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It is shown that the ultraviolet divergences encountered in the lowest-order perturbation
calculations of quantum electrodynamics no longer appear if the theory is expanded so as to
include the p meson, a triplet of heavy axial-vector bosons, and two heavy polar-vector bo-
sons, in addition to the electron and photon, and suitably chosen couplings between them are

introduced.

I. INTRODUCTION

Although the divergences occurring in the per-
turbation-theoretic calculation of physical pro-
cesses in the present framework of quantum elec-
trodynamics can be separated by the process of
renormalization and meaningful results can be
obtained, * the theory is not entirely satisfactory.
The relations between the bare and renormalized
quantities are formal, involving divergent expres-
tions, and can lead to various paradoxes.> These
problems cannot be bypassed by formulating the
theory in terms of renormalized field operators
because then the Lagrangian contains the renor-
malization constants, which are, strictly speak-
ing, meaningless insofar as they are divergent
quantities.

As far as the divergence in the selfenergy of
the electron is concerned, it can be traced back
to the classical theory, where the repulsive
Coulomb energy diverges in the limit of a point
electron. A cohesive force® would keep the elec-
tron stable by compensating for the repulsive
Coulomb energy. Such cohesive forces can arise
if, in addition to the photon, axial-vector bosons
are coupled to the electron. As shown in the body
of the paper, a coupling of the type igdv  vs¥a,,
where a, is an axial-vector boson, gives a con-
tribution to the self-energy part =(p), whose di-
vergent part is opposite in sign to the correspond-
ing part arising from the minimal electromagnetic
interaction, and for a proper choice of the coupling
constant the two can be made to cancel.

Apart from the divergence in the self-energy of
the electron, one encounters the divergence as-
sociated with the self-energy of the photon which
has no classical analog. Ordinarily one would not
expect that this divergence could be canceled by
contributions arising from additional interactions
as in the electron self-energy problem. This is
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because, for the minimal interaction, Z,
=1imy2- o k?Dp (k?) is of the form

[1 - a(divergent part + finite parts)]

in perturbation theory, so that, for a cancellation
of the divergence, the contribution of the additional
interaction must be of the form

[1+ a(divergent part + finite parts)],

which would ordinarily be a violation of the
Lehmann bound Z,< 1 arising from the positivity
condition on the corresponding spectral function.
However, it is well known that on account of the
negative metric associated with the fourth com-
ponent of the photon field, the spectral function

for the electron propagator is not positive-definite
and the electron wave-function renormalization
constant Z,, calculated using the Landau gauge

for the photon propagator, does not respect the
Lehmann bound Z, <1.* This suggests that in the
case of Z,, the constraint imposed by the Lehmann
representation may also be avoided if there occur
vacuum polarization diagrams with internal vector
(or axial-vector) boson lines for which the propa-
gator carries the projection operator (5, - kyk,/k?)
similar to that of the photon propagator in the
Landau gauge. In order that the effects of these
bosons on the experimentally observed quantities
be negligible they must be sufficiently heavy, in
which case we would have a factor of (5, +k,k,/M?)
in place of the desired (5,, - k,k,/k%). However,

if the massive vector bosons are suitably coupled
to massless scalar particles through a mixing
interaction, then the effective propagator resulting
from the mixing does carry the desired factor

(6, —k,k,/k?). It transpires that if the photon
interacts with such vector particles A}, carrying
some internal charge (for which the natural choice
is muon number) with a “Pauli-type” coupling
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Lo =irA,0,(ALAS-AGAY),

int
the spectral function appropriate for the photon
self-energy resulting from this is not positive-
definite. As a result of this, the divergence in
Z, is opposite in sign to that arising from the
electron-positron loop, thus making it possible
to bring about a cancellation of the divergence by
an appropriate choice of the coupling parameter
Al

The coupling of the photon to A} introduces a
new divergence which occurs in the self-energy
of the muonically charged bosons resulting from
the emission and reabsorption of photons by these
particles. This divergence can be compensated by
contributions resulting from additional interactions
where these bosons are coupled to muonic currents
of the type 1uy,e and @y,u. For the compensation
of divergence in the selfenergy of the neutral
axial-vector boson @, introduced earlier we need
to have muonically charged axial-vector bosons
ay, which in turn will have their own divergent
self-energy. The problem then reduces to that
of removing the divergences from the self-ener-
gies of all the particles in the theory in a self-
consistent manner. We have been able to achieve
this. In the final form there are, all together,
eight particles in the expanded quantum electro-
dynamics we are considering. In addition to the
known particles (electron, muon, and photon), we
have a doublet of massive electrically neutral
but muonically “charged” vector bosons, a similar
doublet of axial-vector bosons, and a single mas-
sive electrically and muonically neutral axial-
vector boson. The coupling scheme as formulated
in Sec. II requires, apart from the electric charge,
several other coupling constants which are ar-
bitrary to start with but are then fixed from re-
quirements of cancellation of divergences in the
selfenergies of all the particles. This is exhibited
in Sec. I and IV. It turns out that no additional
constraints on the coupling constants are needed
to make the vertex parts finite in the second order.

The theory considered in this paper can be
extended so as to encompass pure leptonic weak
interactions by introducing two-component neu-
trinos associated with the electron and the muon.
The neutrino currents, when coupled to massive
bosons mentioned above, can account for the
muon decay and other pure leptonic processes.
In fact, in the limit of infinite mass of the vector
bosons, the leptonic weak interactions in the
theory will be identical to a Fierz-shuffled Fermi
interaction.

II. FORMULATION OF THE THEORY

As mentioned in the Introduction, the proposed
theory includes the quantized fields corresponding

to the electron (e), the muon (), the photon (4,),
a doublet of massive vector bosons (A}), a doublet
of massive axial-vector bosons (a}), and a singlet
massive axial-vector boson (az,). All the boson
fields are electrically neutral, but the members
of the doublets carry muonic number. The field
a, is both electrically and muonically neutral. As
pointed out earlier, the cancellation of the diver-
gences appearing in the fermionic self-energy
parts due to the minimal coupling

L) =ie(@yre + Ty Ay
requires the additional coupling
L) =ig(@y\yse + By vsula,,

where g is an as yet arbitrary coupling constant.
Similarly, for the cancellation of the divergence
in the charge renormalization constant arising
from the minimal coupling, we need additional
interactions between the photon and the doublets
of the massive vector and axial-vector bosons.
These interactions are to be of the Pauli type
since otherwise these bosons would acquire a
charge through these couplings. We therefore
take these interactions to be of the form

L&) =ixyA 8, (ALAT-ATAT)

+iMgA 8, (a e, - agay).

Now, these interactions, while giving new contri-
butions to the photon propagator, will also give
similar contributions to the propagators

O[T (x)A(0))]0) and (O T(a},(x)a;(0))| 0). In
order to cancel the divergences in these, we have
to introduce off-diagonal couplings of these bosons
to the fermions e and . Considerations such as
C and P invariance lead us to adopt

3(1;:() =gy(ey nA3 - Ly eAl)
+1g (@ \yshax + Ty yseal) .

Finally, the interaction (2) will give a divergent
contribution to the propagator (0| T(a “(x)a,,(O))I 0).
In order to cancel this, we introduce an interaction

L =x0,a,-9,a,)ayA;+a,A;).

Taking all the above interactions together we get
the coupling scheme represented by the Lagran-
gian
£=E,+ie(@y e+ Ty Ay +ig(@y vse + LY VsH)a

+8v(BY\ LA - Ty eA}) +iga(y ysuas + Ly yseal)
+iN,A 9, (AT A -ALAY) +ix A 3, (apa, - agay)
+A(8,a,-9,a,)(a,Aj+a A}, (1)

where £, is the free part of the Lagrangian in-
cluding the mass terms.
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As pointed out earlier, the bosons A}, aj, and

a, are massive. Ordinarily, a theory with such
massive vector bosons would be nonrenormaliz-
able. There has been considerable discussion
in contemporary literature® of the ways to make
such theories renormalizable. We shall adopt
here a procedure which is straightforward and
has the merit that once the divergences from
the self-energies are removed, all the vertex
parts are automatically finite (in second-order
perturbation calculation). This method essen-
tially consists of taking a certain limit of a lo-
cal theory and arriving at an effective nonlocal
theory where the massive bosons are coupled

to nonlocal but conserved currents. The local
theory contains couplings of the massive vector
(and axial-vector) bosons with massless scalar
(and pseudoscalar) bosons. The limiting pro-
cedure is so chosen as to effectively decouple
the massless scalar bosons while at the same
time rendering the theory renormalizable. We
illustrate this procedure for the coupling of one
of the axial-vector fields, say a,, coupled to
the axial-vector current of the electron, for which
the Lagrangian is (with 3=y 9)

£=-2(8+m)e-1(8,a,-3,a,)
- iM%a a, +igey,\ysea, (2)

M being the mass of a,. We now introduce a
massless pseudoscalar boson field ¢ with the
coupling

Lin=18€CY \v500, ¢ — €7 'ayd,¢. (3)

For finite €, this describes a local interaction.
The modifications of the vertices and propagators
arising out of the mixing interaction —€ ~'a,0,¢
are deduced in Appendix A. From the results
obtained it will be clear that in the limit € -0, ¢
is effectively decoupled, leading to an effective in-
teraction of a, with the conserved but nonlocal cur-
rent ig(0,, - 8,9,/0)@y,¥se and an effective prop-
agator -i[(6,, - kk,/k%)/(k* +M?)] for a,. Itis
thus clear that renormalizability is achieved by
adopting the limiting procedure. In the following
it will be understood that this procedure has been
performed for all the massive vector and axial-
vector fields and their interactions. I we assume
this limiting procedure to have been performed,

the relevant Feynman rules for the effective non-
local theory are listed in Appendix B. This
amounts to a modification of the vertices and
propagators whereby any vector or axial-vector
boson vertex with momentum %, will acquire a
factor G, (k)=(6,,- % k,/k*) and the correspong-
ing propagator will be —iG ,, (¢)[1/(k* +M?)], where
M is the mass of this boson. As mentioned in the
Introduction, it is this form of the propagator that
is responsible for the cancellation of the diver-
gence of the charge-renormalization constant Z,.
The results obtained in Appendix A also contain
the novel feature that for sufficiently small €

the effective ¢ propagator exhibits an indefinite
metric, though the original Lagrangian has a
positive-definite metric. The indefinite-metric
approach to achieve finiteness of field theories
has been considered by several authors.® In

such theories an indefinite metric is introduced
in the Lagrangian from the outset. The main
problem in such theories is to prevent the appear-
ance of particles with negative norm in physical
processes. One way of achieving this is through
the artifice of shadow states.” It is not clear

how closely these approaches are related to ours.

III. FERMION SELF-ENERGIES

Let us first consider the electron self-energy.
The diagrams shown in Figs. 1(a)-1(d) contribute
to this self-energy. The Feynman matrix element
for Fig. 1(a) is (we use the Landau gauge for the
photon propagator)

2 YN

@(py £ [Tk Up-k)-m,
ZEP)= ay ) oy Ry,

(4a)

By applying the rules discussed in Sec. II we get
the following contributions from the other three
diagrams:

(p-k)-m,
(p-kP+m 2

&v’ d'k
@2nr)*/) RP+M,?

E(b)(P)= G“(k)y,‘

XGyo(R)y oG 1y (),
o(p)= Ba [ _d* =) —my
z(p)= Fﬁfmcux(k)')’x'y”ﬂ_k)z m 2

X Guo(k)‘)’a')'scuu (k) ’

) )

A A a a

e e e e A e e A e e e e
@) (b) © @

FIG. 1. Feynman diagrams for electron self-energy.
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2 d'k p—k)—
E(d)(p)= (_Zg—ﬂ'—)z k2 M ux(k)7x75%%?)2?1@?
XGvo(k)’yoysGuu(k),

where My, M,, and M are the masses of the rel-
evant bosons and m ,, m, the masses of the fer-
mions. After some simplifications we get

d‘k i(p-Fk) -

E(b) (p)= (21r sz_'_wvz'YX(p %) +m GXo(k)

(4b)
. d*k i(p - B)+m

2 )(D (2" fk2+MA27x(p R) +m “27’ GralR),

(4c)
‘b k

E(d)(p)= (5:)4 k2d+M2 'YXI(/(pp k)z +m G)‘a(k).

(4d)

It is to be noted that the sign of the mass term in
the numerator of °)(p) and Z(¥(p), which is
crucial for the removal of divergence, has its
origin in the occurrence of the two y, matrices.
By using standard techniques of Feynman param-
eters and symmetric integration, we see that
d“k i(p-k)
EYe xo(k)hmh

is free of ultraviolet divergence, while
d‘k
& +M)[(p - k) +m2]G)\c(k)‘y)\70

is not. Thus, Z(p)=Z@(p)+Z®(p)+Z()(p)
+Z@(p) will be free of ultraviolet divergence if

mee*+m gyt =my,g*+m ,g,°. (5)

We can treat the muon self-energy in the same
manner. The diagrams shown in Figs. 2(a)-2(d)
contribute in this case and we get the condition
of finiteness as

m et +m,gyi=m g +m, g,7. (6)
A A®)
E AR E e
6] (b)
a(+) a

N N\
Foe E F FE R
(c) €]
FIG. 2. Muon self-energy diagrams.

IV. BOSON SELF-ENERGIES

We start with the photon vacuum-polarization
diagrams. The four diagrams shown in Figs.
3(a)-3(d) will contribute to this. The contribution
of Fig. 3(a) to the vacuum-polarization tensor
is given by

e’ f dp
@m?*J (p?+m ) (P - k) +m,?]

XTrly o(ih - m,)ysGi(D - k) —=m,)].
(M
It is known that [1{%}(k) can be written in the form

M4 (k) = k%G 4o ()T (%) + 6 4D, (8)

(")(k)

where the constant D'®) containing a quadratic
divergence is of no physical significance since in
all observable quantities it cancels with the so-
called seagull terms. I1‘®)(k?), on the other hand,
contributes to physical processes but is logarith-
mically divergent. By employing usual methods
of calculation we get for its divergent part IT1{#(%?)
2

2hm In—; L (9)

(a)(p2) = _
5°(°) 3 161r Low M2’

In a similar manner, from Fig. 3(b) we get

2

(b) b2) = — —
(%?) = 16 z}-l_l}}nlnmu

(10)

The contribution of Fig. 3(c) to the vacuum polar-
ization tensor is given by

ne(k) = (;“')4 2%,k

d’q
(@* +My?)|(k - q)° +My?]

X [Gop(q)G (k= q) = G o (9)G (k- q)].

(11)
It can be easily seen that II“) is of the form
N3 (R) = G 45 (k) [R?119(k?) +C], (12)
e M
<> >
A e A A }1 A
@ (b)
A(+) a(+)
<> <>
A A A A ae) A
(c) @

FIG. 3. Photon self-energy diagrams.
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where C is a constant which, like D in Eq. (7),
does not contribute to the physical processes or
to charge renormalization and is compensated by
seagull terms, and where

2

o 2
v 1im In-L. (13)

57 (k%) = Jgp2lim Ingz-

Similarly, from Fig. 3(d) we get

2
g (k?) = --4—161, lim ln (14)
It is to be noted that the divergent parts of II*®)
and I are opposite in sign to those of I‘® and
M. It is thus clear that the sum of all contribu-
tions,

(k%) = ‘: nk?),

can be made divergence-free by suitably choosing
the coupling constants. From Egs. (9)-(14) we
find that m(k?) is free of divergence if and only if

Le?=2,2+2,%. (15)

We now consider the self-energy of the A®
vector bosons. Defining

Man(®) = o | 5™ 01 TALIAFOD0),

(16)

we see that in the second order the three diagrams
4(a)-4(c) contribute to Il ,5(k). Defining I1%%3®+<)(%)
as the respective contributions of these three
diagrams to Il 4g(k) we can easily see that they are
of the form

55" 9 (k) = G g (R)RPTI > (k7), (1)
and, dropping the quadratically divergent terms

as discussed above, we get the logarighmically
divergent parts as given below:

(@)(p2y - 8y 4 ..li
() = - 155 Sliming 5, (18a)
" A®)
@) S (+)C )
A e A A " A
(a) (b)
a®
A“)Oa )
(¢)

FIG. 4. Self-energy diagrams for the massive vector
bosons.

() (p2) = llv 1 L2
ny’(k? = 167 2311m1nMV y (18b)

: L2
H(D‘)(kz)=24— 1lim In—— (18¢)

1672 3 ;o MA'

Thus, [(k%)=33., ., J1("(k?) is free of divergence
if

1gy’ =+ 502, (19)
The condition of finiteness of the self-energy of

the af, bosons can be worked out in a similar man-
ner and is found out to be

$ga’ =0+ (20)

The corresponding condition for the finiteness
of the self-energy of the a, field is seen to be

ig7=2%. (21)

Combining the conditions expressed by Egs.
(5), (6), (15), (19), (20), and (21) we see that we
can choose the coupling constants in such a man-
ner that all fermion and boson self-energies are
finite. The most symmetric choice is

g=e,
2 2_,2
gvi=g,2=¢,

2
AP=a,=1e?, (22)

8
%= ze?.

V. VERTEX DIAGRAMS

From the Lagrangian in Eq. (1) we see that we
have to consider nine vertex functions. We shall
see below that all of them are finite. Let us first
consider the second-order eeA vertex given by
the diagrams shown in Figs. 5(a)-5(e). The ma-
trix element of Fig. 5(a) is finite in the gauge
(Landau gauge) we have chosen. The matrix ele-
ments for the rest of the diagrams, i.e., Figs.

d) (e)

FIG. 5. Diagrams for the ¢eA vertex.
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5(b)-5(e), can also be shown to be finite. In case
of Figs. 5(d) and 5(e) this is evident from direct
power counting of the integrand, while for 5(b)
and 5(c) this can be seen by noting that the matrix
elements are of the form

a‘l -0+
Au(.bz,l’l)‘x P Mz?x;;pz l)2+’;n
xy, KBz Dm . 6 0y, (@)

Yulp, - D7+
where M and m are some masses, and the + signs
are to be taken depending on whether we are con-
sidering axial-vector [Fig. 5(b)] or vector [Fig.
5(c)] coupling. By power counting we see that

the entire divergence, if any, of the right-hand
side is contained in

f(l2+m2)2(lz+M2)G)\c(l)')’)\ll)’pll')’oy

which by symmetric integration is seen to be
finite. Since the ppA vertex diagrams are ob-
tained by interchanging the roles of p and e, this
vertex will also be finite.

The diagrams for the eea vertex are shown in
Fig. 6. Here the contributions of Figs. 6(e) and
6(f) are finite, as seen by direct power counting,

FINITE QUANTUM ELECTRODYNAMICS
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@ () (f)

FIG. 6. Diagrams for the éea vertex.

and the contributions of Figs. 6(a)-6(d) are all

of the form given in Eq. (23) and hence are finite.
The same applies to the corresponding diagrams
of the ppua vertex. We now consider the vertices
off-diagonal in the fermion fields, i.e., the ep A*
and epa* vertices. The former is given by the
diagrams in Fig. 7(a)-7(f). The contributions of
Figs. 7(a) and 7(b) are of the form given in (23)
and are thus finite. The contribution of Fig. 7(c)
to the vertex function is

(c) _ ze)\y d4p S - -
S E e (e e R G R CRL A ER
XG (P, =0 )[i(P - 0,),Gp (P —D) - i(p-5,).Cp,(P=P)], (24a)
whose divergent part is entirely contained in
A
[Aff)(pza zgﬂ;; qu(pz +M )Pppo)’o[}’o')/ﬂcaa(ﬁ)cpv(ﬂg—Pl)- (24b)
M A A8
Ao & N @ A
A A
e A &) A
e e e A(+)
@ (b) (©) @)
A® P
e M
/Ll e A e p A
] A 7Sp)
@ ) )
©) (d)

FIG. 7. Diagrams for the fleA* vertex.

FIG. 8. Diagrams for the A*A™A vertex.
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Free Exact (to all orders in 'é' )
Entity Value in Representation in
Symbol momentum Symbol momentum space
space
B e L L. | Y
R | @ T
Propagator
' — | _i = AR
e ) o @ - ‘/a—,g-r
©) ®)
eea vertex
@) gt ol 80 - L)t
o b @ 3( R
(e) (e)
eep vertex
€ . Y3 .
©® LA o @ |1 (- Shr )

FIG. 9. Momentum-space representations of free and exact (to all orders in 1/¢) propagators and vertices.

Similarly, the contribution of Fig. 7(d) is

(a) - iehy d4P B _ _
Al-l (Pg,Pl)— 2n) f(pz_p)z[(p! —b¢ +Mv2](pz -m 2)7(1(11’ m ,‘)}’BG“(A p)an(pl p)
xGuu(pz_pl)[i(Pz_p)ucur(lbz )-1(172 ) au(pz-p)}) (240)
whose divergent part is entirely contained in
A
(AL(bs )] gﬂ;ﬁ. f 27 pz " M “2yPuPo¥ a¥ oY 66 @A LGy (P2 = 1) - (24d)

Though A{” and A{®) are individually divergent, it is evident from Eqs. (24b) and (24d) that their sum is
free of divergence. Similarly, A%’ +A{) may be seen to be finite. In an exactly similar manner we can
show that the epa* vertex is finite.

Next, we consider the A‘Y-A(")-A vertex for which the diagrams are given in Figs. 8(a)-8(d). The con-
tribution of Fig. 8(a) to this vertex function is given by

g2 f d*l
(2m)*J Bl(1-p,)? +My?|[(1 - p,)? +M,?]

A(:gy(pvpz) Gaa'(pl)Gﬂﬂ'(pz)i(pz—pl)u

X[LarlgG (1) + LnlysG oo go(1) = Lo LsG (1) = Lgr1yG v pe(1)]

X[Gyn(by=DGyyi(Py= 1) =Gy (b, = DG, (P, = D], (25)
(i) =—m— = —_— + ————
@) (a) @ (¢ @
(i) =———= = — + i M——
) () () @ (¢

FIG. 10. Diagrammatic equations for propagators.
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(e)

(e) (e)
@ >_ +>c,_._
@
© 8 @) @ (¥ @)
(e) (e) (e)
(i) =
o @ 2(7) A

FIG. 11. Diagrammatic equations for vertices.

whose divergent part, if any, is entirely contained in

23 .
[ (21:)4fl2(lz+M 2)2l ls’Gnn’(l)Gaa’(pl)GBB’(pz)l<p2_pl)u

X[Gyy (1)G, (1) = G, ()G ()],

which is easily seen to be identically zero on account of the projection properties of G,4(!). The finiteness
of the contribution from Fig. 8(b) follows similarly. The contributions of Figs. 8(c) and 8(d) to the vertex

function are respectively

i

0187(1,” p,)= iy & egy’ Gaa (£)Ggp(D,) Trfd“lyu

; 2
A(:g)'(pw p))= (2;)4 efv

Caa (P)G e (P2) Tr fd4lyﬂ’(l Py +m 2y’(lﬂb Y +m, 2V B im,?

(I=p)-m, i(I-p)-m il- my
(1- PJ)2+m Yy (1= P52+m62y5 P+m ’ (26)
i(l+p))-my  i(l+p)-myu  il-m, 27)

The divergent parts of A%}, (#,, p,) and A}, (p,, p,) are contained respectively in

d‘l

(c ’ egy
Aag‘/(pvpz)lb 2r )4Gaa’(p1)Gea'(p2)Trf(lz +mu2)[(l-P1)2

+mez][(l - pz)z +me2]

XYY YyYo¥8'¥Yn (I\lg= IxDPagPr)ln,

A8 (b1 210" Gy B G (PG5 (5 Tx [ 7

By utilizing the trace properties of the y matrices

and the usual techniques of symmetric integration

one can easily convince oneself that [Aaﬁy( P 02) b
+[A83,(py, 1,)]p is finite.

In a similar manner we can see that the matrix
elements of the a*a”A and a*A "a vertices are also
finite. We therefore conclude that all the second-
order vertices are finite, without having to impose
any more constraints on the coupling constants
than are necessary to make the self-energies fi-
nite. This finiteness of the vertex functions is a

e)

-eY
()
(e) s

FIG. 12. @eA, vertex.

a‘l

+m ) (1+0,)? +m FN[(1+p,)* +m ]
X YB’YX)’Y'YG')’Q')’,, (llla + lxplo + lopz)\)ln .

particularly satisfying feature because as a re-
sult of this there will be no overlap divergences
in higher orders.

V1. OBSERVABLE QUANTITIES

As pointed out earlier, all the new vector bo-
sons introduced in the theory must have large
masses in order that theydo not affect the excellent
agreement of the existing theory with experiment.
An estimate of the masses of these particles ob-

Q)
-81u s
@@w 3

(e) s

FIG. 13. éea, vertex.
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(W)

k )

) -8y G)ué(k)ﬂ
}L

©)

FIG. 14. [leA}, vertex.

tained from the extension of our theory to muon
decay considered in Sec. VII yields a value of the
order of 100 GeV. Hence these particles will be
produced only at very high energies and will have
very small magnetic moments. As an example of
their effect on physical quantities we consider the
modification of the electron anomalous magnetic
moment coming from Fig. 5(b). We have

W - g d’k i(p—Fk)+m,
AP )= (2m)* k2+M27°'(Pz"k)2+mez
i(p, - k) +m,
yum”cue(k).

X

(28)
Defining the form factors f, and f, by
AP Dy, 0,) =7, [r(@®) +i0,,4,1,(q7),

we find on calculation that f,(0) is of the order of
m,?/M? which is 10~'° times the a/2m value. The
contribution of Fig. 5(c) will be O(m ,>/M?), which
is ~107%(a/27). The contributions of Figs. 5(d)
and 5(f) are yet smaller, being at best
o([ln(M2/m?))/(M*/m*)).

We need not go into a detailed discussion of
other physical processes, such as Méller scatter-
ing and Lamb shift, because it is clear that the
modifications due to the massive vector bosons
will be negligible on account of their very large
mass.

VII. EXTENSION TO LEPTONIC WEAK INTERACTIONS

The uncharged bosons introduced in the theory
may be coupled to two-component neutrinos as
well. Since the neutrinos are massless, such
couplings will not alter the fermion self-energies;
they will nevertheless alter the conditions of fi-
niteness of the boson self-energies. However,
the main point to note here is that the theory will

0y

Guy(k ¥
(+) SA)‘()QS
e)

FIG. 15. Ttea*[, vertex.

be able to describe the leptonic weak interactions.
The fact that the intermediate bosons here have
muonic rather than ordinary electric charge
means that the equivalent current-current theory
would be related to that obtained from charged-
intermediate-boson theory by a Fierz transforma-
tion.
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APPENDIX A

In this appendix we show how the effective non-
local interaction of the massive vector and axial-
vector bosons can be obtained from a local theory
by a limiting procedure. For this we start with
the local Lagrangian

L£=-2(8+m)e-1(8,a,-8,a,)* - M?a,a,
+ig-é7’p75eap - %3“(‘08“(ﬂ
+igeey vsed,0 - (1/€)a,d ,¢. (A1)

We first study, for finite €, the effect of the
mixing term —(1/€)a,d ,¢ by calculating to all
orders in 1/€, but to zeroth order in g, the ef-
fective propagators and vertices. The bare prop-
agators and vertices along with their exact values
(to all orders in 1/€) are given below in momen-
tum space (see Fig. 9).

The corrected propagators for a, and ¢ may be
obtained from the coupled equations represented
diagramatically in Fig. 10, where the dot denotes
the insertion of the mixing term. In momentum
space these equations for the ¢, and ¢ propagators
take the form

- izvlic)m(p) 630” (P +9)=Guxf(p+4) Gy g~ (p)]qa«

FIG. 16. A ,A7AJ vertex.
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FIG. 17. A aja} vertex.

Ouv— a(R®)k pky /R? By +Ryky/M? i B(RPk,\k k kR k. k
ST U Ear T @ e e 0t #) <°v0 * 75?) (a2)
and Using the values of a(k?), b(k?), a(k?), and B(k?)
B(k?) i 1 - 1 Bk in the vertices and propagators listed in the table
i Tt Rt zikako <6)\a - a(kz)—,e%l> we find the following:
(A3) propagator for a, to all orders in 1/¢:
These equations are to be solved to obtain a(k?)
and B(k%). On solving them, one finds 2p2
pED & -i (6 R .1 )/(kzmzz)
1+€%k? Y 1-eM? & ’
a(k?) = 1-eanre (A4)
and propagator for ¢ to all orders in 1/e:
2agr2
oy _ €M
B(R?) = - 1-eam2 (A5) -€e2M?

_zkz(l _ €21‘42) ’
The coupled equations for the vertices are
shown diagrammatically in Fig. 11. In momentum

space these correspond to eea vertex to all orders in 1/e:
. kuky
ig <6u,,-a(k2)———k2 ) . -
g\ 6y, - Bz Yv¥ss
. . kuk b(k?
= igd,, —ig—r (6” —k,k, %) ,
eey vertex to all orders in 1/€:
(A8)
and

igey“ys(ik“) .
ige (aw- b(kz)k";f")iku

It should be noted that even for finite € the effec-
. . . 1 a(k?) tive eea vertex is purely transverse, which im-
=igedyytk, = 8 +M? (6‘” T R2 ki *) plies that @, is effectively coupled to a nonlocal
conserved current.

X <6,,x + %>iku, (A7) However, since for finite € the ¢ field is not
decoupled, the diagrams containing the internal
whose solution gives @ lines will make the theory nonrenormalizable
a(k?) =1 on account of the derivative couplings. It is for
’ } (A8) this reason that we have to go to the limit € -0
b(k?)=0. under which (k%) - 0. Therefore all the diagrams

@ =] Gpo-@) [Goq(P) GI(P+9)=Goy(P+ q)GZ'l(Pilq'L

FIG. 18.a,a ;A vertex.
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with internal ¢ lines drop out. The role of the ¢
field here is similar to that of a Goldstone boson.

Finally, we make the observation that for € <1/M,
B(k?) <0, and hence the ¢ propagator simulates a
negative metric. This is rather unexpected since
the original Lagrangian did not have any negative
metric to start with.

APPENDIX B

The effective Feynman rules for the vertices
corresponding to the interactions in the Lagrangian
given by Eq. (1) are given in Figs. 12-18. These
are obtained in the manner discussed in Appendix
A.
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