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The short-distance behavior of quantum electrodynamics in the presence of neutral-meson theory with

pseudoscalar-pseudoscalar coupling is studied without closed fermion loops. It is then shown that in the
single-closed-fermion-loop contribution to the renormalized photon self-energy part the
Adler-Baker-Johnson eigenvalue condition for the fine-structure constant a remains unaltered. The
effective strong coupling vanishes at very high energies and is simply expressed in terms of well-known

parameters. An alternative type of solution to the above problem is also discussed (in an appendix}
which, however, is not physically and technically very attractive for various mentioned reasons.

I. INTRODUCTION

The short-distance behavior of quantum electro-
dynamics in the presence of neutral-meson theory
with pseudoscalar-pseudoscalar (ps-ps) coupling
is studied without closed fermion loops. The scal-
ing equations for the proton propagator and the
strong vertex are obtained and solved at short dis-
tances. It is then shown that in the single-closed-
fermion-loop contribution mc~' to the renormalized
photon self-energy part the Adler-Baker- Johnson
eigenvalue condition" for the (renormalized) fine-
structure constant' a, Il ~'~(a) = 0, remains unal-
tered This m. eans that a possible zero of F i"(x)
does not "move" in the presence of the strong cou-
pling. By definition, the object m,

' contains one
over-all closed fermion loop. Accordingly, m

~'~

does not contain pion-pion, pion-photon, photon-
photon scattering graphs, nor does it contain pion
and photon self-energy parts. As a by-product of
the work it is shown that the effective strong cou-
pling vanishes at very high energies. This effec-
tive strong coupling is expressed in terms of well-
known parameters.

The technique used here is in the spirit of
Hefs. 1 and 3 which make consistent use of the
Callan-Symanzik scaling equations. ' The method
we assume to study these scaling equations is to
sum up first in the electromagnetic coupling (to
all orders), study the property of the scaling
equations, and then finally sum up over the strong
coupling as well. (This permits us to treat the
derivative with respect to the strong coupling, ap-
pearing in the Callan-Symanzik scaling equations,
in an elementary fashion. ) Another type of solution
to the above problem is clearly discussed in Ap-
pendix B, which is neither physically nor techni-
cally very attractive for various mentioned rea-

sons. The single-fermion-loop contribution to the
pion self-energy part and the implication of the
present results on the finiteness problem of the
full theory will be discussed in paper II.

The paper is organized as follows: In Sec. II we
give a quick derivation of Schwinger-Dyson inte-
gral equations without closed fermion loops and
discuss their renormalizability. In Sec. III the
various gauge functions which make the respective
renormalization constants in a perturbative expan-
sion finite are calculated. The Callan-Symanzik
scaling equations for the proton propagator and
various vertex functions are studied in Sec. IV.
The stability of the eigenvalue condition for n is
demonstrated in Sec. V. Section VI deals with a
brief conclusion. In Appendix A the gauge trans-
formation of the multiplicative renormalization
constants is discussed. The alternative type of
solution mentioned above is discussed in Appendix
B. Our metric is g„„= diag[-1, 1, 1, 1], (y„, y„)
= -2g„„, with y„ fy, , iy, being Hermitian and(y„, y,)
=0, y5 =-1. As a preliminary study of the present
dynamics, we have also carried out an analysis
(essentially oriented towards the ghost problem) in

the spirit of the leading logarithms of perturbation
theory (unpublished) which was a useful guide in

leading to the present work. In this connection see
also Ref. 5.

II. BASIC INTEGRAL EQUATIONS AND

RKNORMALIZATION

To derive the integral equations for the vertices,
for example, and for other Green's functions as
well, one may add to the initial (interaction) La-
grangian density g,4y,4P+e,@y„4'A", where g„e,
denote the respective unrenormalized strong and
electromagnetic coupling constants, source terms
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5Z(x) = @(x)q(x) + j(x)e(x)

+J,(x)P(x) +4 „(x)A"(x),

where q, g, J, and J„are classical sources with

the usual properties. ' %e will be interested in

the case when these sources are all set equal to
zero. The Schwinger equation for the proton prop-
agator S(x, y),

-is(x, y)

JII'

+

FIG. 1. Diagrammatic expansion of the proton self-
energy par t in terms of exact propagators. The dashed,
solid, and wavy lines denote pions, protons, and photons,
respectively. The external sources have all been set
equal to zero.

= (-i) (-i) (Oout( 0 in) (Gout
~
0 in), 5I', (xI x'; t')-=—

( ( )&
s '(x, x'),

is easily obtained by the well-known procedure by
the use of Schwinge."'s action (dynamical, vari-
ational, etc. ) principle' to be (when q and r) are
set equal to zero}

+mo-&r, (-i)
5&

+(A'(x)) S(x, y)

F(I(x x $) ( (I( ))
S (x x )

Using the fact that Z is a functional of S and D~ '
we easily obtain (in symbolic notation)

z = ( 5z/-5s)s( 5S -'/g, -5( y) )s

=(-i) ln((Gout ~0 in)).x

The object (Oout~Oin) denotes the vacuum-to-vac-
uum transition amplitude in the presence of the ex-
ternal sources. In a matrixlike notation for the
inverse proton propagator we have

.-I g(J')) "&,

with

and

EC'Z=-iygD S
( ~)s ',

-iD'~ =( i)(5/5J&-)(-i)(5/LT&. ) ln((Gout(Oin)).

=5(x-y), (3)

where we have introduced a convenient "five-di-
mensional*' notation y &

=- (e,y„,g,y, ), A ~ = (A ", Q);
m, denotes the unrenormalized inass of the proton
and

(0 out [A'(x) (0 in)
(0 out ( 0 in)

+ -5Z 5D D -5D-' g, g y

where the notation D-=D'~ has been used for con-
venience. Clearly, the second term can be repre-
sented by two pieces joined exactly by two 8 lines
as shown in Fig. 2 and hence gives rise to a closed
fermion-loop contribution which by definition of the

present work we omit. Repeating the same analysis
for I'„we easily see that in the absence of closed
fermion looPs the strong and the electromagnetic
vertices satisfy the same integral equation (this
is not true otherwise). In longhand we have (in
the momentum representation)

xs(p', )I', (P'„p' }S(p'), (ll}
where y& =(y„y„), etc. ; p, = peak /2, p,'=p' +k/2,
and K-=-5Z/5S. All the sources are now set equal
to zero. The diagrams contributing to K are easily
obtained from the dependence of Z on S (see, for
example, Fig. I) in Eq. (6}. By the definition of

By a straightforward iteration' in the parentheses
on the right-hand side of Eq. (5), we easily gener-
ate the set of diagrams contributing to Z, for ex-
ample, as shown in Fig. 1 in the absence of exter-
nal sources. All the lines in this figure denote
exact proton (S), pion (D, =- D»), and photon (D~
=—D„„)propagators

The strong and electromagnetic vertices are in
turn defined by

FIG. 2. A contribution to the strong vertex I 5 integral
equation obtained by the functional differentiation of a
D propagator [defined in Eq. (7)] arith respect to (A).
The zig-zag line (a D line) denotes, quite generally, a
pion or a photon line m'ith the external sources set equal
to zero. This diagram clearly shows a closed fermion
loop contribution to I'5 ~
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the present work, closed fermion loops are to be
omitted from K and from the over-all integral ex-
pression in (11). The kernel K does not also con-
tain an intermediate state mith Only two proton
lines cut vertically. We should emphasize that Eq.
(11) is correct only in the absence of closed fer-
mion loops. We could have also added to M in Eq.
(1), for example, a term

z, (x)y, (x)+ N(x)e(x)y, (x)+s,[ 4,],
where P, is a scalar field with the free Lagrangian
density 2, (this may be also done in many other
different ways) to obtain in the limit J,—0 and A- 0 an integral equation for the scalar vertex de-
fined by

I;(x, x'; $)=— lim —,„8 '(x, x') . (12)
&,-0 ~ ~6 4.(()&

Clearly, the integral equation for I;(p, p') is again
identical to the one in Eq. (11}(in the absence of
closed fermion loops). Therefore the index $ in
Eq. (11) now corresponds to (s, 5, g), etc.

We introduce vertex- function renormalization
constants Z„Z„Z, and rewrite the renormalized
version of Eq. (11)as, for example,

F~ = Z~y5+ KSI 55,

with I', =Z, I;, 3=S/Z„ f'„=Z,I'„(Z, =Z, because
of the Ward identity), g' = g,'(Z, /Z, )', and I; = Z, I',
(recall also Z, =1, here). In Eq. (13) the inverse
of the photon and the pion propagators is given by
D„'=q'+A.' and D, '=q'+p, ', where A. is a ficti-
tious nonzero mass for the photon. The renormal-
izability of (13) is easily given by an induction
proof. ' One may mrite

X = e'Zo+g'Z (14)

to emphasize how the lowest-order term starts in
each of the parts in (14). I et us scale the cou-
plings e' g'- ~e' ~g' and make an expansion in
powers of ~ and finally set the latter parameter
equal to unity. Let Z5~" ~ denote the contribution
of Z, to lowest order in e' and zeroth order in g'.
An elementary computation (in the Feynman gauge)
shows that I'~"~ is u1traviolet-cutoff-independent
with Z6r" ~- I - (e'/4v') ln(A'/m') (where A' is an
ultraviolet cutoff introduced in some covariant
manner). Similarly„F ~i

"i is A'-independent with
Zsi'0~ -1+(g'/16v') In(A'/m'). From this we con-
clude that I', ' is A'-independent to first order in
x with

Z i ' - I + [(g '/16 v ) - (e /4v )] ln(A /m ) .
A simultaneous study of I'~" and I'„"~ shows
that 1 ~'~ is A'-independent with

Z &» 1 [(g&/32v ~) + (e2/16v3)] In(A~/m2)

(in the Feynman gauge). Now we suppose that for
some n, I 5~"~, I' ~" are A'- independent. We easily
see then from Eqs. (13) and (14) that the cutoff in-
dependence of I"5[""] I' [„""1is also true from the
very definition of Z~"" and Z2~""~ as over-all
subtraction constants. The renormalizability of
(13) and (14) then follows for any n. A similar
analysis may be also carried out for the more ele-
mentary object I;. The above renormalizability
discussion mas given only for completeness.

In Appendix A the gauge transformation law for
the renormalization constants Z„Z„Z, is given.
It is explicitly shown there (the expected results)
that the objects (Z,/Z, ), (Z, /Z, ), and (Z, /Z, ) are
all gauge -in variant.

p (q ) 2 ( 2 g2) t

mhere the parameter A. is the fictitious nonzero
mass for the photon introduced to avoid difficulties
associated mith the infrared-divergence problem.
It is quite clear from the above-mentioned inte-
gral equations that one may develop a perturba-
tion expansion of I'„ for example, in g' and e'
and simultaneously make an expansion of the
gauge function in the form

G(q')= Z (g') (e')"G...(q')
m+n «1

(16}

A more convenient perturbative scheme is to scale
the couplings g', e'- xg', ~e' and make an expan-
sion in ~:

G(q') = g (~)'Gi(q'),
l«i

and finally set ~ = I as done in Sec. II. In this sec-
tion we wish to calculate such a gauge function
G(q'} which makes Z„ for example, ultraviolet-
cutoff-independent order by order in perturbation
theory. This me shall carry out, here only, in the
so-called intermediate renormalization' by nor-
malizing I', (p, p) at p =0 (rather than on the mass
shell) so as to be able to work in the Euclidean re-
gion. We shall see that the gauge functions G(q')
should then have logarithmic growth as q'- ~.
This mill be also explicitly seen in the next section,
in an elementary fashion, when discussing the Cal-
lan-Symanzik scaling equations. In particular me

III. CALCULATION OF THE GAUGE FUNCTIONS

We note that the photon propagator appears al-
mays in the combination e D„„ in the various inte-
gral equations for the vertices and the propagators.
We may, quite generally, write

2 gjf gp 1
e Dpu(q) =e gpv 2 ~ a ~2)+
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shall see that the sum in (16) reduces to a sum of
terms each having a u eel;defined limit as q'- ~.

From Egs. (13) and (14) we may rewrite the in-
tegral equation for I", in the form

F5 = y~ + e KOSI'58 + g E,SI'5S,

where the "tilde" as usual is to denote renormal-
ized objects. The K's, for example, are expanded
in g' rather than in g,'. %e now consider the zero
momentum transfer of (18}[see also Eq. (11)]. In
any gauge Weinberg's theorem says that (in space-
like direction) in perturbation theory

1
S(P) ~ —x (powers of InP')

i} 2~ oo PP

+ —x (powers of 1nP')p'

K, ,(p, p; p + q, p+ q) ~ —,x (powers of lnq '),

G,(q') =g' —3e'. (20)

Now we proceed by induction' and assume that
there exists a gauge function G„=(G„„.. . , G, „}
which makes (I/Z, )i"i ultraviolet-cutoff-indepen-
dent to show that we can always find a gauge func-
tion G„„to make (I/Z, }""also finite. In this case
the first piece in Eg. (18) has from the kernel Ka
a contribution of the form

(~q) .„G .}r"q~q.y'
(2w)' "" q'(q'+A. ') (yq+m) ' (yq+ m)

(21)

to (1/Z, ) "'' coming from the diagram in Fig. 3

in K,. By inspection we see that the remaining
terms coming from K, and K, can depend only on
the gauge functions [G„„G„,„.. . , Go „}which

have supposedly been determined before. Let
e'(Ko)i" denote e'(K, )~"i subtracted from it the
term

i} = fixed

where we strongly emphasize that none of the
masses have been set equal to zero above. Now

let us consider the lowest-order term in g',
Fsi" (p, P), and set p = 0 (intermediate renormal-
ization'). A straightforward analysis shows that
(I/Z, )~"i is A'-cutoff-independent in the gauge
G, ,(q') =1. [It should already be clear at this
stage that an orthodox perturbation expansion of
F, (1/Z, ) and G(q') may be carried out in a
straightforward manner. ] Similarly, (I/Z, )i'" is
finite in the gauge G, ,(q') =-3. In the notation of
(17) we then conclude that (I/Z, )~'~ is finite in the
gauge G, (q'),

where again we emphasize that no masses have
been set equal to zero above. From %einberg's
theorem' we see then that

G„„(q') ~ C„'„+powers of lnq',
q 2~ 00

(23)

where the right-hand side is determined in terms
of the gauge functions (G„„.. . , G, „}. The con-
stant C„'„may depend on g', e', and possibly on
mass ratios in the theory. Since n is arbitrary,
our result is true for all n. From the work of the
next section we shall see that Z, is finite in the
same gauge as Z, and since (Z, /Z, ) is gauge-in-
variant (see Appendix A), it follows that Z, and

Z, are equal (up to a finite multiplicative constant)
in any gauge.

A similar analysis as the one above may be also
carried out for a finite Z, and we may find a cor-
responding gauge function G(q'} order by order in

This gauge function does not necessarily coin-
cide with the corresponding one for a finite Z, .
Needless to say that with a gauge function having
a property as in (23) (in perturbation theory), the
theory (in the present context) is still renormal-
izable in the usual sense. For example, in pure
electrodynamics the renormalized photon self-en-
ergy part has a behavior as in (23) in perturbation
theory and the theory is renormalizable. The as-
ymptotic behavior of S(P) quoted in (19) is also
true with a behavior of G of the type in (23) by def-
inition of renormalizability. The cutoff indepen-
dence of Z, (for example), of course, is not guar-
anteed unless the gauge functions G„are suitably
chosen as discussed above. The structure of the
gauge functions discussed above will be clarified
even further from the work of the next section,
where the internal consistency of our treatment

FIG. 3. The typical diagram contributing to the kernel
ego in the (K)"+ order coming from the gauge term of the
(free) photon propagator (denoted with the crossed wavy
line) given by -i(K)"+ G„+~(q )[q&q„/q (q +& )].

-f(~)""G.„(q'}[~"q„q.~" /q'(q'+ &')]

in Eq. (21). Now the S ~"~'s have been all computed
in the gauge G„and have the behavior in Eg. (19)
in perturbation theory. Clearly then the gauge
function G„„(q') is given by an arbitrary function
which asymptotically behaves like (with the right-
hand side formally averaged over angles first)

G„„(q') [f(e'K,'SS)„„+~(g'K,SS)„„]q',
q ~00
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will be also shown.
It should be quite clear that the role the gauge

term has taken above is a well-defined one even in
the absence of electrodynamics. For example, in
pure ps-ps dynamics, the Lagrangian density re-
mains invariant if we redefine the Fermi field
q'(x) - 4 „(x)= 4 (x}exp[ -ig(x)] (thus par ametrizing
it by ){)and simultaneously introduce an additional
(trivial) coupling of the form 4„y„(S"){/i)4„,where
X is arbitrary and may be chosen at will. %e may
then quite arbitrarily introduce a function E(x —x )
=i5{(}{(x)X(x')),). By following such a procedure (to
our knowledge, unconventional) one does not change
the value of quantities, such as cross sections and
self-masses (and the pion wave-function renormal-
ization constant) since y does not "participate" in
the dynamics. Z2 and Z„however, will depend on
F with the Fermi field parametrized by I'. The
great value of such a trick is that the function E
may be arbitrarily chosen at will (such as in mak-
ing Z„ for example, finite as discussed above for
a specific choice of E) to facilitate the computation
of physical quantities (with an underlying positive-
definite metric) which are independent of E The.
"classical" Green's function G(x, x'; 4'"') in the
presence of an external potential 4'"', appearing
in {0out~0in) (which in turn becomes parametrized
by E), will be simply multiplied by exp(i[E(x- x )
-E(0)]) as usual (see Appendix A).

&.(q') = (s*'~*) c*'&*)'

(1/z, )[L]z, =-&„
(I/m, )[ L]m, = 1+5,

(z,/z, )'[ L]( z/ z)'= —p,

and

I'(P, P) = Z. .S'(P)+ ——»-S '(P),
8p, p. 8A,

(1/G(q'))[ L] G(q') =E(q'),

(25)

e2 D (q) e2 q9 q& 1 A
q2 q2+X2 q'+A'

2) qpq„ 1 A
q' (q'+&')(q'+&') '

where A. is the fictitious mass for the photon. %e
make independent variations in the theory with re-
spect to the proton (renormalized) mass m, the
pion mass (squared) p', and the photon mass
(squared) X', while keeping the unrenormalized
(ps) coupling (squared) g,' (and e'), and the ultra-
violet cutoff A fixed. " The gauge function G(q')
generally depends on g2, e' as well as on the
masses m, p, X. (See also remark made at the
end of Sec. 111.)

Defining

IV. CALLAN - SYMANZIK SCALING EQUATIONS

d, d 2 d[L]= m +p —

~ +X (26)

To derive the Callan-Symanzik scaling equations
for the various propagators of the theory we intro-
duce an ultraviolet cutoff in the free pion and pho-
ton propagators as follows:

we easily obtain the scaling equation for the renor-
malized proton propagator to be in the usual man-
ner, by applying the operator [ L] to S '(p) and re-
arranging terms,

8 8 8 2
—

2m —+&' — ~2'+--I g+'P 2 S '(p)= y2+ (dq-)E(q')G(q') — — 2»z, S '(p)
8tpl 8 p. 8A, 8g 5G(q')

+ [1+5](m,Z, /Z, )1;(p,p}+p'I'(p, p), (27)

where the vertex function I;(p, p) has been intro-
duced in Sec. II. Clearly, I"(p, p) is a renormal-
ized cutoff-independent quantity. It vanishes like
(1jp) &[powers of ln(p')] as p'- ~ in perturbation
theory9 and it may be neglected in this limit. Now
we rather strongly emphasize that because of the
explicit functional differentiation appear ing above
with respect to G(q'), the vertices I; and I [and
also throughout, for example, Kqs. (SI) and (32)]
are defined in terms of undifferentiated gauge
functions. From the definition of [ L] in (26) and
of y, in (25) we easily see that the first square
bracket on the right-hand side of Eq. (27) is given
by

1 8 2 8 2 8 2 8

2

(28)

and the functional derivative 'with respect to G(q')
[in (27}]cancels out as expected since the latter is
"already" renormalized [recall also Z, =1 with no
closed fermion loops; in this respect compare al-
so Eqs. (11)and (18) which remind us that the ver-
tex functions are multiplicatively renormalized].
The gauge function may be then kept fixed. Now
we assume an expansion of the parameters P and
a -=[1+5](m,z, /Z, ) in the form
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p ~p +p g + ~ ~ ~2

a =a, +a,g'+ ~ ~ ~

(29)

(3o)

to show that all P„P„.. . ; a„a„.. . (which are

exactly treated in the electromagnetic coupling)
are ultraviolet-cutoff-independent. To do this we
derive also the scaling equation for the object
S(p}I',(p, p), which is given by

8 8 8 8
m —+p, +x 2 +g'p ~ R(p)r, (p, p) =-(0/2)s(p)rs(p P}

Bp, BA. Bg
—[1 +6](m Z /Z, )S(P)r,(P, P)S(P)r, (P, P}

+[1+6](m,Z, /Z, )S(p)r, .(p, p) + i 'F'(P, P),

where

and (32)

Z, a X' e
F'(P, P)=- z', „.+ —„. ,„. s(p)r. (p, p).

Z2 -8

f}.( )/2=6( ) (33)

and is cutoff-independent, where' (a-=e'/4v), 6(a}
= 3(a/2v) + ( )(a/2v)'+ ~ ~ [with the self-consistent
range' for 6(a): 0& 6(a) & 2—it is understood here
that contributions from closed fermion loops are
to be omitted]. We now proceed to discuss the
problem of the cutoff independence of all the coef-

The pulling out of the coefficients on the right-hand
side of Eq. (31) to write the various expressions in
terms of renormalized quantities is straightfor-
mard and easily obtained by drawing a fem dia-
grams contributing to them, for example, to
I', ,(p, p), and by making the necessary multipli-
cative renormalizations. %e shall see that the
self-consistency condition for the finiteness of the
self-mass in pure electrodynamics (which we as-
sume} requires that the parameter P, & 0 in Eq.
(29). In pure electrodynamics [m, (Z, /Z, )] is finite
(Ref. 10), and from the gauge invariance of (Z,/Z, )
we easily see, for example, from Hef. 1 that

ficients in (29) and (30). We first keep the ultra-
violet cutoff fixed. The objects (Z, /Z, }, (Z, /Z, )
(see Appendix A) and hence p [see Eq. (AB)], m,
(Ref. 3), and 6 [see Eq. (49)) are all gauge-invari-
ant. To prove the cutoff independence of the pa-
rameters in (29) and (30) we may then work in any
gauge we wish. Accordingly, me may work in the
gauge in which Z, is A-independent (the analysis
carried out in Sec. III shoms that this can be
achieved. This mill in turn be shown to be self-
consistent when we solve the scaling equations in
this section). Also to discuss the cutoff indepen-
dence of the parameters in (29) and (30) we do not
have to consider the large-p behavior of Eqs. (27)
and (31) and we may then work in a nonasymptotie
region for such a proof, %e rely on the fact that
all the quantities with a tilde (renormalized) in
Eqs. (27}and (31) are cutoff-independent and we
assume that this is also the case when we sum up
to all orders in the electromagnetic region (still
working in a nonasymptotic region). If the coeffi-
cients in (29) and (30), which are treated exactly
in the electromagnetic coupling from the beginning,
are cutoff-independent, we may take the limit A'
—~ in (27) and (31) and drop all possible terms
which vanish in this limit (and otherwise keep
terms which do not vanish in this limit). Using the
expansions in (29) and (30) and working in a non-
asymptotic region in p, as mentioned above, we
obtain for (27) expansions of the form

[I.'S '],-[ iLn]z,8, '=a, (r, ), +(y.'F)„
[(I.' —p, )(S '),] —[(L'- p, )(lnz, ),1(S '), —[L'(lnZ, ),](S '), =a,(r, ), +a,(f', ), +(p, 'F), ,

where
8 2 8 2 8L'=—m —+P. 2 +A,

Bm 8 p.
2 BA.2

Similarly, we obtain for (31) an expansion in the form

[ L' —(P,/2)](Si, ).= -a,(Si,Sr, —Si, ,), +(q r')„
[I.' —(3P /2)](SI', ), =-(P,/2)(SF ), -a, (S1;SI',—SF, ,), —a,(SI;SF,—SI', ,), +(p, f"}, .

(35)
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From the first equation in (34) we see that a, is
(A} cutoff-independent and the limit A'- ~ exists
as is well known. From the second equation in (34)
we also obtain that a, is cutoff-independent since
Po is so. In turn we see from the second eq,uation
in (36) that P, is also cutoff-independent since P„
a„and a, are so. The proof of the cutoff inde-
pendence of the coefficients in (29) and (30) now

easily follows by an elementary induction proof.
This essentially follows since to any order n in
g', Eq. (34) depends only on (P„„.. . , P„'
a„, . . . , a,) (i.e., not P„) and Eq. (36) depends on

(P„, . . . , P„' a„, . . . , a,). Now that we have estab-
lished the cutoff independence of the coefficients
(which are treated exactly in the electromagnetic
coupling) of the gauge-invariant objects p and a in
(29) and (30), we may go back to Eq. (27), use Eq.
(28), and infer that y, is cutoff ind-ependent in any

gauge. We may take the orthodox attitude and
choose a gauge such that y, =0 and hence havea, e, a

m —+p', +x' ——,+g'p, Z, =0, (3'I)
@m

or we may make an expansion of the form
P

r, =y+ rig'+
and put a restriction on y, for example, by fixing
the nonvanishing part of the gauge function when
g'- 0 Isee Sec. III and Eq. (16)]. In the Feynman
gauge, for example, '

y =-(a/2v}+ ~ and in the
generalized Landau gauge' y =0.

Upon writing

and making an elementary use of Weinberg's theo-
rem' to drop terms in the renormalized objects
(with a tilde} which vanish in perturbation theory
in the limit of large p and keep terms which do
not vanish in the usual manner, we obtain the seal-
ing equations" [see Eq. (27)J

8 2 8 2 8 2 8
m —+g', +X' —,+ g'p, +y, F(p') ~ 0

C)m QP2 Q)P Bg2 2 2

(40)

and

8 2 8 2 8 2 8
m —+p. +A. +g P

BPPl 8 p. BA, Bg

where J'(P') satisfies the equation'

8 g 8 g C) o 8
ypg
—+p~ 2+%~ 2 +g~p
BPE 8 p. BA. Bg

+y, mG(P') ~ aJ(P'),
9 2-+ oo

+y, 5J(u') -—o
92~ Oo

(41)

(42)

(it follows also that 5 is cutoff-independent). Equations (40) and (42) have the same structure. We first
solve Eq. {40). We use the expansions in (29) and (38) to obtain

8 2 8 2 8 i

B~ BP. C)A,
m —+p +x +y —(p y2) J -00 0

and for n~ 1,

y —(P./2) ~ r (y. —5.)——+ — + — -- —p +

1~x &n

The solution to {43) is elementary and is given by (e'& 0)

(43a)

(43b)

p2 Iy- ~80/s p2 - 80/2 p2 -2(80/2)

J(&') 2 Co+Cd 2 +C2 2
92~ Oo PÃ m m

+ ~ ~ 0

J
(44)

where C„=C„(p'/m, A.'/m;g, e') for n = 1, 2, . . . . Equation (40) has a similar solution with po set equal

to zero outside the square bracket in (44). Upon substituting the solution (44) in (41) and using the defini-
tion (39) we finally obtain (e'&0)

(45)

where the coefficients f„C, (and the coefficients
of the corrections as well) have similar depen-
dence on the mass ratios and g', e' as the C„'s in
(44). The parameters y and P, in Eq. (45) are in-

frared-independent. ' From Eq. (28) we also obtain
(e' x 0)

(46)
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The result (46) is quite interesting and states that
when the theory is summed up to all orders (in the
manner discussed above), Z, is finite in the gener-
alized Landau gauge, ' i.e., for y = 0. This in turn
means that when the gauge function G(q') which
makes Z, finite (see Sec. III) is summed to all or-
ders and when the limit q'- ~ is taken, the just-
mentioned function reduces to a sum of functions
of the form inside the square bracket in Eq. (44)
(with a nontrivial dependence on g'), with each be-
ing well defined in this limit. More specifically,
G(q'} which makes Z, finite is

G(q') = -e'G, +0((m'/q')'o"),

where G~ is the generalized Landau gauge' GL,

=-(3e'/32v') + ~ ~ . We make no attempt to dis-
cuss the convergence of a sum of the form in (44)
[or (45)], even for p'» m'(g ')" o [note that C„
-0((g')" ) for n & 1, etc.]. One may of course keep
vanishing terms in G(q') for q'-~ if one wishes.
As mentioned above, for example, Z, is finite in
the gauge -e'G~ plus corrections of the form
O((m'/q ) o' ), whose coefficients may be so ad-
justed to cancel even the vanishing terms inside
the square bracket in (46) (in this connection see
also Appendix A for the gauge transformation
property of Z2), etc. Equation (37) has also a so-
lution of the form in (46) (with y- 0) for y, =0.
This is clearly expected since the effective strong
coupling g'(m'/p') 0" vanishes at high energies
[((P'()"'» m(g')" Bo] and does not contribute to
the gauge function, asymptotically, when the the-
ory is summed up to all orders as discussed
above. In this latter case the coefficient zo and
the coefficients of the terms neglected inside the
square bracket in (46} will be simply changed to
some other finite constant (s) as can be easily
checked. To obtain the expression for Z, in any
gauge, one may make use of its well-known trans-
formation law given in Appendix A. The asymptot-
ic behavior of I;(p, p) is similarly derived as for
S '(p), for example from Eq. (31), to be (e' e0)

(4 I)

[up to a possible, but finite, multiplicative factor
of the form (1+(I,'/Io)yp/p) for p —~] and for Z,
we have (e'e0)

(48}

Equation (48) states that when the theory is
summed up to all orders as discussed above and
with the generalized Landau gauge @=0, Z, is

identically equal to zero with no ultraviolet cutoff.
Z„however, is finite for y = P,/2 (again in the
summed up theory in the manner discussed above
and then the limit A'- ~ taken). An elementary
analysis shows that this corresponds to the gauge
function

G(q') = -e'[ G& —(4v'P. / e')] + G((m'/q') "")
(see also Sec. III),

[G, -(4v'P, /e')] =3+O(e').

The gauge transformation law for Z, is given in
Appendix A. %e should warn the reader that the
statements just made for Z, and Z, are based on
summed up expressions and then the limit A'- ~
is taken and note that the coefficients z„e,' [and
the coefficients of the small corrections inside
the square brackets in Eq. (46) and (48)] have non-
trivial dependence on g' as well. For example,
if we expand the corrections inside the square
bracket in Eq. (48) in powers of ti, we then have
to generate a dependence on g' in the correspond-
ing gauge function for ensuring the finiteness of
Z, as also shown in Eq. (20). So one should be
very careful when making contact with perturba-
tion theory results.

Finally we also have from (25) for m,

C} - m+gp 2
—5 —0,

~g m
(48)

with the solution (e'v0)

PPlo ~ Pl 2 uo+0

(50)

with u, having a similar dependence on the other
parameters as C„C„.. . in (44), and the self-
mass 5m—= m-m, is asymptotically finite. Need-
less to say all the various corrections occurring
inside the square brackets, for example, in Eq.
(45} cannot be necessarily kept which may be be
yond the range of validity of the accuracy of our
treatment (the main thing, of course, here is their
very interesting damping property). For example,
in the just-mentioned corrections, terms with a
sufficiently large n subscript (e.g. , coefficients of
f„.. . ,f„), say, should be omitted which may be
of the same order as various terms omitted in
perturbation theory (with vanishing properties) for
the renormalized objects (with a tilde) occurring
asymptotically, for example, in pure electrody-
namics. From Eqs. (45), (46), and (50) we may
also write the expression for the unxenonnalized
S '(p) for both p', A'-~. We may temporarily
work in a class of constant gauges independent of
the various masses. Upon taking the partial deriv-
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ative with respect to u' keeping m„go', )P (and
A') fixed and agreeing to drop terms which vanish
rapidly enough in the above-mentioned limit in un-
renormali ged perturbation theory, together with
the above-mentioned equations, we easily derive
that

(s/& u')(f olzo) = o = (&l&u')(~olzo no)

Repeating the same procedure by keeping m„g,',
u' (and A') fixed and varying X', we also obtain

(s/e x')(f, /z, ) = 0 = (s/a z')(C, /z, u, ) .
These two results then relate the exPlicit p, and ~
dependence of the just-mentioned integration con-
stants as in Bef. 3. Similarly, we obtain
(8/eu, ')(fo/zo) =0, (S/81')(fo/zo) =0 for 1,(P, P) and

Z, . Gauge transformation properties (to arbitrary
gauges) of these constants may be also derived
from Appendix A as in Bef. 3.

We should remind the reader of the very clear
but important fact that the asymptotic behavior of
the various objects given above is true only in the
presence of the electromagnetic interaction (i.e.,
e'40). Otherwise, we obtain the well-known per-
turbation expansion in pure ps-ps coupling (in the
present context with no closed fermion loops) upon
integrating the Callan-Symanzik scaling equations.
Finally, we note that due to the absence of an ana-
log to the Ward identity leading to Zy Z2 for Z,
the derivative with respect to g' appears in the
scaling equations even in the absence of closed
fermion loops. Needless to say the above scaling
equations for the various amplitudes above may be
also solved by Symanzik's original method by de-
fining an effective coupling g,« first and then in-
tegrating the various equations in the usual man-
ner. ' One then obtains identical results as above
upon expanding the exponents —multiplying the
various amplitudes written as functions of g,ff'
rather than g' —in powers of g,«'. We have pre-
ferred the above method by expanding in powers
of g' first, integrating the various equations, and
then identifying the effective strong coupling in an
elementary fashion. The final results are, of
course, the same.

V. THE STABILITY OF THE EIGENVALUE CONDITION
FOR THE FINE-STRUCTURE Of

Now we study the photon self-energy part with

no closed fermion loops with the exception, of
course, of the over-all closed loop defining the
self-energy part. Let c(z i"(q') denote the unre
normalized photon self-energy part after having
extracted the two powers of the momentum q to de-
fine the vacuum-polarization tensor. m is given[1]

by

and an elementary consideration as in the previous
section shows that the right-hand side of E(l. (53}
(for P'- ~) vanishes like

A similar analysis also holds when considering
the factor f'„(p, p) for p'-~. [The so-called over-
lap divergence problem is of no significance here
in y~'i and in the integral (51) in a summed up the-
ory with a finite Z, .] By simple power counting
we then see that (remembering the two powers of

q that are to be subtracted) at worst

1- m' 'o"x"(q') + 0 ~ ~ (55)

and hence the left-hand side of (52) vanishes as-
ymptotically and is A-cutoff-independent as we let
A -~.

Defining the single-loop contribution
P d d d

(56}

and using the definition (52) we immediately obtain
the scaling equation for the renormalized single
closed fermion-loop contribution o. m, '] to the re-
normalized photon self-energy part to be

.' ~(~*)=z(f,"',T (y"S() +e)i„((+a()s(()1,

(51)

where it is understood that turbo posters of q are to
be removed in (51). Now we rely on the gauge in-
variance of the photon self-energy part and work
in the gauge with a finite Z„ for which y, =0 [in
(28)], which is effectively nothing but the general-
ized Landau gauge with the coefficients (z„z„.. . )
in (46) simply changed to some other coefficients
as clearly discussed in the previous section. We
consider the expression [to be more precise we
multiply the integrand in E(l. (51) by a form factor
A'/(p'+A') for the moment (the limit A'- ~ will
be taken later) to render the over-all integration
in (51) meaningful]

2 ~ 2 ~
I. i] 2 [~] 2m —+ u', +~', + g'P —,v "(q') -=)t"'(q'),

BIB 8 p. 8~ ~g

(52)

and make use of (37). A typical contributing factor
in the integrand of )(

' (q') is for P'- ~

8 2 8 2 8 2 8
m —+u o+X 2 +g P 2 S(P)

&PA 9p, BA, Bg

= -S(p)[ ar, ( p, p) + u'i( p, p)] S(P), (53)



1892 EDWARD B. MANOUKIA N

where I. is the operator defined on the left-hand
side of the above equation —cf. Eqs. (ta) and (10)
in Ref. 1. When q'- we can omit the second
term on the right-hand side of Eg. (57) and imme-
diately infer that p

~'~ is A-cutoff-independent.
Asymptotically we then have

B 2 B B
m —+p' +X' + g't» aw i' (q') = pi'»

BSl B p, BA, Bg

q -~. (58}

We expand

[1» 2ag (1»(a) +p g 2+. . . (59)

to obtain the solution of (58) to be simply (e'+0)

a w,"'(q') C "»+as "'(a) ln(q'/m')
@2~00

+O((m'/q') so"), (60)

and hence the eigenvalue condition E i'»(a) =0 is
not altered, i.e., a possible zero of Ei'»(x) does
noI. "move" in the presence of the strong coupling.
The limit A, -O can be taken in the gauge-invariant
object Z, .""

Before closing this section, we wish to make a
final and important remark. If we expand the cor-
rections in Eq. (60) for w 1'»(q') (q'-~) in powers
of P„we see that we generate not only a singLe
pou er of lnq', which "modifies" Ne eigenvalue
condition, but also arbitrary powers of the tatter.
The coefficient of the single power of lnq' is easily
seen in this case to be a function of e' and g' as
well —a readily checked perturbation-theory result.
Accordingly, one should be very careful when
making contact with perturbation-theory results.
Questions of this sort originated the investigation
carried out in this work.

B
q B ~ B 2 B

m —+p', +»».', +g't», aw,"'(q')
BQg B p, BA. Bg

= p "»+aX"»(q') (»)
coming from

I (a w "')=f (a w "»)- L,(1)+[(1/Z, )f,Z, ]"» Z"'
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APPENDIX A: GAUGE TRANSFORMATIONS

We consider general gauge transformations of
the (free) photon propagator of the form"

D„„(x)-D„„(x)+S„S„M(x), (Al)

where M(x) is an arbitrary function with a cutoff
A' as defined quite generally in FA1. (24) and if, for
example, D„„(x)on the right-hand side of Eg. (A1}
denotes the propagator in the Landau gauge (with a
cutoff) then

the various scaling equations in Sec. IV in an ele-
mentary fashion by resumming back in g'. It was
also seen that the effective strong coupling at very
high energies (~p'(}'"»m(g')" o' ' is
g'(m'/p') 0 '" [rather than g' ln(p'/m')] and van-
ishes asymptotically. Clearly, a typical ~'-7r'
scattering box graph with a strong vertex in (47)
(in the generalized Landau gauge) in a skeleton ex-
pansion (in the present context) is automatically
/site. We have then shown the stability of the
eigenvalue condition E ' (a }=0 in the presence of
the strong coupling. Another type of "solution" to
the problem, in the present context, is discussed
in Appendix B which, however is neither Physically
nor technically very attractive for various men-
tioned reasons. The rule for checking the stability
of the eigenvalue condition for a in the sense dis-
cussed in Sec. V in other field theories as well is
simple. One has to check the vanishing (sufficient-
ly fast) of a corresponding expression to Z, /Z, in
pure electrodynamics [see Eqs. (46), (48), (59),
and (60)] in the limit of infinite cutoff (and not
other wise).

The single-closed-fermion-loop contribution to
the pion self-energy part and the implication of
our present results on the finiteness problem of
the full theory will be discussed in the following
paper.

VI. CONCLUSION

We have made a study of quantum electrodynam-
ics in the presence of neutral-meson theory with
ps-ps coupling at short distances without closed
fermion loops. We have expanded the Callan-
Symanzik scaling function in powers of g' (and ex-
actly treated in the electromagnetic coupling),
proved their cutoff independence, and then solved

(A2)

and converges for G(k') increasing with arbitrary
powers of ink' as k'- ~ with a fixed A'. We may
arbitrarily choose G(k') to be finite for»t'- 0 such
that M(x)-0 as x'-~. We note that for $=—(5, s),
we have the corresponding transformation
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((q(w)y, (w)y(y)},) = -i, ((q'(x)q'(y)), )

- exp(is'[M(w-y) —M(0)l} ((q (~)y, (w}q (y)),}, (A3)

F, (qw)- exp[ie'M(0)]F&(q'). (A6)

Therefore irrespective at which normalization
point of F, (q'), (1/Z, ), and (1/Z, ) are defined, the
transformation law of the latter quantities is al-
ways the same, i.e.,

since"

((@(w)q (y)),&

- exp(ie'[M(x —y) —M(0)P ((e(x}4(y)),}.
(A4)

From the very definition of I', (P, P') and I;(P, P')
we easily see that when we set P and P' on the mass
shell with $=(5, s), y&=(y~, 1)

a(p)1', (p, p')a(p') =[a(p)y&a(p')]&~(q'),

q-=p- p' (A5)

where F&(q') is some scalar function which has the
transformation property'2

APPENDIX B: ALTERNATIVE TYPE OF SOLUTION

In this appendix we wish to point out (with no rig-
or) a different type of solution to the problem (in
the present context) which is, however, far less
interesting physically and technically more ob-
scure than the one given in the bulk of the present
paper. This solution corresponds to the special
case when the function P defined in Eq. (25) [see
also Eq. (A8)], which depends on g' and e',
vanishes [note that this is a gauge-independent
statement —see Eq. (A8} and Appendix A] for
some special dependence of its arguments, for
example. From Eq. (A7) we immediately see
in this case that both Z, and Z, become finite in
the same gauge which is clearly not in the spirit
of (at least) the low-order perturbation theory re-
sults (see Secs. II and III). Accordingly both

I'„(p,p) and I'5(p, p) are finite in the same gauge
and the effective strong coupling (here} formally
defined by

1 1—- —exp[ ie'M (0)], (A7}
lim (Tr[g ypy, S(p)1',(p, p)])'

p~~ oo

where now we may take q
-=(2, 5, s). Clearly the

objects (Z, /Z, ), (Z, /Z, ), (Z, /Z, ) are all gauge-
invariant. One may define (1/Z, ), (1/Z, ) at zero
momentum transfer, for example (or at some oth-
er convenient point). The definition of the renor-
malized (ps) coupling depends on the normalization
point of F,(q') for defining (1/Z, ). The quantity
(1/Z, ) (Z, =Z, ) is, of course, defined at zero mo-
mentum transfer. For discussing renor malization
problems it is more convenient to make such nor-
malizations at zero momentum transfer as was
done in Sec. II. In the gauge transformation laws
given above it is assumed that the fictitious non-
zero mass A. for the photon is kept fixed. %e
should emphasize that the class of gauge functions
G(k') corresponding to the various renormalization
constants (in which they are separately finite) are
regular in the sense that they sum up, as discussed
in Sec. IV, to a sum of (regular) functions which
all have a well-defined limit as k'- ~. (We do not
attempt to discuss convergence problems of such
sums even in the asymptotic region. )

For reference we, here, write the scaling equa, -
tion for the object (Z,/Z, )':

8 2 8 2 8 2 8 Zs
m —+p, 2 +A.' --2 +g p ~ +p —=0.

8~ 8 p. 8A. 8g Z&

(A8}

does not vanish at all short distances and the
strong interaction never gets damped out, however
high the energies may be. The latter is not physi-
cally very interesting. By simple power counting,
one sees that a w -w scattering box graph (in the
present context) is also divergent. Finally by
working in the gauge which makes Z, finite, we al-
so see that aw ~'~(q') grows with a single power of
ln(q') (for q'-~) [see (57)] whose coefficient may
now depend on both g' and e' and is not the Adler-
Baker-Johnson funct:ion any more. %e now sum-
marize the consequences of this alternative type
of solution in the present context:

(i) Z, and Z, are finite in the same gauge and it
is not in the spirit of the low-order perturbation-
theory results as seen in Secs. II and III.

(ii) The effective strong coupling does not damp
out at any energies, however high they may be, and
is not physically very attractive.

(iii) A single-closed fermion loop such as in a
w'-w' scattering box graph is divergent [compare
this with the situation occurring in the solution
presented in the bulk of the present paper dis-
cussed in Sec. VI; this is also true for Z, (=-Z, ),
the wave-amplitude renormalization constant for
the pion, without additional restrictions].

(iv) Extension of the analysis to the full theory
due to the above reasons may become quite techni-
caQy obscure without more, possibly severe, re-
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strictions and additional counterterms.
(v) The Adler-Baker-Johnson function changes

to some other function which now depends on the
strong coupling as mell. This nem function is
again the coefficient of a term with a single power
of ln(q') (for q'-~) in nv, "(q'). (This together
with the assumption of the vanishing of P does not
necessarily overdetermine the parameters of the
theory }.The whole attractive idea of determining

a swithin pure electrodynamics, ' according to the
present dynamics with such an alternative solution,
may be destroyed.

Based on the above (i)-(v) points, the author
feels that the solution given in the bulk of the pres-
ent paper is far more physically and technically
attractive than the alternative type of solution pre-
sented in this appendix.
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In the preceding paper, we have made-a preliminary study of the short-distance behavior of quantum
electrodynamics in the presence of neutral-meson theory with pseudoscalar-pseudoscalar coupling. We
have learned in particular, by an elementary summation procedure, that in the single-fermion-loop

contribution to the renormalized photon self-energy part, the Adler-Baker-Johnson eigenvalue condition
for the fine-structure constant a, F~'~{x)I„=0, remains unaltered. We extend our results, in the

single-fermion-loop context, to the pion self-energy part. As a consequence of the vanishing of the

effective strong coupling at high energies, n -m scattering graphs are finite and no (It' counterterm is

required. %'e finally infer from the above work that the photon self-energy part in the multiloop

contribution is asymptotically finite at the eigenvalue [F~"{xg,= 0] independently of the value of the

strong couphng. The point x = a is the assumed {infinite order) zero of the single-loop

electromagnetic-current-correlation functions in mass-zero pure electrodynamics.

In the preceding paper' we have studied the
short-distance behavior of quantum electrodynam-
ics in the presence of neutral-meson theory with
pseudoscalar-pseudoscalar (ps-ps) coupling with-
out closed fermion loops. The scaling equations
for the various components (propagators, vertices,
etc.) of the theory have been solved. It was then
shown that in the single-closed-fermion-loop con-
tribution v~" to the (renormalized) photon self-
energy part, the Adler-Baker-Johnson eigenvalue
condition" for the (renormalized} fine-structure

constant' o.,
'F(in') =0, remains unaltered. This

means that a possible zero of Ei'~ (x) does not
"move'* in the presence of the strong coupling.
This leads to the beautiful idea that the value of
a may be possibly determined within puye electro-
dynamics (i.e., electrodynamics in isolation from
the rest of the world}. The mechanism which is
responsible for the stability of the eigenvalue con-
dition is that the effecti ve strong coupling vanishes
at high energies. ' The approach we have used for
the investigation of the above problem was through


