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We find that the single-particle distribution EdN/d p for an expanding relativistic gas de-
scribed by a distribution function obeying the Boltzmann transport equation is not of the form
of an integral over collective motions of a velocity weight function times a "Lorentz-transformed"
rest-frame distribution function. This casts doubt on the algorithms of Milekhin and Hagedorn
for determining the single-particle distribution function in their models of particle production.
For the hydrodynamic model, the correct algorithm is presented.

With the advent of new high-energy accelerators,
there has been a revival of interest in many-body
approaches to particle production. In particular,
the statistical thermodynamic model of Hagedorn'
and Landau's hydrodynamic model' have had con-
siderable success in fitting single-particle in-
clusive data. Recent review papers have summa-
rized the history and successes of these models. ' '
In both models, one assumes that the collision
process yields a distribution of collective motions.
In Hagedorn's approach these collective motions
are called fireballs; in Landau's approach the
collective motions are that of the hadronic fluid
and one has an entropy and energy distribution in
terms of the fluid velocity. In both models one
assumes that in the local rest frame the distribu-

tion of momenta is isotropic and is described by
either a Bose or a Fermi distribution of the ob-
served particle.

The question to which we address ourselves is
whether the momentum distribution in the center-
of-mass frame is given by the probabi1. ity of
finding a particle with collective velocity v times
the Lorentz-boosted thermal distribution normal-
ized to the total number of particles. The invari-
ant single-particle distribution that follows from
this assumption is' '

dN p dN g(E, T(v))
d'p = d'v a(T(v))

where E and T are, respectively, the energy and
temperature in the comoving or local rest frame
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of the collective motion, and

g(E, T) =g(2v) '[exp(E/&T)~1] ',

g(E, T}d'P.

(2}

= M(s, v) F(s, v, M(s, v)),~ V

where F(s, v, M) is the probability of producing a
fireball of mass M. It is difficult to criticize
Eqs. (1) and (3) directly, so we will concentrate on
Milekhin's' version of Landau's model, in which
dN/d'v is proportional to the distribution of entro-
py in the fluid. In a notation explained below [see
Eq. (18)], Mtlekhin's expression is

We systematically use a bar to designate the value
of a quantity in the comoving frame; thus,

E=y(v)E-y(v)v p,

where y(v) = (1 —v') "' and E and p are the energy
and momentum in the center-of-mass frame.

In the generalized statistical thermodynamic
models, '

a, and is equal to the number of particles at time
t if we choose da „=(d'x, tt). The invariant single-
particle distribution in momentum space, of those
particles on a, is

E, = f(x, P)P "do„.
a

(9)

f(x, P}=g(E(v(x)), T(x)). (10}

The contrast between Eqs. (5) and (9) is that P"
has been replaced by Eu" in Eq. (5). To choose
between them, we make a further excursion into
transport theory.

The Boltzmann equation is

where ~I is the rate of change in f due to colli-
sions. The stress-energy tensor defined by

(12)

Equation (9) is to be compared with Eq. (5}under
the assumption that the fluid is locally in thermo-
dynamic equilibrium,

dK
(

aesop

Equations (1) and (4) can be combined to give

E, = g(E, T(v))Eu "do „.dN q

(4)

(5)

is conserved by virtue of energy-momentum con-
servation in individual collisions,

(13)

Equation (5) yields the correct number of parti-
cles, but it is inconsistent with energy conserva-
tion [see Eq. (20)), so we are led to consider how

one determines EdN/d'P for the simplest system,
an expanding ideal gas.

The transport theory of a relativistic gas has
been well studied. "We consider one type of
particle of mass m and picture a many-body
system as a collection of world lines that have
local binary collisions and branching to describe
particle creation and annihilation. In the neighbor-
hood of a space-time point x", the net number of
lines making positive transit across an element
der„of a 3-surface whose tangents lie within

The collective velocity 4-vector u "(x)
= (y(x), y(x)v(x)) is defined by

n(x)u" (x) = P "f(x, P)DP .

The quantity n(x}u"(x) is a number current density
and can be used to count the net number of parti-
cles on e,

n(x)u "(x)do„= DP f(x, P)P"do„=N(a),

(15)

but there is no reason in general for it to be con-
served,

DP =- 26'(P' —m')d'P

about P" serves to define a Lorentz-invariant
distribution function f (x, P},

dN(o) =f (x, P)P

"der�„DP

.

The integral

(6) s„(n(x)u "(x))= AI'Dp $0.

Now n(x} is a Lorentz scalar. Its meaning is
established by using the Lorentz transformation
to the comoving frame as a change of variables
in evaluating the integral in Eq. (14). The trans-
formation is

N(o) = DP f(x, P)P "d&r„

counts the net number of lines intersecting a given

P " = L„"(v)P ' = Lo (v) E + L,"(v)P ',

where

(16)
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and

L,"(v) =u",

L,"( v) = -5"'u;+(1 —5"')[5"-(y —1)u "u;/v'y'j,

LuL& QvQ g

The corresponding calculation for Eq. (9) is

E„,= J Et,ff/

EDP g E, T P"dv„
a

The evaluation of Eq. (14) is DP g E, T EQ +L;P')

p" x, p)Dp=Q" x) x, )d'

+ Lg" P'f (x, P)DP

x(Eu" +I~FP')der„

T'"(x)do„. (21)

= if(x)u "(x},
where the second term vanishes because we are
assuming that f(x, P) is locally isotropic in the
comoving frame. Hence, n(x} =$(x), the particle
density in the local rest frame.

The stress tensor can also be evaluated under
the assumption of local isotropy:

T"'(x) = (Eu" +L(j5')(Eu'+ L,'P')f(x, P}
d

EEQ "Q' + — L) Lg, x, )d'

= (e +p)u "u" pg"', - (18)

where ~ and P are, respectively, the energy den-
sity and pressure in the comoving frame. In the
second step in Eq. (18) we have used P'P~ = ~5"P',
and in the third step we have used Eq. (17).

For a sufficiently simple fluid motion, the func-
tion u"(x) can be inverted and the given surface
parameterized by v. Equation (15) gives the num-
ber of particles on o' having fluid velocity v in the
interval d'v as

In both Eqs. (20} and (21) we have used the as-
sumption of local isotropy. Since Eq. (4} is well
established by the considerations leading to Eq.
(19), we conclude that the inconsistency lies in
Eq. (1).

In the application of hydrodynamics to particle
production, it is assumed that the hadronic fluid
undergoes a change of composition leading to a
gas consisting purely of pions when the tempera-
ture falls to a critical temperature T, =m,c'/k.
It is further assumed that the momentum distribu-
tion is essentially unchanged by the subsequent
expansion of the pion gas. Therefore, EdN/d3P
is evaluated on the surface of condensation a de-
fined by T(x) = T, . The isotherms are calculated
from the fluid equations of motion (13) using a
phenomenological equation of state, Such surfaces
have both spacelike and timelike portions, but
that does not affect the validity of the foregoing
considerations.

If the surface v is taken to be an isotherm, Eqs.
(20) and (21) can be cast in a sharper form:

E„,='e, V, (y), (20'}
dN

( )
„Boq (19)

E„,= (&, +P,) V,(y) —P,V~, (21')
where n(v} =n(x(v)) and Bo„/&'v is the Jacobian of
the reparameterization of o'. Equation (19) is pre-
cisely Milekhin's expression (4) and the meaning
of Eq. (5) is now established.

To see where Eq. (5) goes wrong, we use it to
calculate the total energy of the gas,

where

V, = Q "d(r„,
a

(y) = u'u"o do

a

(22)

(23)

o= dao (24)

FDP g E, T EQ do'~

g Ey T EQ +L]P Q dc~
a

6 xQQ do~
a

T'"(x)do„. (20)

For very-high-energy collisions, V, » V, and (y)» 1,
so a considerable amount of energy is omitted in
Eq. (20') unlessP =0. Thus, the Milekhin algorithm
Eq. (5) yields too few fast particles. The effect
is less pronounced in Hagedorn's model because
the speed of sound squared (=dP/de) is much lower
in his case, because of the importance of the ex-
ponentially rising mass spectrum: i.e., the
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5'(P'-m') in Eq. (6) is replaced by an integral
over the hadron mass spectrum.

We would like to thank Dr. M. Feigenbaum for
his help in clarifying some problems.

Using

E = (& Pv-)r,

dX = (dx —vdt)y,

APPENDIX: LORENTZ- TRANSFORMING A

REST- FRAME BOSE DISTRIBUTION

We would like to show explicitly how to Lorentz-
transform a distribution which is a Bose distribu-
tion in the local rest frame. For simplicity we
will restrict ourselves to one space dimension and
one time dimension. The contribution to Ed&/dP
= Sf&/dP of a region dx in the local rest frame
for which dF=0 (constant time in local rest frame)
ls

dt =(dt vdx—)y =O,

one obtains

E&& g (& Pv) d-,
dP (2w)3 eEi~r 1

=( ), (1 —v} dx

g Edx —Pdt
(2n')' ee/» —1

—dX g E
dP (2w)' ee~'r~*&- 1

(A1} g P do'p

(2w)' eel"r —1
'
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