dis-
tribution of all nuclei except 'Li are assumed to be

of the following form:

where C=1.12 FxA' ' and h. =0.51 F. The charge
distribution of 6Li is assumed to be of the form

pc ]+-
Qg

whe~e a, is so chosen that the root-mean-square
radius is 2.78 F. The Dirac equation is then solved
numerically in the electrostatic potential of the
charge distribution, corrected for the lowest-
order vacuum polarization effect. The detailed
numerical procedure is given in Ref. 16 by
Barrett, the author of the computer program, The
same program has been used extensively in the
analysis of high-precision experimental data";
therefore, its accuracy is certainly adequate for
our purpose.

The decay rates are obtained from 44,-41, by
squaring, multiplying by suitable factors, and
summing over all unobserved parameters. We
find
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e'
ft.(2S„,- IS„,+ Iy) =4 —u. In I',

e'
E,(2S„,-u „,+Iy) =4 —u, ~&~2,

4m,

(4.13)

(4.14)

(4.15)

These rates are given for various values of Z, in
Table II.

The other radiative decay that is relevant is the
2 S1y2 2S

1 f2 + 2p We have not calculated that in
detail, as it involves a sum over states. However,
it is likely that for Z not too large the rate is given
approximately by that for a point nucleus, correct-
ed by the energy-dependent factor [(E» E,s)/-
(E,&-E,&)r„]', where (E»-E»)p„ is the energy
difference for a point nucleus. The rate is then"

2s ~&s &pN-

This rate is also given in Table II. We also give
the branching ratio of the decay 2S- IS+ Iy to all
the above radiative decays. For Z& 30, this will
approximate the over -all branching ratio, since
Auger emission becomes improbable compared
to radiative decays. For lower Z the over-all
branching ratio is substantially reduced by Auger
transitions.

Finally, in Table III we give the ratio P(n of the
E1 to MI matrix element in 2S&y2 IS&gp+1& calcu-
lated for a nominal value C~= I, C„=O of the muon-
nucleon parity-violating coupling constants. Vfe
shall see in Sec. V that the ratio is equal to 2 the
photon polarization, or to & the angular asymmetry
relative to the muon polarization direction. Thus

these quantities should be on the order of 10 ' in
the region around Z =30, which might be experi-
mentally accessible.

V. MEASURABILITY OF 2S„2 1S„2+1-PHOTON DECAY

We consider first the spin analysis of the 2S„,
—IS», +1-photon decay. Since the initial muon

may retain a substantial polarization, the final-
muon spin might be measurable, and the photon
polarization can sometimes be measured, we shall
initially not average over any of these quantities.
The analysis of Sec. IV shows that the matrix ele-
ment for the transitions has the general form

M = u z (inc ~ I' x e + Pcr ~ c )u . (5.I)

Here uf, u, are the final and initial two-component
spinors for the muon, k, e are unit momentum and
polarization vectors for the photon, and o. , P are
the M1 and FI matrix element coefficients, given
in Eqs. (4.9)-(4.11) and in Table III. As we have
seen, if time-reversal invariance is satisfied, a
and P are relatively real, otherwise not. For ex-
ample, if the only P-violating interaction were al-
so T-violating, then n and P would be relatively
imaginary, except for a small effect due to the
width of the 2P„, state.

The decay rate corresponding to (5.1) is given by

TABLE H. Decay rates for various transitions.

3
6

11
17
26
32
35
42
50
60
74
82

~2S 1S+ 1y

3.01 x 10
3.20x 10
1.20x 107

7.56 x 10"
3.41 x 101o

1.92 x 10"
3.89 x 10
1.57 x 10'2

5.34x 10 2

1.80x 10
6.18 x 1{}13

1.06x 10

2 S~2 P1(2+ 1y

0
3.05 x 10~

7.15x 108

7.64 x 10'0

5.68 x 1012

3.98x 10'3
9.09 x 10'3
4.32 x 101

1.76 x 10
6.55 x 10"
2.57 x 10'
4.68 x 10"

82 S~2P3 jl2+ 1y

0
2.30 x 10'
7.61 x 1(}8

8.89 x 10"
6.85 x 1012

4.89 x 101~

1.12 x 10
5.32 x 10'4

2.20 x 10
8.33 x 10"
3.41 x 10'6

6.33 x 10'~

~ 2 S~1S+2y

1.2x 106

7.9x 10'
2.6x 10'
3.2 x 10'"
2.5x 10"
5.3x 10"
7.8x 10"
1.4 x10"
2,2x 1(}12

3.2 x 10"
3.7x10'2
3.7x 1Q

2S~1S+1y
+2 S~ all radiative

2.5xlQ 5

4.0x 1{}4

2.9x10 3

3.8 x 1{}
2.7x10 3

2.2 x10 3

l.gx10 3

1.6xlQ 3

1.3x10 3

1.2x10 3

1.0xlQ ~

1.0x 10 3

2P1g2 1S+1y

1.03 x 10'3
1.66x 1014

1.87 x 101~

l.04x10"
5.30 x 10'6

1.14 x 10'7

1.57x 10
2.94 x 1017

5.13x 1{}17

8.75 x 101
x 101S

1.79 x 10'

a All rates are in sec '. The branching ratio in column 6 is of the decay 2S 1S+1y to all radiative
decays of the 2S state. The rate in column 7, that for the 2P «2 state, is given for comparison.
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(5 2)
TABLE GI. Ratios of E1 to M 1 matrix elements. '

This can be evaluated with the usual projection
operator method:

IM I'= Tr([2(1+»& n, )](-ia «c& kx.e«+ p*c p«)

x[~(1+&& n )](iacr ~ kxg+p»& ~ j)}.

(5.3)

Here n&, nz are the spin directions of the initial
and final muon. We have taken i to be complex,
to allow for the possibility of measuring the cir-
cular polarization of the photon.

If we define a vector A by

A = -in*k x~*+P*~*,

then the trace gives

3
6

11
17
26
32
35
42
50
60
74
82

5.85 x 10~

7.40 x 104

1.25 x104
3.73 x 103

1.26 x 103

7.85 x 102

6.48 x 1P2

4.45 x 10'
3.23 x 102

2.33 x 10~

1.67 x 102

1. .44 x 10~

-0.338
+6.25 x 10 ~

+1.04 x 10 ~

+3,70 x 10
+1.44 xlp 4

+ p. 958 x 10
+ 0.803 x lp-4
+0„579xlp 4

+0.426x lp '
+ 0.319x 10-4

+0.225x 10 4

+ 0.190x 10-4

' The value of P/u is calculated for C& ——1, C„=P.
The actual value of P/u depends on C& and C„by P/e
~ C& +Cn (A —Z)/Z. The photon circular polarization, or
photon angular asymmetry for a polarized muon, in the
decay 28f&2 1Sf/2+1y is given by 2p/o'(1+p /G' ) '.

IMI =&[A A (1 —
n& n&)+i(n; —n&) AxA*+n; ~ An& ~ A*+n; ~ A«n& ~ A]

=-,'[(1-n, n, }(lal'+ IPI')~ e«+(1-n» n, }k ~x~ (-i}(a*P+aP*)
A A

+i(n& —n~) e«x~ la I' —i(n, —n~). kk e«xi
I
pl'

+(n&-n~) kc ~ ( «(aP«+P«a) +(n; ~ cnf 8«+n& e«nf e)lal

+(n& kxenf kxi«+n& kxj«n~ kx». )IPI'
—jpg, ~ c*gf k xra *p- in& k xenz ~ &*ca *p

A

+in, k xc«nz CaP«+in, ~ en~ k xe«aP«]. (5.4)

It can be seen that only the last four terms in-
volve the combination e*P-eP*, which is sensi-
tive to an imaginary relative phase of n and P.
Hence, aside from the small effect due to the 2P„,

»

width, only these terms are sensitive to a T-vio-
lating interaction. Unfortunately, these terms
disappear upon summing over any polarization or
spin, as can be seen from the formulas below:

kg IMI'=2[(la I'+
I p I')~ ~«-ik ~&««(a «p+ap«) in~ ~««-lal'+in, » ~«&«l pl'

- nf kc e«(a p*+a *p)] (5.5)

Q IM I' = [(la I'+
I p I')«*—ik & &««(a «p+a p«) +in ~«&«

f a I' —in; kk ~«x ~
I p I'

+ n&
~ km ~ e*(aP* +a *P}], (5.5)

Q IM I'=l(1 -n& 'ny)(la I'+
I
pl')+(n&-ny) k(ap«+ pa«)+(n» ny-n& kny k)(la I'+

I
pl')], (5.7)

Q IMI'=2[la I'+
I
PI'+n& k(aP" +P'a.}],

A
», ny

4 Q IMI'=(lal'+
I
pl')~ ~*- ik ~x~'(ap*+p*a)

A A
Fly «ny

(5.8)

(5.9)
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If we identify ie xe*=n~ as the circular polariza-
tion vector of the photon, then we see from (5.8)
and (5.9) that a measurement of either the photon
asymmetry relative to the muon polarization or of
the photon circular polarization determines the
quantity

= 2 — cosQ,P
Q

(5.10)

where Q is the phase angle between o. and P. It
seems probable that providing that the muons
reaching the 2S„, state retain a significant amount
of polarization, it would be easier to measure the
angular asymmetry than the circular polarization.
However, to answer this question requires a de-
tailed study of possible experiments, and is there-
fore beyond the scope of this paper.

Some values of r are given in Table III. We note
that r is proportional to the coupling constants of
the muon-nucleon interaction, so that the sign of
the polarization, or asymmetry, is determined by
the sign of these couplings. This sign, as well as
the magnitude of the coupling, is of direct theoret-
ical interest.

It may appear surprising that no T-violating
terms occur if the photon polarization is not mea-
sured, since it is known that terms such as
n, .nf xk involving T violation occur in the spin
analysis of a decay such as A'- P+ m, in which a
spin-zero particle is emitted. One might naively
expect that such terms would remain in the decay
we are considering here after summing over pho-
ton polarization. That this is not the case follows
from the transverseness of the photon polarization.
It can be seen from the fact that the matrix ele-
ment (5.1) is invariant under the substitutions

A

E~Q X6&

Q XC~Cy

(y —-ig,

p- io. , (5.11)

so that

He(a*P)- -He(a*P),

Im(a *P)- +Im(a*P) .
Consequently, the decay rate summed over po-

larization cannot contain a term like

n, n ~ &&I Im(a *p),

which changes sign under the substitution. On the
other hand, a quantity like He(a*p)n, ~ n~ xk can-
not occur by time-reversal considerations. Hence

A,

all terms proportional to n, ~ pgf xk vanish after
summing over photon polarization. This conclu-

sion may not be true for a quantity that gets a con-
tribution from the longitudinal field, such as elec-
tron asymmetry in Auger emission. For our case,
the small value of IP/a I

makes it very doubtful
that a T violation can be detected through a rnea-
surement of a correlation that requires the mea-
surement of all the possible polarizations.

An examination of Table II indicates that the
branching ratio of 2S„,—IS„,+ Iy to all 2Sila de-
cays has a maximum value of several times 10 '
at Z-30. The actual number of such decays seen,
per stopped muon, will be this branching ratio
multiplied by the fraction of muons that reach the
2Syg2 state. Estimates of this fraction vary from
element to element, and give numbers of the or-
der of 5%. Therefore, the expected value for the
fraction of all stopped muons decaying by 2S„,- IS„,+Iy will be something like 10 ', for ele-
ments with Z-30. This low branching ratio would
not by itself rule out the detection of the transition
in a high-statistics experiment.

In elements with Z-30, the 2S-IS energy differ-
ence is about 2 MeV, while the 2S-2P energy dif-
ference is about 50 keV. Hence, to distinguish the
2S-IS transition from the 2P-IS transition re-
quires an energy resolution of about I/p, which
seems easily attainable. "

Another source of ba, ckground for the 2S- IS+1y
transition is the tail of the 2S- IS+2y transition,
in which one photon takes almost all the available
energy. Since the number of photons in the tail
goes as (E» —E» —E~)'/(E» -E»)', we see that
the number of photons with E~ =E2~ —F» —4E,
where 68&50 keV, will be only 10 ' of all photons
emitted in 2S- IS+2y decay, which provides a
negligible background for Z= 30.

Next we consider as a background the "mixed"
2S- 1S+ Iy+ "Auger" transition described by
Ruderman. " This involves a mixing of the muonic

2S&y2 and 2P&g2 states combined with a mixing of
opposite parity states of the atomic electrons
through their Coulomb interaction with the muon,
and leads to a transition in which an F.I photon is
emitted with about the same energy as the 2S- IS
transition, the small difference being taken up by
an electron rearrangement. Qf course, this type
of mixing does not give any circular polarization
or other parity-violating effects, since it is the
result of the parity-conserving Coulomb interac-
tion. Indeed, the change of electronic state in-
volved implies that there is no interference be-
tween the F.I and M I a.rnplitudes. However, their
effect must be considered as a source of photons
with about the energy F» -F.,~. Ruderman's esti-
mate is not applicable to atoms with Z-30,
cause he took the 2S-2P energy difference as small
compared to the electronic energy differences. In
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the case of interest to us, his estimate of the
"mixed" decay rate must be reduced by a factor
of about

m,,
m„(Za)' Z' '

or about a factor of 10 ' for Z-30. Combined
with his result, this gives a value for the mixed
radiative decay rate of about 3 & 10' for Z = 30,
which is several orders of magnitude less than
the M1 rate.

Other kinds of background for the 2S - 1S+1y
transitions will depend on the details of the experi-
menta1 setup, and cannot be usefully discussed
here. It would appear to us that a reasonable pro-
gram would involve first trying to detect the tran-
sition, in a variety of elements with Z-30. If
this is accomplished, an experiment with much
higher statistics could be envisaged in an effort
to detect the circular polarization or angular
asymmetry of the photon. In view of the great in-
terest in the neutral-current interactions, we be-
lieve that such a program is well worth the con-
sider ation of experimentalists.
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APPENDIX

We discuss briefly in this appendix the parity
mixing in electronic hydrogenlike ions of high Z.
The interaction B, will also occur between elec-
trons and nucleons in some models in which it oc-
curs for muons. However, there exist models in
whichH, occurs for electrons, but not muons, or
conversely, or for both, but with different cou-
pling constants. " For that reason, we denote the
electron coupling constants by C", to distinguish
them from the muon couplings previously treated.
The interaction wil1 cause a parity mixing in the
levels of hydrogenlike ions along the lines we have
calculated for muonic atoms. The effect wi11 be
much smaller in electronic ions because the prob-
ability of finding the electron at the nucleus is
much smaller than that for the muon. To some
extent, this is compensated for by the smaller en-
ergy difference between 2S]/g and 2Py/2 in electron-
ic ions.

To estimate the effect, we can make the approx-
imations leading to Etl. (3.18), i.e., a point nucle-
us, and the leading term in powers of Za. We
then obtain for the 2S„, and 2P„, state of electron
hydrogenic ions2'

fGm, ' (Cp" +C'„'(A —Z)/Z~
1/2 1 1/2 el ~ 4vo/

x(Za)'-,' v 3 m, . (Al)

The energy difference is now the Lamb shift.
We have estimated this in hydrogenie ions by tak-
ing the numerical values for the Lamb shift of
high-Z ions given by Erickson. " These give an
answer of the form

o (Zo. )'
(A2)

where F(Z) is a function decreasing from 7.7 for
Z=1 to about 1.5 for Z =40, and then decreasing
slowly beyond Z=40.

Furthermore, in electron hydrogenic ions, the

2P&/z width is a substantial fraction of the 2S,f2

2P&/2 energy difference. Therefore, we must
write

gael.
(»i/2 I» I2pi/2)

2&i/2 g g + l Z(I2S I/2 2Pl/2 2 2PI/2 2$1/2

Z
+(Z) ' (A4)

where Z/E(Z) is given in Table IV. The quantity
3v 3 Gm, '/8o/M2, which sets the scale of the ef-
fect, is a quite small number:

t"m, = 2&10 ".3v3

TABLE IV. Parity mixing and polarization in elec-
tronj. c cons.

Z Z/E {Z) z62S,2p
el.

Circular
polarization

+28 i S+ iy

~ 2 S~i S+ 2y

1
5

10
15
20
25
30
35
40
45
50

O. j29
1.04
2.66
4.76
7.38

10.3
13.6
17.5
21.3
25.7

31.1

2.58x10 i'

2.08x 10 0

5.32 x 10-"
9.52x 10 io

1.47x 10 ~

2.07x10 ~

2.72x10 '
3.50xl0 ~

4.26x 10
5.14x10 ~

6.22x 10

4.08x 10
2.63x 10
8.40x 10 ~

4.46x10 "

2.93x 10
2.08 x 10 6

1 ~ 59x 10 ~

1.29x 10
1.05x 10 6

0.89x 10 7

0.77x 10 7

3 x10
1 ~ 9x10
3 x10 ~

1.5x 10 ~

4.8x 10 2

1.2 x 10
2.4x 10
4.5.10-i
7.7x 10
1.2
1.9

' Both 6Q 2& and the circular polarization are calcu-
lated for C$& =2, C„".=0. For other values, the result
can be obtained from Eq. (A4).

Here I'»„, -Z'(8 10' sec '), which is about ~
2p», , le I'»„, is negligible. We

can therefore write approximately

iGm, 3m% 3 [Cp~ +C„" (A —Z)/Z]
2 4@0.



2S&/a IS&/2 + ONE-PHOTON DECAY OF MUONIC ATOMS AND. . ~ 203

6x10 '
circular polarization = ZFZ (A5)

which is always substantially smaller than in mu-
onic atoms. However, this must be balanced
against the fact that for electronic hydrogenic
ions, the 2S&yz IS&)3+Iy decay has a much larger
branching ratio because the 2S- 2I' decays have a

From Table IV, we see that the factor Z/F(Z)
ranges from 0.13 to about 30 over the periodic ta-
ble. Consequently, the admixture of 2P„, into

2S~(2 is probably &I0 ' for electronic hydrogenic
lons.

We can combine these results with the point-nu-
cleus estimates of the EI and MI matrix elements
for 2S„,- IS„,+ Iy, given in Sec. II, to obtain an
estimate of the photon circular polarization. This
gives

»"»»-3yI0
+2$ is+2&

(A6)

which becomes equal to I at Z =42. This suggests
that the small circular polarization of the photon
in the 2S&,2 IS (2 + Iy decay of hydrogenic ions
may be detectable if ions of such high Z can be
produced.

It is also worth noting that because of the sub-
stantial imaginary term in the denominator of
(A3), a parity mixing due to a P- and T-violating
electron-nucleon interaction might also be detect-
able through a measurement of circular polariza-
tion.

proportionately much lower energy release and do
not compete with it. In such ions, the other im-
portant decay mode is 2S„,—IS„,+2@, and the
branching ratio of these is approximately
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