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strictions and additional counterterms.

(v) The Adler-Baker-Johnson function changes
to some other function which now depends on the
strong coupling as well. This new function is
again the coefficient of a term with a single power
of In(g?) (for g2~ w) in an[')(g?). (This together
with the assumption of the vanishing of B does not
necessarily overdetermine the parameters of the
theory.) The whole attractive idea of determining

a within pure electrodynamics,’ according to the
present dynamics with such an alternative solution,
may be destroyed.

Based on the above (i)-(v) points, the author
feels that the solution given in the bulk of the pres-
ent paper is far more physically and technically
attractive than the alternative type of solution pre-
sented in this appendix.
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In the preceding paper, we have made -a preliminary study of the short-distance behavior of quantum
electrodynamics in the presence of neutral-meson theory with pseudoscalar-pseudoscalar coupling. We
have learned in particular, by an elementary summation procedure, that in the single-fermion-loop
contribution to the renormalized photon self-energy part, the Adler-Baker-Johnson eigenvalue condition
for the fine-structure constant o, F!"}(x )|, _ , = 0, remains unaltered. We extend our results, in the
single-fermion-loop context, to the pion self-energy part. As a consequence of the vanishing of the
effective strong coupling at high energies, 7%m® scattering graphs are finite and no ¢* counterterm is
required. We finally infer from the above work that the photon self-energy part in the multiloop
contribution is asymptotically finite at the eigenvalue [F'/(x ) _, = 0] independently of the value of the
strong coupling. The point x = a is the assumed (infinite order) zero of the single-loop
electromagnetic-current-correlation functions in mass-zero pure electrodynamics.

In the preceding paper' we have studied the
short-distance behavior of quantum electrodynam-
ics in the presence of neutral-meson theory with
pseudoscalar-pseudoscalar (ps-ps) coupling with-
out closed fermion loops. The scaling equations
for the various components (propagators, vertices,
etc.) of the theory have been solved. It was then
shown that in the single-closed-fermion-loop con-
tribution 7! to the (renormalized) photon self-
energy part, the Adler-Baker-Johnson eigenvalue
condition?’? for the (renormalized) fine-structure

constant® @, F!'1(a)=0, remains unaltered. This
means that a possible zero of F'1(x) does not
“move” in the presence of the strong coupling.
This leads to the beautiful idea that the value of

a may be possibly determined within pure electro-
dynamics? (i.e., electrodynamics in isolation from
the rest of the world). The mechanism which is
responsible for the stability of the eigenvalue con-
dition is that the effective strong coupling vanishes
at high energies.! The approach we have used for
the investigation of the above problem was through
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a study of the Callan-Symanzik scaling equations.*
The method we assumed to study these scaling
equations was to make an expansion in powers of
the strong coupling and treat the electromagnetic
coupling intact (i.e., to all orders) and then solve
these equations by resumming back in the strong
coupling in an elementary fashion. The effective
strong coupling was then easily identified. This

is a particular way of summation as clearly stated
in Ref. 1 and it allowed us to treat the explicit
derivative, appearing in the scaling equations,
with respect to the strong coupling in a straight-
forward manner. [Roughly speaking, our way of
summation corresponds to first summing virtual-
photon corrections with all virtual-pion “variables”
held fixed and then carrying out the virtual-pion
integrations. This is suggestive from the scaling
equations because of the presence of the derivative
with respect to the strong coupling, as mentioned
above (even in the absence of closed fermion loops)
in the just-mentioned equations. We shall come
back to this point later.] It is interesting to point
out that the effective strong coupling (in this Abe-
lian gauge field theory) vanishes even faster than
in non-Abelian gauge field theories® and hence is
of great practical interest. Thus we suggest that
the definition of so-called asymptotic freedom be
general enough to embrace such a situation. We
have discussed in Ref. 1 how to check the stability
of the eigenvalue condition for «, in the above
sense, in other field theories as well. For the
convenience of the reader, a brief summary

of the study of the stability of the eigenvalue con-
dition F"1(a)=0 is given in the Appendix.

In the present work we wish to extend our results
to the single-fermion-loop contribution to the pion
self-energy part (and the scattering of the pion-
photon system). 7°-7° scattering graphs vanish
quite rapidly in the ultraviolet region and hence
no ¢* counterterm is needed in the theory. We
finally discuss, with no rigor, the multiloop con-
tribution to the photon self-energy part and the
stability of the eigenvalue condition for « in the
above sense in the full theory.

The unrenormalized single-fermion-loop con-
tribution to the pion self-energy part =,(q?) is
given by

21 (q?) =ig¥( 2,/ Z,)

x f ((::))4 Tr[y,S (p +q) Ts(p +4,0) S®)],
(1)

where Z[°! {the pion wave-function renormalization
constant) is equal to one, Z is the strong-vertex
(Iy) renormalization constant,! and g2 is the re-
normalized strong coupling (squared). In per-

turbation theory, Z!! has both quadratic and log-
arithmic divergences. We may formally introduce
the renormalized (inverse) pion propagator in the
single-fermion-loop context:

[)"—1(‘12) =[Z4(qz + M02 +Z"(qz)) J 1}

=¢+p*+200(¢?) . (2)
The parameters p and u, denote the renormalized
and the unrenormalized masses of the pion. Now
we rely on the gauge invariance of the pion self-
energy part and work in the gauge in which Z; is
finite. This gauge has been explicitly written
down in Ref. 1. We first consider the operation of
the object

[m(3/am) +g?B(8/0g%)]= L

on Z11(¢?) (with a fixed ratio kept for u/m—see
the Appendix), where g has been defined in the
Appendix. We note that

Z, LS =(L+y,) S =L,5™
and
(25/2,) L(ST;) =[L +(8/2)] (STy) =L ST ,

where (1/Z,)LZ,=~Y,, Z, is the proton wave-
function renormalization constant, and the “tilde”
sign denotes, as usual, renormalized quantities.
We may define

L2} (g?) =11 (g?) (3)
and note that 71!1(¢2) is (symbolically) given by

1M1= —ig?z, [ Tr 81,8 (L,5™)8 - %(L,5E)3].

(4)

By an elementary application of the scaling equa-
tions in Ref. 1 [see in particular Egs. (27) and (31)
in Ref. 1] we formally see that in the gauge in
which Z; is finite, the integral in (4) behaves like

© dpz _ /
f = p®) Bolo) /2
I

for p? -~ (& #0) [see the definition of f,(a) in the
Appendix (which is determined in pure electro-
dynamics) which lies in the self-consistency range
2> B,(a)/2>0] upon taking into consideration that
the trace of an odd number of y matrices is zero.
Hence I'!!(¢?) is a finite object. From Eq. (2) we
then have, in the single-fermion-loop context,

the following equation:

[ch+Li£r1](q2)=p[1](qz+U'2)+ZZ£”“'z
+raltl 1t (g% (5)

where we have arbitrarily defined L u,2=(2 +a1))u2
and Lz =pt], we note that Z['! is finite (see
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also below). The reason is that to investigate its
finiteness, we have to extract two powers of g

in (1) and by working in the gauge in which Zg is
finite we again see that the resulting integral be-
haves like

[ @/ )2a

for p? -~ = (& #0). The self-mass of the neutral
pion, however, is not necessarily finite since we
cannot extract two powers of ¢ in (1) to investigate
its finiteness and is quadratically divergent in
perturbation theory. From Eq. (5) we may then
infer that both p*! and A (choose g2 =~ u?) are
also finite (with ¢ #0). The scaling equation for
z1 is given by

ngﬂ:p[l]’ (6)

and by following the procedure given in the Ap-
pendix we see that

z ~ finite +0((m?/A?)B0'2) | ("
Ao
and as expected is finite in the limit of infinite
cutoff A?~w», The unrenormalized mass of the
pion satisfies (in detail and note that (u,2)f! = ;12)

[m(a/om) +2 +g%B(8 /6% | F=2 +a1],
with

L =uiX F ., (8)
The most general solution of (8) is given by

Ko ~~ WPX finite
A2 e

+ 82N 0, (m? /A)%0/ + ¢y (m? /PP 0/
(©)

where the over-all A® factor appears because of
the presence of the term 2 on the left-hand side
of the first part of Eq. (8). For the internal con-
sistency of the theory for the finiteness of p/?

(in the single-fermion-loop context), we must
have at least one of the following three immediate
conditions to be satisfied:

(i) Allthecoefficients c,,c,, ... (which depend
on « and g2 as well) vanish simultaneously.® This
possibility is not attractive and may possibly over-
determine the parameters in the theory.

(ii) Some of the just-mentioned coefficients van-
ish and (3,/2) is large enough to make the remain-
ing terms vanish as A’ -~«. An interesting situa-
tion, for example, would be ¢, =0 and 3,>1. The
coefficient ¢, is given by

e
¢ (e, g% =c,(a, 0) exp[—fo (dg’z/g'z)(ﬁow)/ﬁ} )

where the exponential is some finite expression.
[The vanishing of ¢,(a, 0) (which is determined in
pure electrodynamics) would then be sufficient in
this case. This condition with the vanishing of
FU(@) may overdetermine the value of a, how-
ever.]

(iii) The parameter (3,/2) lies in the range
2>(B,/2)>1, which is in the self-consistent range
2>(B,/2) >0 (see the Appendix and Ref. 1), and
the above-mentioned coefficients remain arbitrary.

We shall not dwell upon these various possibil-
ities. The third possibility seems, however, the
most attractive one, and is quite suitable, since
it allows one to extend the discussion of the finite-
ness result formally to the full theory by power-
counting arguments. [To be honest, however, we
should make the following remark concerning this
latter possibility. Each time we apply the operator
L to a certain amplitude, we introduce a new am-
plitude (the inhomogeneous part) which has at
least one higher power (k™, where the various
external momenta are scaled by multiplying them
by k) of momentum decrease asymptotically (k —)
multiplied by arbitrary powers of In(x). Accord-
ingly, the inhomogeneous part may be, generally
speaking, neglected in comparison with the homo-
geneous part, asymptotically, if (8,/2)<1. If we
assume, however, that the arbitrary powers of In(k)
multiplying the inhomogeneous part do sum up to
the form (k)™®0/2), then the neglect of the inhomo-
geneous part, asymptotically, is certainly per-
missible. It is not difficult to check that such a
solution is consistent with the scaling equations
in Ref. 1 by repeated application of L to the inho-
mogeneous parts of the just-mentioned equations®
in succession. We make no attempt, however, to
actually prove the correctness of such a solution.
In the work of Johnson, Baker, and Willey’ such
questions are automatically avoided. ]

We may similarly study a general amplitude
1) (@, vy donikyy .., k) with 27 external photon
lines and 7 pion lines (» = 1) containing one closed
fermionloop. Such a processisshownin Fig. 1. If
we fix one of the integrations, say the one over loop
p shown in Fig. 1, then all the remaining subin-
tegrations are finite in perturbation theory. The
final integration over p yields, however, generally
a divergence of logarithmic type in perturbation
theory. Clearly, n&},{, may be readily expressed
in terms of renormalized components (note that
z=1, z[1=1). Since such a process should be
gauge-invariant, we may work in the gauge in
which Z, is finite. In this gauge, I';(p, p) ~y,0( (m¥/
1?)8/4) for p? ~ = (&2 #0, see Ref. 1). Accordingly,
in a skeleton expansion of 71}, with exact ver-
tices, the integration over p (see Fig. 1) is actu-
ally finite. Now we scale the momenta ¢; - kq;,
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FIG. 1. Diagram representing the (22 + 7)-point
function n%‘n., with 27z () external photons (pions).
wi,[,‘,]', contains one and only one closed fermion loop.
The dark small triangles attaching two proton lines
to a pion line (e.g., as shown in the loop integration
over p) denotes the (full) strong vertex I';. By defini-
tion the latter does not contain closed fermion loops.

k;—~ kk, and consider the limit « — (with all the
q;’s and k,’s being spacelike and nonexceptional).
Clearly, the operation of L on 7(l] yields (even

in perturbation theory) a finite expression behaving
like® ~(k)*™! x[powers of In(«)| for k-« [more
precisely like («k)*"1(x)"®0/?)], where d is the
“canonical” dimension of 7{}! . Rewriting 7(!]
=(k)? '], we have in the usual manner* (note

also z[o'=z[l=1)

[-«(8/0k) +g2B(0/0g?)]
' 2 (@yy oo 3Ry o e 3m/K) ~0 (10)

[with a fixed ratio (u/m) kept fixed—see the Ap-
pendix| or
11 o C(K)""(Bo/z’ . (11)

Man,r
K -

We note that, to be more precise, we should have
multiplied the integrand participating in the loop
integration over p, say, as shown in Fig. 1, by
a form factor A%/(p® +A?). When we scale the ex-
ternal momenta in the usual manner, we then have
to scale the parameter A% - A%*/x? in the same way
as we have to scale m—~m/k. We may then argue
that the limit A% -~ of the left-hand side of (10)
exists (as discussed above) and then finally inte-
grate (10) to yield (11). It is easy to see that the
constant C in (11) is independent of any masses.
From (11) we also see that n°-n° scattering graphs
(with €% #0) are finite and vanish quite rapidly in
the limit k -—«, The only diagram which seems
troublesome in (11) corresponds to the case with

n=1and r=1. Such a process, however, is im-
proved by at least one power of momentum de-
crease by the fact that the trace of an odd number
of ¥ matrices is zero. Hence such an expression
is reduced to a superficially logarithmic divergent
one. (Actual perturbation-theory computations
are well known to yield finite results for the latter
process.) The damping of the strong vertex then
guarantees the finiteness of such a process which
is in turn proportional at worst to (k)~Bo’/2) for
K=, The pion and the photon self-energy parts
have been discussed above. [The corresponding
renormalized propagators for the latter objects
behave asymptotically (¢2 ~ ) like (1/¢?) [finite
+0((q?) “(50/2))] in the single-fermion-loop con-
text.]

Now we discuss the multiloop contribution to the
theory. We follow Ref. 2 and make the two basic
assumptions of Adler made in pure electrodynam-
ics:

(1) The photon self-energy part may be correctly
summed up loopwise as clearly discussed in Ref.
2.

(2) The 2r-point electromagnetic-current-cor-
relation functions (in the single-fermion-loop con-
text), with the scale parameter m set equal to
zero, and F'!(x) vanish simultaneously at x=a
in pure electrodynamics (see also below).

It is easy to check that a general amplitude with
only external photon lines with a single-closed-
fermion loop (containing both electromagnetic and
strong corrections) goes over to its corresponding
expression in pure electrodynamics in the limit
m—0. The corrections for the latter object will
go like O((m)®0) in the just-mentioned limit as a
consequence of the damping of the strong inter-
action. At the eigenvalue, FJ(x)|,.,=0, the net
expression for the just-mentioned amplitude for
photon-photon scattering (determined in pure elec-
trodynamics) vanishes in turn like O(m?).2 We
have also seen above that a general amplitude (in
the single-fermion-loop context) with an arbitrary
number of external photon lines and at least one
pion line vanishes quite rapidly as m~0 (with a
fixed ratio u/m kept fixed). Accordingly, we see
that the weaker assumption given in (2) is suffi-
cient in the sense that all scattering amplitudes
(in the single-fermion-loop context) with an arbi-
trary number of external photon and pion lines
vanish [needless to say including the independent
vanishing of (pure) n°-7° scattering graphs] in
the presence of the strong interaction in the limit
m—0 at x=a. Thus we clearly state that the two
assumptions made above are the ones made in pure
electrodynamics.? In Fig. 2 we show a two-loop
contribution to the photon self-energy part with
each blob shown containing one and only one closed
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FIG. 2. Some diagrams contributing to wgﬂ Each blob
shown contains one and only one closed fermion loop.

fermion loop. By simple power counting in the
limit m -0, we easily see that the just-mentioned
expression is asymptotically finite as we let all

[m(a/am) +p,2(3/8p.2) +g2x[°](8/8g2)] an 1](q2) sl +1[1](qz)

and for n>1,

[m(d /am) + u2(3 /8 u?) +g%x°1 (8 /0 g%)] an[" I (¢?)

=171 = L H (a0 /0a) = 1) g7 0/ anlr T ) 417

the integration variables become large simulta-
neously at x=a. One may then argue, together
with the two assumptions made above,? that at the
eigenvalue x = o [F*1(x)|,. ,=0] the photon self-
energy part containing n closed fermion loops
(n=1,2,...) is asymptotically finite. This study
may be also carried out for the proton propagator
and the strong vertex (again assuming the validity
of a loopwise summation) with similar results as
in Ref. 1 at x=a. This is also carried out easily
and simultaneously for the pion self-energy part.
We shall briefly discuss this study, with no rigor,
for the photon self-energy part—the main object
of interest in this work.

In the loopwise summation,? the scaling equations
for the photon self-energy part containing
n=1,2,... closed fermion loops, 7[*!, are for-
mally given by

(12a)

(12b)

where - x=L1n[(Z,/Z,)0*/Z,)), 3 =L1n[Z;], L =[m(d/3m) + u*(3/0u>) +g*x(8/9g%) + ax(8/8a)]. In our previous

notation x!°!

Quite generally, we write 7" =7l"1 + 70" and gl"1 =3l 4

example, Eq. (12b) becomes (in detail)

=4, (To continue our discussion we omit the subscript ¢ in 7 E"] to simplify the notation.)

%", where 7l =7 ,_  etc. For n=2, for

m(8/om) an 2! =gl — gl (a(a/2a) 1) an (1T +12) | (13a)
[m(8/6m) + u*(8 /0 u?) +g%x[°) (8 /0g?)] an {2
=)'(52]—'[1](a(3/3a) 1)0111[1] [1]((2(8/811)—1)(111[”-gzx[”(a/agz) an[l]+1E2] . (13b)

At the eigenvalue, the object g!!(a) [=-2aF)(a)]
vanishes by definition. According to the basic
assumption (2),2 we see that it implies that 321 (x)
and g (x, £%)(3/3x)xF 1 (x) vanish identically

at x=a [F"(x)|,. ,=0] independently of the value
of g2, and one obtains the asymptotic finiteness

of 72! and w21 by following the procedure outlined
in the Appendix. [The vanishing of (3/8x) F 1 (x),.,
is well known®.] The objects I[?] (¢?) are by def-
inition constructed out of two closed fermion loops
and vanish quite rapidly as m—0. Clearly the
analysis may be carried out for any =1,2,... .
What we have learned from the above analysis
alone is that for any »=1,2,..., the photon self-
energy part containing n closed fermion loops

is asymptotically finite at x = ¢, i.e., at the

—

eigenvalue F[*!(x)| _, =0, and implies that the
1§"1’s vanish 1dentica11y with (1) x{""(a,g?)

=0 if (3/0a) X, ("] (@) #0, or (ii) the %" (@, g2)’s gen-
erally remain arbltrary if (a/aa)x["](a) =0, with both
cases independent of the value of g2. The x"!’s
obviously remain arbitrary. Since w["] contains

at least one single-fermion-loop current correla-
tion function (attached to the rest of the graph
solely by photon lines) and we know? that such a
correlation function has an infinite-order zero
when m=0 at x=q, it follows that (8/8 @)° g"](a) 0,
s=1,2,... [this is easily given by an elementary
induction proof—see in particular Eqs. (121)-
(127) in Ref. 2] and (8/8x)° Tfo["] is also asymp-
totically finite at x=a. The eigenvalue condition
F[‘](x)l,,:a =0 (in the single-fermion-loop con-



text), which we have shown remains unaltered

in the presence of the strong interaction, implies
[according to the two assumptions (1) and (2)
above?| that the photon self-energy part containing
arbitrarily » closed fermion loops is asymptot-
ically finite at x = « independently of the value of
g%. [The actual computation of ¥ (a, g?) is not
very hopeful (and not very interesting) since one
is actually summing up an infinite set of diagrams
coming from electrodynamics which makes the
strong interaction damp out at high energies and
render even 7°-7° scattering graphs finite.] Of
course there are convergence problems related
to the interchange of the limit ¢ -« with the sum-
mation over the number of loops (as n becomes
large) which we make no attempt to discuss. (The
functions ¥{"! are denoted by g!"! in Ref. 2; we
shall not carry out the study of the Gell-Mann—
Low function here.)

It is clear that the way of summation over the
electromagnetic coupling first (to all orders) and
then over g2 is very suggestive from the initial
Eq. (12a). The latter does no? contain a derivative
with respect to « (since Z, = Z,, the Ward identity)
and our method of summation seems most natural
and perhaps the simplest. Also since the effective
electromagnetic coupling can never be “switched
off,” however high the energies may be, according
to positivity considerations (0 < Z, <1; e =¢?/Z2,)
a high-energy analysis with a reversed way of
summation compared with ours [i.e., sum over
g? (to all orders) first and then over a] does not
seem to be hopeful. See, for example, the damp-
ing of the terms coming from the strong interac-
tion at high energies inside the square brackets
in Eqs. (45)—(48) in Ref. 1 to further clarify this
point. Ordinary perturbation theory results in the
strong interaction, with an effective strong cou-
pling g?1n(q?/m?) for ¢*>m?, have reduced to
expressions each being the sum of terms that
vanish quite rapidly at high enevgies [|q2|*/?
>m(g?)/ 80]. In particular we have seen in our
method of summation that no ¢* counterterm is
needed. We make no attempt to discuss here other
possible ways of summation and other possible
types of solutions to the problem (with respect
to the latter see also Appendix B in Ref. 1).

We have studied the short-distance behavior of
quantum electrodynamics in the presence of neu-
tral-meson theory with ps-ps coupling. We have
assumed an elementary way of summation of the
theory, which was clearly stated throughout this
work, leading to the physically very interesting
results presented in this work. First we have con-
sidered the theory with no closed fermion loops
and then demonstrated that in the single fermion-
loop contribution to the (renormalized) photon self-
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energy part the eigenvalue condition for the (re-
normalized) fine-structure constant F ')(a)=0 re-
mains unaltered in the presence of the strong in-
teraction. As we mentioned earlier this leads to
the beautiful idea® that the value of @ may be pos-
sibly determined within electrodynamics in isola-
tion from the rest of the world. (The explicit eval-
uation of the function F m(x) seems to be becoming
more urgent than before.) It was seen that the ef-
fective strong coupling vanishes quite rapidly at
high energies (even faster than in nor-Abelian
gauge theories®). The finiteness problem of the
self-mass of the neutral pion was also discussed
without necessarily imposing additional constraints
than the well-known self-consistency ones in pure
electrodynamics. These self-consistency condi-
tions may be roughly summarized by the positivity
of the parameter B,(a) (2>8,/2>0) and the vanish-
ing of F [')(&) (the eigenvalue condition for a). The
parameter (3, has also taken the important physical
role as a measure of how fast the strong interac-
tion is damped out at high energies. We have then
discussed the extension of the above results to an
asymptotically finite photon self-energy part in
the multiloop contribution. We have seen that the
photon self-energy part containing arbitrary »
closed fermion loops is asymptotically finite at
x=a (i.e., at the eigenvalue F[(x)|, -« =0) inde-
pendently of the value of g2. The point x =a is the
assumed (infinite order) zero of the single-loop
electromagnetic-current-correlation functions in
mass zero pure electrodynamics.?

Earlier we could discuss finite quantum electro-
dynamics in isolation from other dynamics; now
we could also, formally, discuss it in a “larger”
part of the world with (neutral) pions and protons.
The photon has the remarkable property of “dis-
solving” the strong coupling at high energies.
Finally, we remark that for an arbitrary and finite
value of the renormalized (physical) strong cou-
pling (g2/4n), the unrenormalized strong coupling
vanishes in the limit of infinite cutoff (in the same
way as the unrenormalized mass of the fermion
vanishes in this limit for a fixed and finite value of
its physical mass) as a consequence of the pres-
ence of the electromagnetic interaction. Should we
take this as a hint that strong interaction is elec-
tromagnetic in origin?

Note added in proof. That the restriction 2>§B0
>1 is not necessarily ruled out, in our study in
paper I, may be formally seen from a recent work
of S. Weinberg [ Phys. Rev. D 8, 3497 (1973)].
Accordingly the condition (iii) stated after Eq. (9)
of the present article is not excluded.

The author wishes to thank the Dublin Institute
for Advanced Studies and Professor
L. O’Raifeartaigh for the kind hospitality.
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APPENDIX

We summarize the study of the stability of the
eigenvalue condition F [')(x) | = =0 in the present
theory in the single-fermion-loop context. Instead
of considering three scale (mass) parameters m,
i1, and X as in Ref. 1 for the proton, pion, and
photon, we may consider only one, say m, and in-
troduce dimensionless and fixed parameters
a=(p?/m?) and b =(22/m?). Accordingly, we may
write for the inverse (free) pion and photon propa-
gators (g% +am ?) and (¢% +bm?), respectively.
The Callan-Symanzik scaling equation, in the sin-
gle-fermion-loop contribution, for aﬂgﬂ(qz) is
given by

[m(a/em)+g?B(3/0g)) an(g?)=p™) for g%~ o,

(A1)
where
—B=(2,/ZsF[m(8/om)+o28(5 /0g*))(Zs/ Z,
(A2)
and
pM=[(1/ZXm(2/om)+g?8(5/2g%)) 2,] V).
(A3)

We have seen in Ref. 1 that all the expansion coef-
ficients in

B=—Bo+Big+: -,
(a4)

p[l]=_2aF[1](a)+p1g3+...

(which are treated to all orders in o) are finite.
The self-consistency of the finiteness of the self-
mass of the fermion in pure electrodynamics
(which we assume) requires that 8,(@)>0. This is
because the object (m,Z,/Z,) in pure electrody-
namics is finite® (where m, is the unrenormalized
mass of the fermion), and from the gauge invari-
ance’ of (Z,/Z,) we easily see, for example, from
Ref. 2 that B,(a)/2=58(a), where? 6(a)=3(a/2m)

+3(a/2m) +- - - [with the self-consistent range’
for 5(x):0<d(a)<2]. Assuming an expansion of
the form

B = g (»5)

we then immediately obtain the following differen-
tial equations:

m (3 /am )(m [M), = =20 F M(a), (a6)
and for n=>1

[(m /n)(@/6m ) = By(a))(an V),
+ (1= /)8, @n i), =0y /n). (A7)

The solution to the above equations is elementary
and is given by

aﬂ.gl](qZ) ~ C[l]+aF[1](a)ln(q2/m2)

22>

+0((m?/q?)Bo(@/z), (A8)

and hence the eigenvalue condition F [‘](a)=0 re-
mains unaltered in the presence of the strong in-
teraction. The effective strong coupling is clearly
given by g2(m?2/q?)?’? and vanishes at high ener-
gies. When we naively expand the correction
(m?/q?)®/% in (A8) in powers of B, we generate

not only a single power of In(g%/m?), which modi-
fies the eigenvalue condition, but arbitrary powers
of the latter as well. Accordingly, one should be
very careful when making contact with perturbation
theory results. Questions of this sort originated
the investigation carried out in this work. The
limit b - 0 exists'® in the gauge-invariant object
Z4. Finally, we remind the reader of the simple
fact that n}‘], by definition, contains one over-all
closed fermion loop. Accordingly, ﬂc[l] does not
contain pion-pion, pion-photon, photon-photon
scattering graphs and has no pion and photon self-
energy parts as well.

1E. B. Manoukian, preceding paper, Phys. Rev. D 10,
1883 (1974).

’S. L. Adler, Phys. Rev. D 5, 3021 (1972); 7, 1948(E)
(1973).

M. Baker and K. Johnson, Phys. Rev. D 3, 2541 (1971);
K. Johnson and M. Baker, ibid. 8, 1110 (1973).

‘C. G. Callan, Phys. Rev. D 2, 1541 (1970); K. Symanzik,

Commun. Math. Phys. 18, 227 (1970).

’D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973); H. D. Politzer, ibid. 30, 1346 (1973); S. Cole-
man and D. J. Gross, ibid. 31, 851 (1973).

8Such an attitude has been taken in spin-0 electrody-
namics (since there is no additional damping term
[~ (A%)~Bo/D] multiplying the original quadratic diver-



10 STABILITY OF THE EIGENVALUE CONDITION FOR... . II 1901

gence as in here) in the work of M. P. Fry [Phys. Rev. 8. Weinberg, Phys. Rev. 118, 838 (1960).

D 7, 423 (1973)]. %, L. Adler and W. A. Bardeen, Phys. Rev. 182, 1517
K. Johnson, M. Baker, and R. Willey, Phys. Rev. 136, (1969).

B1111 (1964); M. Baker and K. Johnson, Phys. Rev. 10N. Nakanishi, Prog. Theor. Phys. 19, 159 (1959).

D 3, 2516 (1971).



