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In a previous paper we showed how to construct the field theory of relativistic strings, which is an
entirely new kind of field theory, one based on quantizing along multilocal strings. %'e showed how to
~rite down the Lagrangian, canonical commutation relations, and all tree amplitudes. In this paper we
extend our previous results by (1}completing the graph counting for loops and showing that it reduces
to the usual dual multiloop graphs and to the usual y3 counting, (2) demonstrating that Pomeron
contributions must be added to our master Lagrangian if we are to preserve duality and crossing
symmetry, (3) giving explicit matrix elements for Reggeon-Pomeron and Pomeron-Pomeron interactions,

(4) giving a mechanism for shiNng masker by summing over all Reggeon-Pomeron direct transition

graphs, and (5) commenting on the relationship between the Shapiro-Virasoro model and quantized

gravity.

INTRODUCTION

In our last paper me introduced a new kind of
field theory, ' a field theory quantized along multi-
local strings. Though the usual quantum field the-
ory is a clumsy formalism in which to describe
the hadronic world of resonances, this new field
theory easily incorporates Regge poles lying on
linearly rising trajectories. Though it is an in-
finite-component multilocal theory, it can be shown
to be relativistically invariant and reproduce all
the general features of the dual resonance model'
(DRM). We showed inthe previous paper how to
handle the problem of multiple counting, which
has been a serious problem to all attempts to iso-
late the field-theoretical structure underlying the
DRM. By demonstrating that certain sums of light-
cone diagrams add up to reproduce one dual dia-
gram, me mere able to reproduce the usual dual
tree diagrams and the usual counting of a cp' theory
in the zero-slope bmit.

In this paper me mill extend our results by com-
pleting the counting arguments for loops. ' As a
by-product of our investigation into loops', we will
exphcitly demonstrate that new terms (other than
three- and four-string interactions) must be intro-
duced into our Lagrangian if we are to preserve
duality and crossing symmetry. Furthermore,
we mill show that these extra terms correspond to
the Green's functions defined on "closed strings"
or rings, which correspond to the Pomerons4 of
the Shapiro-Virasoro' model, and to Reggeon-
Pomeron interactions. One of these Reggeon-
Pomeron terms is a direct transition graph, which
can be iterated in perturbation theory to give us
unitary corrections to the mass matrix. ' These
corrections mill most likely shift the masses of
some trajectories. Vfe will give explicit operator
expressions for all interactions. %e mill also give

arguments which indicate that higher n-point Pom-
eron-Pomeron interactions (n &3) are probably not
allowed. If this conclusion is true, then our theory
sheds some light on the relationship between the
Shapiro-Virasoro model and quantized gravity. '
(Theorists have long speculated that the zero-mass
spin-tmo particle of the Shapiro-Virasoro model
corresponds to the graviton if the Regge slope is
zero. )

In our analysis of higher-loop corrections, we
mill introduce a highly intuitive graphical method
in which the contributions to all interaction terms
are displayed. With the usual "light-cone dia-
grams, " the topological structure of nonplanar
graphs is often contorted. Instead, we mi11. intro-
duce "equipotential diagrams" and show that all
higher interactions are easily and rigorously rep-
resented by the equipotential plots of electric cur-
rent theory. W'e mill show that the topological
structure of interacting strings and rings is iso-
morphic to the topology of equipotential lines de-
fined over Riemann surfaces.

In Sec. II we will complete the counting argu-
ments for loops, on the basis of three- and four-
string interactions. In Sec. III me mill introduce
the equipotential diagrams and reexpress all
string interactions in terms of equipotential lines.
In Sec. IV me will give explicit forms for all
Reggeon-Pomeron interactions. In Sec. V me will
outline the method of iterating Reggeon-Pomeron
direct transition graphs to give unitary corrections
to the mass matrix. In Sec. VI me will give com-
ments on higher string interactions and their rela-
tionship to quantized gravity. In Sec. VII me give
concluding remarks.

II. DUAL - MULTILOOP AMPLITUDES

In our previous paper we showed that it is pos-
sible to construct a dual, relativistic multilocal
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field theory by considering the string variable
X„(v) and then constructing a master functional
C'[X] out of the string variable. This master field
functional, because it is a function composed out
of functions of all points along the string, loses
its dependence on cr:

c [x]= c [x„(v,), x„(v,), . . . , x„(v„)].
The Lagrangian can now be written as

,0+1, +Z, +Z

where

(2.l)

2%P+ 2 82 1
(2.3)

Notice that we have already chosen the gauges of
Goddard, Goldstone, Rebbi, and Thorn' (GGRT),

X'+X"=0,

X X'=0, (2.4)

X+ =i7 .

The master functional 4 loses its dependence on
all longitudinal modes, except for the zero mode
of X (v). The Fourier transform with respect to

the zero mode of X (v) yields C ~,[X], where the
"length" of the parametrization of the string is
Q = 2p+.

The free La grangian simply repr oduces the
spectrum of states given by GGRT and leads to
well-defined canonical quantization r elations and
Green's functions. Interactions are introduced in
the model by considering the breaking of a string.
Successive breakings and reconstitutions of the
string produce all three-point interactions, given
by

z, =-,'g g grX, —, "„„~a(p„-p„-p„)c,' [x]c„,[x]c„,[x]
2p+» j ~

+3

f(X(v,)-X,(v,)e(,—,) -X(v,)e(,- w, )} +H
az

0&v, &wa, , a, &0, a, +a, =a„cr,=v, (0&o, &wa, ), v, =v, +wa, (0 &v, &wa, ). (2.5)

This three-string interaction corresponds to the breaking of a string at some point in its interior (see
Fig. 1'). We showed in the previous paper that the t5-function vertex is exactly the limit of the Neumann
function defined over a Riemann surface which represents the finite-time breaking of a string as the inter-
action time interval goes to zero. "

In addition to this interaction, we were forced to introduce a four-string interaction which corresponds
to two strings interacting at a point interior to both (see Fig. 2). Omitting this diagram from the Lagran-
gian breaks the duality aad crossing symmetry and relativistic invariance of the model (though s-channel
unitarity seems to be preserved). This diagram contributes a finite correction to the (tu) graph at the
four-point-function level. This interaction is represented by

4 dp„z, =-,'g' Ij' uX, Q —, p",„,c(p„+p„-p„-p„)c,"„,[x]c,'„[x]c„,[x]c,„[x]
i, = J. 0»=1% +»j

dv, Il 6(x,(v, ) —x,(v, ) 8(v, —v,) —x,(v, )8(v, —v, )}
( n g -0(3)

&&+ C(X,(v, ) —X,(cr,) 8(v, —v, ) —X,(cr, )e(v, —cr,)} H.c. ,
Og

ar+a2 =a~+ay, ar&0, 0&v( &war, vr=v~+w(a~ —a3) (0&v2 &wa2),

a, & a, &a„o,= cr, (0 & cr, & wa, ), a, & a, & a„v, = o, + w (a, —a, ) (0 & cr, & wa, ) . (2.6)

(The structure of g~ will be given in Sec. IV.)
In our previous paper we showed that these two

interactions are sufficient to generate the Riemann
surfaces" corresponding to all dual tree diagrams.
The dual amplitudes defined over these Riemann
surfaces then reproduce the deal resonance model
(up to questions of the measure).

%e will now show how to reproduce the multiloop
contributions to the DHM by iterating the previous
Lagrangian in perturbation theory. Because all
interactions can be shown to be the limit of finite-
time string interactions defined over infinitesimal
Riemann surfaces as the interaction interval goes
to zero, the iteration of the interaction terms in
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FIG. 1. The three-string vertex (one string breaks up
into two).

FIG. 3. The single-loop string diagram.

perturbation theory simply reproduces the Rie-
mann surfaces corresponding to dual multiloop dia-
grams expressed in light-cone form.

Loop contributions are introduced into our string
formalism when one string splits into smaller
strings, which then propagate for a time interval
until they merge once more into one string (see
Fig. 3}. The iteration of the interaction terms in
the master Lagrangian yields Feynman diagrams
expressed over Riemann surfaces corresponding
to all possible splittings and reconstitutions of the
string which can be expressed in terms of our
fundamental interaction. Sums of these light-cone
Feynman diagrams are then equal to one dual
multiloop diagram. This latter rule is graphically
demonstrated by looking at Fig. 4, which shows
how 11 light-cone diagrams (each with poles in dif-
ferent channels} can sum up to produce one planar
single-loop dual diagram. These 11 diagrams are
subsets of the tremendous number of single-loop
graphs which occur when we perform the Wick
decomposition of our interaction in the 8 matrix
expansion.

In our last paper the proof that our perturbation
expansion yields the correct counting of dual dia-
grams was simple. First, we decomposed the
perturbation expansion into a set of "light-cone
diagrams. " As in field theory, the Varick expansion
of the S matrix yields integrals which reproduce a
set of graphs corresponding to Feynman diagrams.
In our light-cone expansion, we obtain integrals
over strips which reproduce the topology of light-
cone Feynman diagrams. Second, we wished to
show that this perturbation expansion reproduces
the dual diagrams of the usual theory. %e then
used the mapping of Mandelstam, ' which trans-

FIG. 2. The four-string vertex (two strings cross over
and rejoin at an interior point).

FIG. 4. The 11 light-cone Feynman diagrams which
add up to produce one dual single-loop diagraxn. Each
represents a distinct pole structure.



1826 MICHIO KAKU AND K. KIKKAWA 10

forms the upper-half complex plane into the topol-
ogy of light-cone Feynman diagrams:

(2.'?)

where g, are Koba-Nielsen variables for an N-

point tree diagram and ma, corresponds to the
width of each string. Third, we showed that the
full integration region of the Koba-Nielsen vari-
ables: x, &x, & ~ ~ ~ &x„(x,, x„x, fixed) is in one-
to-one correspondence, in the p plane, to a series
of light-cone diagrams which represent strings
which split and reconstitute themselves via our
interaction Lagrangian. (1n this way the problem
of double-counting, which has long plagued theo-
rists who wished to give a dual Feynman expansion
of the S matrix, is easily resolved. } Fourth; it is
not hard to show that the set of light-cone Feyn-
man diagrams emerging out of the perturbation
expansion and the light-cone diagrams emerging
out of the Mandelstam mapping are equivalent (be-
cause they can be shown to be sets which contain
each other, and hence must be equivalent sets)

In an exactly analogous manner, we can demon-
strate the equivalence of our light-cone perturba-
tion expansion and the light-cone diagrams pro-
duced by the Mandelstam map for loops (excluding
the Pomeron, which we will discuss separately in
the next section).

As before, the perturbation series for loops can
be treated in a similar way. Vfe first decompose
the perturbation series up to the first loop level.
This set of diagrams resembles the usual set of
Feynman loop diagrams, except that (1}time-
ordering must be taken care of explicitly, because

p=7+KF= Q] 6 8, x) +CHz, x]
c=1

(2.8)

is responsible for mapping the region R into its
light-cone configuration, where the points x, are
points lying on the boundaries of the region R with
sources a, (which correspond to the width of the
strips in the light-cone formalism}.

If we wish to include nonplanar loops into our
analysis, then we allow some of the sources to lie
on the interior boundary of the region R. In the
case of the single-loop amplitude, the Green's
function is known explicitly":

we are working in the light-cone gauge, (2) tadpole
diagrams are excluded, because our expansion is
nonrelativistic and normal-ordered, (3) twists are
allowed on all lines, and (4) momentum conserva-
tion restricts the class of allowed diagrams (be-
cause the width of each strip is proportional to
p, ).

Next, we analyze the set of light-cone diagrams
emerging out of the usual dual amplitudes, and see
how they compare with the light-cone Feynman
diagrams of our perturbation expansion. The
transformation analogous to Eq. (2.'?) is easily
found: I et R be a two-dimensional Riemann sur-
face which is conformally equivalent to a disk with
a concentric, interior hole. Let G(x, y) be the
Neumann function defined over the region R be-
tween two points x and y (we assume Neumann
boundary conditions for this electric current prob-
lem). Using the Cauchy-Riemann equations, we
can consider G(x, y) to be the real part of a com-
plex variable and can construct the corresponding
imaginary part, called H(x, y). Then the mapping,

zza(z, *'I=zz II* —z'I lz —z'-"Ill? Iz — '"z'/*
I Iz -z'"*' '*/z

I Iz —z*'*''z
I Iz —z*"*' 'z

I

q=l
(2.9)

The above Green's function is obtained by first
taking the unit disk with a concentric, interior hole
of radius "g" and then by writing down all the
image charges that are needed to preserve the
Neumann boundary conditions at both the exterior
and interior boundary.

Similarly, the Green's function for N-loop ampli-
tudes can be written down in an analogous manner
to Eq. (2.8) except that the region R must be
changed. For an arbitary N-loop light-cone trans-
formation the region R is the set of Riemann sur-
faces which are conformally equivalent to the set
of conformally inequivalent disks with (H- 1}
holes.

Before we begin to discuss the counting problem
for loops, it wiD be instructive to review a few
features of the multiloop dual amplitudes. This

review will be helpful in understanding the mech-
anisms for generating Pomeron contributions,
which will be discussed in detail in the next sec-
tion.

In the case of the ordinary N-point tree, the
region R must be conformally equivalent to the
unit disk. But because three points on the edge of
the disk can always be fixed arbitrarily, we are
free to fix three of the N Koba-Nielsen variables
(which correspond to sources located on the bound-

ary of??) In the case .of the single-loop diagram,
the Riemann surface R must be conformally equiv-
alent to a disk with an interior hole. At first, it
seems that the interior circle has. three conformal
degrees of freedom (i.e., it seems that we are
free to choose the radius of the interior circle and
two more variables which determine the location
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of the center of the hole). This is not true because
a disk with an interior hole not centered in the
middle can a&rays be conformally mapped onto a
disk with an interior hole which is concentric.
(The easiest way to see this is to perform a pro-
jective transformation on the disk with the con-
centric interior circle. Since a projective trans-
formation always maps circles into circles or
straight lines, the disk with the concentric interior
hole can be mapped to the upper half plane with an
interior circular hole. A sequence of other pro-
jective transformations easily maps this surface
onto a disk with a nonconcentric interior hole. )
In the single-loop case, we therefore are only al-
lowed to integrate over the interior hole's radius.
The interior hole is rigidly fixed to be in the cen-
ter of the disk by the requirement that we only
take conformally inequivalent surfaces. In the N-
loop case, each additional interior hole requires
three degrees of freedom, because we can only
map one interior hole to the center at a. time. The
total number of Koba-Nielsen variables allowed
in the transformation (2.8) for the N-point function
with M loops is therefore X+3M- 3. The actual
calculation of the Green's function for the arbi-
trary case is an easy exercise in images. It is a
straightforward task to find the location of the
infinite set of images necessary to keep the Neu-
mann boundary conditions on N interior circles.
The answer was first given by Burnside. "

(At this point, a slight digression on the problem
of periodicities will be fruitful. In the original
calculation of the nonplanar single-loop diagram,
the integrand was found to be periodic in its loop
momentum integration variable, "which simply
corresponds to the fact that sources on the interior
boundary of the disk with 34 holes can circulate
around the boundary of the interior holes until they
reproduce the original configuration. Thus, the
original calculations for the unitary loop correc-
tions must be integrated over only one cycle, or
else we obtain infinite amplitudes due to period-
icities. The requirement that we take only con-
formally inequivalent source distributions on the
surface 8, of course, truncates these periodicities
by hand. In the light-cone perturbation expansion,
however, the periodicities are automatically elim-

inated. For the planar double-loop amplitude, for
example, the periodicities occur when the two
interior holes rotate about each other until they
arrive at the original configuration. In terms of
our light-cone diagrams, however, this periodicity
would occur if the double-loop diagram could have
interior slits which could rotate about each other.
Our light-cone perturbation expansion, however,
only allows us to integrate over the interaction
times and also the widths of the strips, so the
question of periodicities never occurs. )

Once we know (2.8), we can then explore the
entire region of integration for the X+3M- 3 vari-
ables found in the N-point M-loop dual diagram
and then decompose the integration region in terms
of distinct light-cone diagrams. As was shown for
the tree diagrams, the integration region of the
Koba-¹elsen variables can be broken uP into
pieces, @here each Piece, by transformation (2. 8),
is mapped onto a light-cone diagram uith a distinct
toPology. For example, by taking all possible
limits where x, -g,.+, , we can rearrange the time-
ordering of the times in which the strings break,
as in some of the diagrams of Fig. 4,

Ne now have all the theoretical machinery nec-
essary to discuss the equivalence between the field
theory of strings and the dual model. But before
going into the proof, we must make a few remarks
about nonplanar diagrams. Because our vertex in
the Lagrangian must be paired in all possible ways
when inserted into the perturbation series, we will
in general find that diagrams such as Fig. 5 are
possible in our expansion, which are nonplanar.
At first, it seems impossible to express the non-
planar diagram (generated by our field theory) in
terms of parallel strips generated by the mapping
(2.8). The way to describe Fig. 5 strictly in terms
of straight, parallel light-cone strips is to notice
that the logarithms in the mapping (2.8) in general
require branch cuts for nonplanar diagrams. Be-
cause of the many ways in which branch cuts can
be drawn, it is always possible to create "cycles"
or "mirror images" of light-cone diagrams by
identifying points on one strip with points one
"cycle" below. In Fig. 6, for example, we have
taken a choice of branch cuts for the nonplanar
diagram such that points located at the "top" strip

FIG. 5. The pole structure of the nonplanar single-
loop string diagram.

FIG, 6. The nonplanar single-loop string diagram
represented as a light-cone Feynman diagram.
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must be identified with points on the bottom
"strip. " All nonplanar diagrams, in general, have
this axnbiguity coming from the branch cuts of the
logarithm function, which is manifested in the
light-cone diagrams by "cycles."

Now' we are ready to present the proof that the
field theory of strings yields the usual counting of
the dual model and cp' field theory.

(1) First, notice that if we let the width of the
string go to zero (keeping the mass of the tachyon
fixed at m' =-1) then the field equations reduce to
the light-cone y' field theory first discussed by
Bardakci and Halpern. " They demonstrated in
their paper that the scalar theory formulated in
light-cone variables is equivalent to the usual y'
theory quantized on spacelike surfaces.

Yet another way in which to demonstrate the
equivalence of our field theory of strings to a y'
field theory is to use simple counting arguments.
We know that our free field equations reduce to the
usual y' theory in the light-cone gauge in the limit
of zero width (or zero slope). We also know that
the three-string vertex contains twists on the legs
due to the many possible pairings in the Wick ex-
pansion. In the limit of zero width, these twists
become redundant, so we obtain the usual Feyn-
man vertex. The topology of Feynman diagrams
generated by a y' theory is then identical to the
topology of light-cone Feynman diagrams in the
limit of no twists, or zero width.

(2) The proof that the field theory of strings gen-
erates the dual model is not hard, at least for the
single-loop level. First, we notice that the map-
ping (2.&} transforms the Koba-Nielsen integration
variables defined in the upper half plane into vari-
ables defined on light-cone strips. Therefore, for
every possible integration region of Koba-Nielsen
space, there corresponds a light-cane diagram.
The full region of integration can be divided up into
subregions, such that each subregion maps onto
light-cone diagrams with different pole structure.
Thus, the set of diagrams generated by (2.8) is a
subset of the set of single-loop light-cone diagrams
generated by our perturbation series.

Next, we must tediously check the converse
statement that for each light-cone diagram, there
corresponds a Koba-Nielsen subregion of integra-
tion. To prove this is a straightforward but very
tedious task, even at the single-loop level. [The
proof involves meticulously varying the Koba-
Nielsen variables and checking the corresponding
changes in the topological structure of the Rie-
mann surface given through the mapping (2.8).]
The analytical proof that all single-1oop light-cone
diagrams coming from our perturbation series
(omitting the problem of the Pomeron for the mo-
ment) is a subset of the diagrams coming from the

map (2.8) is straightforward, but prohibitively in-
volved for more than one loop. The details for the
single loop are tedious but not hard, and will not
be presented here. Instead, we will present the
method of equipotentials in the next section, from
which all diagrams given via (2.8) can be read off
by inspection.

Now, because the set of light-cone diagrams
generated by our field theory is a subset of the
diagrams of the dual model generated via (2.8) and
vice versa, the two sets contain each other and
hence must be identical sets. This completes the
proof.

The equivalence proof between our field theory
for all orders and the dual model will be sketched
in the next section.

In our previous paper we presented the "Feyn-
man rules" for string propagators and string
vertices. By a straightforward application of these
rules, we have constructed exact expressions for
single-loop amplitudes. But because we do not
solve the problem of measure, we can only corn-
pare the momentum-dependent parts of the inte-
grand with the usual dual result. Except for the
problem of the measure (the Jacobian}, we can
rederive the usual result for the dual single-loop
amplitude.

III. EQUIPOTENTIAL DIAGRAMS

In the previous section we showed that the Rie-
mann surfaces defined by higher interaction terms
in our perturbation theory are topologically quite
complicated. In general, all nonplanar graphs will
involve Riemann surfaces which have a cyclic
characteristic topology, so that a light-cone prop-
agator which begins at one position in the light-
cone diagram automatically appears one cycle be-
low or above, by the nature of branch cuts of the
logarithm function (see Fig. 6).

In this section we will introduce a new, much
simpler graphical technique in which all higher
interactions have a very clear topological struc-
ture. These are the "equipotential diagrams. "
Not only do these equipotential diagrams give us
an intuitive picture of how strings interact, they
give us rigorous answers as to which string inter-
actions do or do not appear in our Lagrangian.
Since we know that the integrand of the dual ampli-
tudes for trees and loops corresponds to Neumann
functions defined over Riemann surfaces, we can
always conformally map each Riemann surface to
the unit disk (with interior holes). Let us say that
we have the unit disk with two positive sources on
the left and two negative sources on the right
(which corresponds to the four-point function). By
functionally integrating over such surfaces, we ob-
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A'

FIG. 7. The equipotential diagram for the four-point
scattering amplitude. Each equipotential line represents
a string at a certain time.

tain the Neumann function defined over this surface
with four electric sources lying on the rim. Now
draw in the equipotential lines. The solution to
this simple electric current problem is given in
Fig. 7. Now let each equipotential line represent
a string at a given time. Notice that if we treat
the equipotential lines as the successive topologica1
"histories of strings, " then we have two strings
emerging from the left, which merge at point A,
so that a single string propagates until it later
splits at point 8, whereupon the two strings prop-
agate to the right. This is topologicaQy equiva-
lent to the topology of a simple (st) light-cone
four-point function, as shown in Fig. &.

Now, in Fig. 9, we have a unit disk with two
positive sources on the left and three negative
sources on the right, which generates the Neu-
mann function responsible for describing the five-
point interaction. Notice that its equipotential
lines, if they are considered to be "successive
histories" of interacting strings, create a string
topology equivalent to the light-cone configuration
of Fig. 10.

Similarly, the Neumann function defined over the
surface in Fig. 11 (which is a unit disk with a con-
centric hole) corresponds to the single-loop func-
tion. Its equipotential lines, in turn, are topologi-
cally equivalent to the single-loop amplitude shown
in Fig. 12. Here, we have two strings, which

merge at point A, propagate as a single string
until they split at point 8, until they remerge at
point C and again split at point D. (Notice that the
equipotential lines must be perpendicular to the

FIG. 9. The equipotential diagram for the five-point
function.

boundary. )
%e can apply this powerful, rigorous, yet intui-

tive idea to the question of the four-string interac-
tion. In our previous paper the compe11ing reasons
for requiring the four-string interaction were
clouded beneath mathematical details and involved
topological arguments. In the language of equipo-
tential diagrams, it is obvious that the four-point
Neumann function corresponding to the (tu) graph
is given by Fig. 13, where the successive order-
ings of positive and negative sources a1ternate
along the rim. Notice that strings 1 and 2 emerge
from the positive sources, propagate to the center
of the disk, then merge at a point interior to both

strings, then cross over, and finally propagate in

opposite directions until they approach the negative
sources. The light-cone diagram corresponding
to this (tu) amplitude is much more involved (see
Fig. 14).

It is a straightforward exercise in electric cur-
rent theory to generate all planar multiloop string
interactions by this method. But before we extend
these topological tools to the question of Pom-
erons, we will give the mathematical reasons for
our fundamental conclusion: The topology af equi
Potential lines generated by Placing arbitrary
sources on the boundaries of a ftiemann surface
corresponding to a unit disk saith an arbitrary num
ber of interior, nonovertaPPing holes is isomorPhic
to the topological structure of the interacting
string.

The proof that the equipotential lines (obtained by
solving the classical electric potential problem)
trace out the "history" of the interacting string is
not hard. First, we notice that the multiloop am-

FIG. 8. The light-cone Feynman diagram for the
four-point function.

FIG. 10. The light-cone Feynman diagram for the
five-point function.
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FIG. 11. The equipotential diagram for the four-point
single-loop function.

FIG. 13. The equjpotential diagram for the four-string
interaction.

plitudes have integrands which are in one-to-one
correspondence with the set of all conformally in-
equivalent unit disks with a specified number of
nonoverlapping interior holes with sources on the
boundaries. The solution of the path integral prob-
lem in the dual model simply yields the Neumann
function defined over these surfaces. Second, we
notice that the mapping which takes us from the
unit disk with holes to the light-cone configuration
is given by Eq. (2.8). Notice that the real part of
the complex variable p is simply equal to the
strength of the electrostatic potential at that point.
By taking lines of constant 7, then, we simply map
out the line element which corresponds to an equi-
potential line of the original unit disk with holes.
Then, because conformal transformations preserve
angles, and because the topology of equipotential
lines and force lines are unchanged by conformal
transformations, we see that the topology of equi-
potential lines defined on disks with holes is iso-
morphic to the topology of lines of constrant & de-
fined on the light-cone diagram. But the lines of
constant 7' of the light-cone diagram correspond
to the string itself, thereby completing the proof.
The key to the proof, of course, is that the mapping
of a unit disk with nonoverlapping interior holes
onto the light-cone configuration is a function of
the Neumann function defined over the original
disk. The equipotential lines defined on the disk
are mapped exactly onto the strings (i.e., lines of
equal r) of the light-cone diagram via a conformal
transformation given by the Neumann function de-
fined over the original disk. Now that we have
established the usefulness and mathematical mo-

tivation for studying equipotential diagrams, we
will now use this tool to explore the topological
structure of nonplanar diagrams in order to isolate
the Pomeron contributions.

Nonplanar diagrams arise when we put sources
on both boundaries of the unit disk with a concen-
centric, interior hole. (If we put quark lines on
the meson lines, we see that the isospin character
of the intermediate channel is that of the vacuum,
and so is a likely candidate for the Pomeron. )

In Figs. 15(a) and 15(b}we give the light-cone
representation of a, typical nonplanar diagram.
Notice that points at the top of the Riemann sheet
of the intermediate channel must be identified with
points at the bottom. In Fig. 15(c},we give its cor-
responding equipotential diagram. So far, we see
that this diagram can be obtained by a straight-
forward iteration of the three-string interaction.
Now let the radius of the interior circle approach
zero, and we will see that this produces an inter-
action which is not included among three- and four-
string interactions. As the interior radius shrinks
to zero, the two negative sources located in the
middle of the diagram begin to act as an effective
negative charge, without the presence of the origi-
nal interior hole. Because the effect of the interior
hole is washed out as it shrinks to zero, we can
replace the negative sources on the interior hole
with one effective negative source. But since the
equipotential lines of a single effective source are
simply circles, we are forced to conclude that the
Neumann function for the nonjtanar diagrams must
admit intermediate states corresponding to closed
strings (rings).

FIG. 12. The light-cone Feynman diagram for the four-
point single-loop function.

FIG. 14. The light-cone Feynman diagram for the four-
string interaction.
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In Fig. 16 we have the equipotential lines drawn
for a unit disk with an interior hole of arbitrarily
small radius. Notice that the equipotential lines
of this effective source close on themselves. Two
strings emerge from the left, propagate until they
merge at point A, whereupon this single string
propagates until its ends merge at point B. The
equipotential diagrams force upon us the necessity
of accounting for direct transitions between
strings and rings. This closed string then propa-
gates toward the center of the disk, until it breaks
at point C into an open string, which then breaks
again at point D into two outgoing strings, The
light-cone diagram for this nonplanar amplitude is
given in Fig. IV. Notice that the points on the top
and bottom of the Pomeron propagator must be
identified with each other, so that a Pomeron prop-
agator is a tube rather than a strip.

'We see, therefore, that the equipotential dia-
grams force upon us the addition of new terms into
our second quantized Lagrangian if we are to pre-
serve duality and crossing symmetry. Because we

know that the'conventional dual model gives rise to
integrals over Neumann functions which generate

h

FIG. 16. The four-point nonplanar single-loop diagram
with equipotential lines closing on themselves, creating
Pomerons.

dual amplitudes, and because our equipotential
diagrams clearly show that closed string config-
urations appear in these Neumann functions, we
are forced to admit these Pomeron contributions
to preserve duality and crossing symmetry (If.
the contribution of these Pomeron couplings is
omitted in our second quantized approach, then we
mill obtain a field theory for the string which cor-
rectly yields the tree diagrams of the dual model,
but does not preserve duality and crossing sym-
metry when unitarity corrections are taken. The
theory of the string without Pomeron contributions
in the Lagrangian will yield a model which is uni-
tary but not Lorentz-invariant and does not have
duality in s-channel and t-channel diagrams. )

There are parallels between the situation here
and the situation in ordinary field theory, where
the problem of the deuteron bound state occurs.
In ordinary field theory, the deuter on bound state
occurs when we sum over an infinite set of Feyn-
man diagrams Thus,. to any finite order in per-
turbation theory, the deuteron bound state does
not appear in the set of intermediate states. The
deuteron emerges, however, when we sum over
al/ Feynman diagrams and hence must be included
in the Hilbert space of the exact, interacting theo-
ry. The anaolgous situation occurs in the string
model, except now the Pomeron appears as a bound
state when only summing over single-loop contri-
butions, because we are actually summing over an

(c)

FIG. 15. The four-point nonplanar single-loop diagram
represented as (a) a light-cone Feynman diagram, (b) a
pole diagram, (c) an equipotential diagram.

FIG. 17. The four-point nonplanar single-loop light-
cone Feynman di~ram displaying the Pomeron inter-
mediate state.
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FJG. 1S. The string-string-ring vertex. Two interior
points of one string cross over and rejoin, forming a
string and a ring.

infinite number of Regge trajectories. In this
case, however, the bound state contribution must
be added explicitly to our Lagrangian if we are to
preserve duality and crossing symmetry.

The simplicity of equipotential diagrams allows
us to explore the nature of further Pomeron-
Reggeon contributions to our Lagrangian. Because
we are free to take all conformally inequivalent
Riemann surfaces which correspond to a disk with
N holes, it is not hard to exhaust all possibilities:

(1) R-P graphs (Reggeon-Pomeron): This corre-
sponds to the situation mentioned previously, that
a string propagates in time until its ends merge,
whereupon it becomes a closed string or Pomeron.

(2) R-R-P graphs: In this situation, one string
propagates in time until two points located in the
interior of this string touch and cross over. In
Fig. 18 we see the topological deformation of the
string. In Fig. 19 we see the equipotential graph
responsible for this interaction. In Fig. 20 we see
the light-cone Feynman diagram corresponding to
the previous equipotential diagram.

(3) P-P-P graphs: Because we are forced to
admit both rings and strings into our Lagrangian
formulation, we are also obliged to admit tube-
tube interactions. In particular, three tubes may
interact through the following mechanism: One
tube propagates in time, until two points located
on the tube come in contact with each other and
cross over, thereby forming two smaller tubes.
This interaction can occur in essentially two ways:
The tube may fission such that we produce two

FIG. 20. This diagram displays the pole structure of
the diagrams shown in Figs. 18 and 19. The wavy line is
a Pomeron.

tubes exterior to each other (as in Fig. 21), or we
may produce two tubes such that they are interior
to each other (as in Fig. 22), a "coaxial" config-
uration. We present an abbreviated form for the
equipotential diagrams of one configuration in Fig.
23 (the outer circle is a Pomeron).

(4) Higher interactions: These interactions can
occur as simple iterations of the original vertices.
In Fig. 24(b), for example, we see an intermediate
line which oscillates successively between Regge-
ons and Pomerons. Its equipotential diagram is
given in Fig. 24(a) (we omit putting in the sources).
(We will argue against the addition of higher-
string interactions into our Lagrangian in Sec. VI.)

It is now easy to formulate a rule for which fun-
damental vertices are allowed in our Lagrangian.
We will take only those terms which correspond to
a local change in string topology such that

(1) the ends of strings may join to form another
string (ring) (likewise, strings and rings may
break into strings), and

(2) two interio points may touch and change
local topology as in Figs. 18, 21, and 22. This
allows for P-P-P, R-R-P, and R-R-R-R interac-
tions.

Those interactions which require combinations of
the above interactions can probably be decomposed
into a sequence of interactions such that the two
interactions are separated by a finite-time interval
(e.g. , P-P P-P, P P Rint-eraction-s)-.

With the aid of equipotential diagrams, it is ob-
vious now why there is a close association between
the usual dual model and the Shapiro-Virasoro
model. In the former case, we take functional
integrals over the upper half plane, while in the
latter we take functional integrals over the entire

-~ =oo
FIG. 19. The equipotential diagram displaying the

string-string-ring vertex.
FIG. 21. A ring pinches at an interior point and

creates bvo rings exterior to each other.
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FIG. 22. A ring pinches at an interior point and
creates bvo rings, one interior to the other.

complex plane. Likewise, Mandelstam's mapping,
which mapped the upper half plane onto light-cone
surfaces, can be easily extended to the Shapiro-
Virasoro model by mapping the entire complex
plane via exactly the same transformation. But
because the mapping contains logarithms of points
which can freely move in the entire complex plane,
the light-cone map can be written with an infinite
number of superimposed Riemann surfaces, all of
which correspond to the various ways in which a
set of interacting tubes may be "sliced. " (When a
tube is sliced in a direction parallel to its axis of
symmetry, we must still identify points which were
separated by the slicing. In Fig. 25, for example,
we have an example of a four-tube interaction. In
Figs. 26 and 27 we see its corresponding light-
cone diagram. )

The relationship between the Shapiro-Virasoro
model and the usual model is now clear. In the
usual model, a nonplanar diagram corresponds to
placing sources on more than one of the holes of
the disk with N holes. (We include the outer edge
of the main disk as a hole. } In the limit as one of
the diameters of these holes goes to zero (which
corresponds to taking the multiplier of the hole's
projective transformation to be one), then the
electric force lines far away from this small hole
cannot distinguish between an "effective" source
and the hole with sources. In the limit of small
diameter, then, we are allowed to replace the hole
with sources with "effective" simple sources,
which in turn is exactly the situation found in the
Shapiro-Virasoro model, where we have sources
which are allowed to vary throughout the entire
complex plane. We see, therefore, that the inter-

FIG. 24. These diagrams represent intermediate
states which oscillate between rings and strings. (a)
shows the equipotential diagram defined on a Biemann
sheet with two holes. Only the right-hand hole carries
sources. (b) displays the pole structure of such an
intermediate state.

mediate states of the nonplanar diagram in this
particular integration region yields exactly the
states of the Shapiro-Virasoro model.

Now that the question of the Pomeron has been
resolved, we still must investigate the problem of
proving the equivalence between the field theory
of strings (to all orders) and the dual model. The
general proof has not yet been completed. How-

ever, it is possible to give all the general features
necessary in such a proof.

The sketch of the equivalence proof again makes
use of the equipotential diagrams. First, as be-
fore, we can generate the map which takes us from
the upper half plane (with holes) to the light-cone
frame via the map (2.8), except now the Green's
function must be defined over the appropriate
topology. Because the transformation maps equi-
poteetial lines into lines of constant real part and
force lines into lines of constant imaginary part,
we see immediately that the transformation pro-
duces the long, parallel strips of the light-cone
diagrams. We have thus shown that the diagrams
generated by the dual model are subsets of light-
cone diagrams.

FIG. 23. The equipotential diagram for the ring-ring-
ring vertex. The two positive sources represent two
interior holes of the Hiemann sheet with arbitrarily small
radii, each with positive sources on the holes. The
outer circle is a Pomeron coming in from infinity.

FIG. 25. The equipotential diagram for four-Pomeron
scattering. The outer circle is a Pomeron coming in
from infinity.
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FIG. 26. The light-cone Feynman diagram for tube-
tube scattering.

Now we must show that the set of light-cone dia-
grams are subsets of the set of dual graphs gen-
erated by (2.8). This, in general, is quite difficult.
However, we can make some definite remarks con-
cerning this task. First of all, the first iterations
of our vertices produce self-energy corrections to
our open and closed string propagators as in Figs.
28(c) and 28(d). To produce the equipotential dia-
grams for these elementary graphs, it is nec-
essary to include in our discussion "doughnuts, "
or disks with handles. Consider the double over-
lapping loop diagram shown in Fig. 28(b}. As is
well known, the Riemann surface which generates
this graph is given by a disk with two interior
holes, such that points along one hole are identified
with points along the other hole. This produces a
disk with one handle. (By sewing this onto its
Riemann double„we obtain Riemann surfaces cor-
responding to spheres with handles. }

By identifying points of one interior hole with
the boundary points of another interior hole, we
are able to propagate strings (equipotential lines)
via this "worm hole, "i.e., a string may disappear
into one hole and reemerge from another hole in
quite another region of the Riemann sheet. Now
consider the self-'energy graphs of Figs. 28(c) and
28(d) and the equipotential diagrams which must
generate them. ln order to have one string (ring)
break and then reform again, it is necessary to
consider the electric current problem defined not
on disks with holes but on disks with worm holes
(or handles).

Now consider Fig. 28(a). A closed string (called
A) propagates from negative infinity, until it en-
counters the interior holes 8 and C (there are two

holes labeled C, which are to be identified with
each other}. The closed string first breaks at a
point near the top hole. The two remaining closed
strings then propagate, one collapsing into the top
hole (C), and the other ring surrounding the bottom
holes (B and C}. Then ihe closed ring, which van-
ished into the top hole C, reemerges out of the
bottom hole C. This closed string then collides
with the original closed string which surrounded
both 8 and the bottom hole C, to create only one
string surrounding the hole B. Because B has
sources located on its boundary, the closed string
then collapses into this hole. This sequence of
events was not introduced simply to conform to the
diagrams shown in Fig. 28(c). This sequence of
events is an exact solution of the electric current
problem defined on Riemann surfaces required by
the dual model. Likewise, it is a simple matter
to generate the equipotential diagram which yields
Fig. 28(d).

(d)

E
C

A

A'
L

FIG. 27. The Riemann sheet structure for the four-
Pomeron interaction.

FIG. 28. Higher-order interactions produced by our
field theory. (a) shows equipotential lines defined on a
Riemam surface with three holes (such that the bound-
aries of two holes are to be identified with each other).
(b) represents a typical overlapping double-loop diagram
which is defined on Rien~» surfaces with handles.
(c) shows the Pomeron self-energy diagram represented
by Fig. 28(a}. (d) shows a typical Reggeon self-energy
diagram with Pomeron intermediate states.
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Now that we have shown how to generate self-
energy diagrams, it is a simple matter to use
disks with N handles to generate simple reducible
and irreducible vertices. Because we are allowed
to make the holes appearing in our Riemann sur-
face as small as we wish, we can now generate ex-
tremely complicated Feynman diagrams by simply
placing certain clusters of holes in sequence. Be-
cause each cluster of holes produces a certain
sequence of topological manipulations on the equi-
potential lines, then by placing a certain cluster
of holes in sequence, me are able to reProduce ex-
tremely complicated Eeynman diagrams. e do
not discuss the problem whether these equipoten-
tial diagrams generate the complete series of
Feynman diagrams given by our field theory, to
all orders. Vfe do say, however, that all higher-
order Feynman diagrams that we have looked at
have an equipotential analog.

IV. POMERON - REGGEON INTERACTIONS

Now that we have shown the necessity for adding
Pomeron contributions to our Lagrangian, it is
now a straightforward task to give expbcit forms
for the Pomeron contributions. We will write

~s =&so+&»+&~+&~ (4.1)

Y(a) = y+2 g y„' cos +y'„sin
n=1 Q' Q'

(4 &)

The field functional 4'~+[ 1'] can likewise be de-
composed into harmonic-oscillator eigenfunctions
(Hermite polynomials):

where Z~ corresponds to the free Pomeron La-
grangian, g» to the A-P vertex, g~ to the 8-R-I'
vertex, and g~, to the P-P-P vertex. As with the
case for the open string, the closed string breaks
and changes topology via 5 functional interactions.

The field functional for the Pomeron will be rep-
resented by @[Y],which is a functional of string
variables taken along a closed ring:

4 [Y]= g ( Y„(o,), Y„(o.), . . . , Y„(o,)). (4.2)

The free Lagrangian for the Pomeron is identical
to E(l. (2.3), except now the functional integration
must be taken over field functionals defined over
multilocal rings. Likewise, canonical commutation
relations for rings and strings are identical.

To calculate Green's functions, we first have to
define the ring in terms of normal modes:

(&) f - {&) ( Y») (4.4)

[g ( (() } gt ( (/) }]= 6(P q )6(P (l){)((.() } (
())

} (4 6)

D-2

f („(')}(y, Y„y, ', y, ) = II II II H(„(()}(y,' ')exp[- & (yI' ') ]exp(&[P'y- Y &(P p {nI, ])])
E~ I fs-I 0=1,2

where (4.6)

Also

p {„(())) (fz(() pa
P+ =1

a =1,2

(: (Y„„Y„&,) =«ol~„[Y„,]~o',[Y., &,]lo))

SYa, T'exp Jdod7 & Ya 7, —Y 0 5 Yo', r, —Y o'

1.= —(Y' —Y"} . (4.7)
4p

When we perform calculations with the Shapiro-
Virasoro model, it appears as if the two oscillator
modes a and 5 are essentially decoupled from each
other. This is deceptive because we actually have
not yet integrated over a redundant degree of free-
dom in the model. Because we are dealing with a
ring, it does not matter at which point we define

the origin of our coor dinates, so we are free to
spin our ring.
We can perform the following transformations

on the string:

exp{a[I„(a)+I.,(P))) Y„(o)exp{ &[L,(u}+1.,(P)jj-
= E'„(o,T}, (4.8)
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exp i-—[f.,( a) —L,(P)] [ Y„(o}I .28

xexp i —[Io(a) —I o(p)] = Y&(o+ 8) (4.9)I. 2e

/

(see Appendix B for notations). We should, there-
fore, integrate over the parameter 8. (Likewise,
we have the option of integrating over the point at
which the tubes attach with each other, i.e., we

can integrate over the vertex function. )
This 8 integration introduces the usual projec-

tion operator

[ . 2eI =— de exp, -i —[r,,(a) —L„(P)]
we 0 e

2 ((2/a) [L,(a) —f;(P)]]
L.(a) —f.(P)

(4.10)

Because we introduce the 8 integration in our prop-
agator [ see Eq. (B12)], we need not include it in
»»««&e&. We can now write down the interac-
tion terms as simple combinations of 5 functionals:

g~, =~g QXSY +, &24~ X 4~ Y 5 X a —Y o )+Hc. 0&a &2wp, ,
+ a

. 3

g~ = ~g L)X,SX2 SY r i/2~ P+i 0+2 P+3 O'P Xi 4P X2 4P Y

(,- )
X &(X,(o,) —X,(o, ) 8(oo —ol) —&a(oa) 8(ol —oo —»3)

0 1

(4.11)

—Y(o,) 8(-o, + o,)e(-o, +o, + va, )) + H.c.

a, &0, a, =a, +a„0&o,&wa, , o, =o, +o, (0&o, &va,),
o( = o2 (0 &(7( &Vo), og = o2 + 7fa3 (V( &(70+Tfag), (4.12)

.3

a3=~g & (2 ),~25(P~i —P+2 —P+3)+a~([Y,] (, [ 2]+P [Y3]
1-

Y1 g1 Y2 0'2 we2 0'~ Y3 0'3 g~ we2 + H c
1

0&o, &va, , a, &0 a, =a, +a„o,=o, (0&o, &wa, ), o, =o, +ma, (0&a, &wa,). (4.13)

Now that we have functional expressions for all
vertices, it is not hard to get exact operator ex-
pressions for each of these. In our previous paper
we outlined three ways in which this vertex can be
obtained:

(1) Simply calculate the exact Neumann function
over the finite Riemann surface by expanding in

eigenfunctions of the free string. By letting the
interaction interval go to infinity, we obtain the
vertex in terms of eigenstates of the string. (By
expanding the Neumann function in terms of co-
sines, we obtain the vertex in terms of string

eigenstates, not eigenstates of the usual Hamil-
tonian. }

(2} Attach Green's functions to the t) functional
vertex, integrate over a complete set of string
eigenstates, and we obtain the interaction in terms
of finite-time matrix elements as before.

(3) Set up the Goto-Naka equations. " These
equations are the solutions to the problem of find-
ing the state vector which is annihilated by the
argument of the 5 functional.

All three methods yield identical results.
We will summarize our results as follows:

v, ( ( :((fD.x„'.u, v=-G(x;..;ra((:,(vo;v ..)lie(, ~",y."-.~„.v„*(„.
n

=a,(TO, T,)(detM, )o 2 2exp +—,
' (Z, It(t, /' Iz,)~,

2 " ng 2 ma
A„" =— cos —cos da, n~ x 0

We o Q Q

I~.) = Ilf), I~,) = IY'), Is, ) = I~), (4 14)

2 tKT . 2MVA„=— cos —sin do, A'„'; =0,
we 0 e A 01,02 0Oyn

A01 A =00,0

(4.15)
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~ ' =s -'g' (m -') (a')" s -'-c, s -'6

2(v,)„=x"c,s -'(w')" +c,s, -'6
(4.16)

(4.1V)

(C, )„=6„cosh ' ' (r I = ~„b,= 1, hI = 2, f), = 2),

(S)„„=" sinh ' ' (b, =l, f), =2, f), =2)
2 $, Q

2"=0,(A")„=6„6„(i,g =1, 2),

V (T„T,T )=—g' JDX,'DX,'DY'G(X„T;X,', 0)G, (X,', 0 X„,)G (Y', 0; Y.

(4.18)

xg 6(x,' „-a'„'„x,' ) II |}(y'„'-"' —a„" x, .)
n

j = 3,4

(T T„T,)(ee(M )' DT'ex0 ~-'Q (x ()T"l )(x
j,j=l

I»» = IX ), ls. ) = IX.), I» ) = I&'), ls, )= l~) (4»)

2 2 So'2cos 'cos 'do, (oI=v, if 0&vI&v, ) (uI=&r, +IIa, if uI&a, +IIa, )T
FG2 P Ck2

2 " 3 2nD'3 FflQIB„~= COS COS dtX3,
m+3 N3 Q'I

n, m 010

F41 2
WQ' 3

2Pgg3 PPfg I81Q COS dg3 q

0 N3
(4.20)

PP2Q IBO ~ = — - COS dO'2,
p

a21 =1
0yp

g21 0n, p

~31 2

ma 3 J
tf &3

COS d03s
0 QI

g31
0, 0

a" =0 a" =0 a41 =0Ont t 00 t np

(a")„=6„., a"=a"=a"=a"=a"=a"=0, (4.21)

g(2} ff -Ia l Ii}f1(aT)luff -I +g 6 ( 2}

u, =(a')"z a"
(4.22)

(4.23)

1 1

) if i=(
3 4 (4.24)

(Z,.)„„=n „6Coth C», (j &i):a„" =—a~'„, C, = C2 = 1, C, = C0=2,

V ( „T„,)= —,g J DY,'DY,'DY,'G (Y„,;Y,', 0)G (Y,', 0;Y„T',)G (Y,', 0;Y„T)
3

n T2

j= 304 i= 5,6

8
=a (vI v v )(detM ) ' 'exp +-' p (z, IN(,' Iz,)

j, S= 1

Iz,)= I&,I), is, )= I&,'), ls,)=l&,'), Is.)=l&,'), Is,)= I&.'), ls.)= I&'.), (4»)
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Cjij A 1

(j=1,2;i =3, 4, 5, 6), f, =cos if i odd, f, =sin if i even, 4=2 if i=3, 4, 4=3 if i =5, 6,

C'=0 if (i=5, 6 and j=3 4) C"=1 C" =1 (j&i):C" =-C", C" =0 if i=3, 4, 5, 6, (4 26)

(4.27)

r
r

1
'

1

3
3

1
2

if i=( 3

5
6

(4.28)

( J',)„=2n 5„coth
+a

(4.29)

2 ~ 2''~
Ct~ = fi(0)f~

'
dci, if i =3, 4, 5, 6; j=1,2,

WQp 0 Q'I

C ~0=0 Co'o=1 zf ~=3 5; g =1

The a's are functions of the interaction times and
are simple contributions from zero mode states.

Notice that all matrices are defined in terms of
products over matrices, one of which is defined
as the inversion of other matrices. Even though
it appears that summing the infinite series is a
formidable task, we have been able to obtain
closed forms for all matrices appearing above. In

Appendix A we use a method first developed by
Mandelstam for calculating closed forms for all N
matrices. We apply this technique to the direct
transition vertex and obtain exact results. Fur-
thermore, we can easily obtain closed forms for
the three-Pomeron vertex, again using the tech-
niques mentioned above. Mandelstam calculated
the exact Neumann function defined over a Rie-
mann strip representing the breaking of a single
string into two smaller strings. But because we
know that the three-Pomeron vertex function cor-
responds to a Riemann surface which is a simple
extention of the Riemann surface corresponding to
the three-Reggeon vertex, we can obtain the three-
Pomeron vertex exactly by expanding Mandelstam's
original result over cosines and since (with twice
the argument) of the ring rather than just the co-
sines of the string. In this way we trivially obtain
the exact form for the three-Pomeron vertex.

Notice that these Reggeon and Pomeron vertices
are analogous but not exactly identical to the ver-
tices found by factorizing the conventional dual
amplitudes. This is because the vertices calcu-

lated in this section are not dual. Sums of light-
cone diagrams obtained by iterating these nondual
vertices, of course, produce dual results. We ex-
pect, therefore, that our vertices differ radically
from the usual Pomeron vertices.

Though we can obtain exact results for some of
the previous vertices, we cannot compute exact
results for all of them. The 8-8-A-8 vertex has
so far eluded all attempts to find exact solutions.
This is because the techniques developed by Man-
delstam for finding exact solutions break down
when we consider equipotential diagrams with
more than three sources.

V. UNITARY MASS CORRECTIONS

The direct transition term between a Reggeon
and a Pomeron (i.e. , between a ring and a string)
leads us to the exciting prospect of being able to
diagonalize the mass matrix to shift the masses
of the theory. In the usual theory, the presence
of the zero-mass vector particle is required for
Lorentz invarianee. All attempts to shift this
mass yet preserve the delicate properties of the
dual model have failed.

The possibility of summing over an infinite
series of direct transition graphs, however, opens
the possibility of obtaining a dual model which re-
tains all the desirable properties of unitarity,
duality, and transverse spectrum. By summing
over the graphs shown in Fig. 24(b), it now be-
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comes plausible to talk about mass shifts in the
theory.

The procedure resembles the one proposed by
Gremmer and Scherk, ' where they investigated
summing over Pomeron contributions to shift the
zero-mass vector particle. Qur procedure is dif-
ferent because our Pomeron graph contains a non-
dual transition amplitude between the Reggeon and
the Pomeron. In the formalism of Cremmer and
Scherk, the Pomeron contribution to order g' in
the single-loop graph is equal to the entire non-
p1anar graph. In our formalism, the direct transi-
tion graph are portions of the nonplanar graph.

The series can be formally summed and yields

M =(0(, exp[(at [Ni'~[b)+(at [Ni'i) c)](0), .

VI. HIGHER-ORDER CONTRIBUTIONS

The question remains whether or not higher con-
tributions must still be added to our Lagrangian
before we obtain the entire dual model. The an-
swer seems to be no.

In the previous section we demonstrated the
necessity for adding the closed string contribu-
tion, because they are present in a certain inte-
gration region of the Neumann function defined
over a disk with N holes. When we deal with
higher contributions, however, we are essentially
talking about string-ring interactions which con-
tain combinations of the fundamental interactions
given in Sec. III. If we go into another Lorentz
frame, then it is possible to decompose these
higher interactions into sequences of the funda-
mental ones. In Fig. 29, for example, we have
two strings which touch at two distinct points which
are interior to both strings, whereupon the topolo-
gy changes and we are left with two strings and
one ring (this is an R-R-R-R-P graph). If we go
into another Lorentz frame, however, it is pos-
sible that these two "simultaneous" interactions
can be separated into two sequential events. Like-

= C-Q
FIG. 30. The P-P-R vertex {probably not allowed).

wise, the P-P-R interaction and the P-P-P-P in-
teraction (Figs. 30-32) can be decomposed into a
sequence of the fundamental interactions.

The ultimate test, of course, as to whether
these higher interactions must be included into
our Lagrangian lies in whether or not they can oc-
cur in equipotential diagrams for the corresponding
surface, and whether or not they occur for a finite
regv. 'on of our integration range. The last condition
is particularly important, because even if certain
diagrams can exist as equipotential diagrams,
they must exist over a finite range of all interac-
tion times, or else they are zero, i.e., they must
have zero measure.

%'e can summarize our conditions into one rule:
All terms in the Lagrangian are in one-to-one cor-
respondence with the set of distinct topologies al-
lo&red by the equipotential diagrams uhich have
nonhero measure.

The condition that a term in the Lagrangian cor-
responds to a topology of the equipotential diagram
rules out many possible string interactions. The
second condition, that these terms have nonzero
measure, probably limits the interaction terms to
the ones considered in this paper.

For example, the four-Pomeron interaction can
be ruled out for the following reason: If we have a
four-Pomeron interaction mediated by a Pomeron
intermediate state, and then we let the intermed-
iate Pomeron state have an arbitrarily small inter-
action time interval, we will ultimately approach
a "four-Pomeron interaction, "which, of course,
does not require a separate term in the Lagran-
gian. But the intermediate Pomeron state requires
two degrees of freedom (one corresponding to the
length of the propagator, the other corresponding
to the twisting of the tube). Therefore„ the four-
Pomeron interaction, if it is to have nonzero inte-
gration measure, must have two degrees of free-
dom, each degree of freedom corresponding to an
integration variable, which ultimately is trans-
formed into a Koba-Nielsen variable. Our task is
now to try to construct a four-Porneron interaction
with two degrees of freedom (two integration vari-

FIG. 29. Figs. 29-32 represent equipotential diagrams
which have zero measure and are probably not allowed
in our Lagrangian. This diagram shows A-B-B-B-P'
scattering. FIG. 31. The P-P-P-P vertex {probably not allowed).
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shies). ln Fig. 32 we see the two-Pomeron con-
figuration at the moment in which it mill split and

reform another topological configuration. We see
that point A. is arbitrary, since we can always
rotate the tubes. The distance between A and I3,
homever, is one degree of freedom that me must
integrate over. Once the distance between A and
8 is determined, however, we have determined
all parameters for this interaction because the
interior circle and exterior ring have predeter-
mined lengths. We see, therefore, that the four
ring interaction term contains only one degree of
freedom, while we required that this contribution
have two degrees of freedom if we are to have non
zero measure.

Thus, the four-Pomeron graph does not contrib-
ute to the Lagrangian. Likewise, all higher string
interactions involving tmo or more simultaneous
"pinchings" or "breakings" of strings (rings) can
be shown to lack the proper number of degrees of
freedom (i.e., the right number of Kobe-Nielson
variables) and therefore do not contribute to our
Lagrangian.

But recently several people' have demonstrated
the equivalence of the zero-slope Shapiro-Virasoro
model and quantized gravity, the latter which con-
tains nonpolynomial graviton couplings. Because
we do not allow nonpolynomial Pomeron couplings,
we are faced with an inconsistency. There are
severa1 mays out:

(1) The light-cone graviton theory contains only
polynomial couplings (which is unlikely).

(2) The zero-slope limit is undefined in this
case.

(3) Nonpolynomial graviton couplings emerge out
of polynomial Pomeron couplings.

UII. CONCLUDING REMARKS

We have completed all counting arguments up to
the first loop, and have indicated hom to generate
higher self-energy graphs. %e introduced the pow-
erful tool of equipotential graphs mhich give us all
string interactions by inspection. We demon-

FIG. 33. Equipotential lines for the Reggeon-Porneron
transition vertex.
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APPENDIX A

In this appendix we give the Neumann function
which corresponds to the Pomeron-Reggeon direct
transition. The Neumann function in the upper
half plane is well known and given by

tq(z, z') =in[z-z'I+in(z -z'+[. (Al)

Consider the case wI|ere the external source of
particles is located at Z=~ and Z=ia, with a
being real and positive. Then the mapping from
the upper half plane to the light-cone Riemann
surface is given by (see Fig. 33)

p = 7+io = —,
' a[in(z —ia) + ln(z+ia)], (A2)

where u/2=P, is the (+) component of the particle
momentum. The interaction time is determined
by

strated the necessity for Pomeron couplings, and
gave explicit forms for all vertices. We shomed
how to iterate direct transition graphs, but that
these graphs do not move the zero-mass p. Last-
ly, we argued against adding higher string interac-
tions into our theory.

Bp—=0
az (A3)

l.e.y

(A4)

FIG. 32. The four-ring interaction (probably not al-
1owedj. It requires only one free parameter to define
this interaction, while we require two variables for it to
contribute to our Lagrangian. Therefore this diagram
has zero measure.

exp ——a' (A&)

The Neumann function in the light-cone surface
can, of course, be obtained if one substitutes the
inverse relation of (A2)
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1 no'
Pa(o) = —Pa+ Z Pa.ncos

ft =j.

2no
P~(c) = —P~+ ~ P», „cos

17Q Q

2n0'
+qp „sin

Q
(AB)

FIG. 34. Riemann surface for the Beggeon-Pomeron
transition, describing a strip transforming into a tube.

into (A1). Then the transition matrix between a
Reggeon to a Pomeron is given by (see Fig. 34)

It is, however, not simple to calculate the Fou-
rier coefficients of N(P, P'). The method we show
in the following is the one used by Mandelstam in
the calculation of the 3-Reggeon vertex.

First, let us assume that

exp ~N p, p Pp g ~ Pz Q do'do (A6)

where the 0' integrations should be performed at
both ends of the light-cone strip (T=+~). The ex-
ternal momenta of the Reggeon and the Pomeron
are respectively represented as follows:

N(p, p')=

where

N""(p, p') for T, T'& TT,

N (P~ P ) for T & Tr & T

N (p, p') for T, T'& TT,

(A 9)

1 n n no' tÃ7
(p, p ) = —2 — exp ——(T- T ) 8(T —T )+exp ——(T' —T) 8(T' —T) cos —cos

a-"1 Q Q Q Q

1 ncr mr' 2+2 Nt'» exp ——(NT-mT') cos —cos + —max(T, T'),
n, m~o Q Q

(A10}

N "(p, p'}= 2 Q exp —(2»1T s1)T-N„'» cos +N&'» sin cos
1

~ Q
2 2"'

n, Ii~0

N (p, p') = —2 — exp ——(T —T') 8(T —T')+exp ——(T' —T) 8(T' —T)
pp ~ 1 2s ~ I 2n

Q

2 no' 2no' . 2n(7 . 2 no'
x cos cos +sin sin

Q Q Q Q

2 2no 2mo'
5 . 2 no . 2m''

+2 exp —(»1T+ m T'} N„' cos cos + Ni'» sin sin
Q Q Q Q

2' . 2sso'
+N„6 cos sin (m = n =0 not allowed} .

Q Q
(A11)

On the other hand, , consider the function

8 8
M(p, p') -=—+, N(p, p'), (A12)

and (A1) and (A5), we directly calculate the right-
hand side of (A12) to obtain

whose explicit form we can easily calculate. Using

1 z2+a
87 Q

i z'+aP
Q z

(A13)

(A14)

The eigenmode expansion of the right-hand side
in (A14) is straightforward, i.e., using



1842 MIC HID KAKU AND K. KIKKA WA 10

" (an-1)!! e&*"» . am
(2 n}}} a'" a

2 z z+
l

" (an —1)!!~„„(,„„(~), 2n+1
(2 n}!! cos o' v& vr)

(A15)

one obtains the expansion formula for (A14). The
right-hand side of (Ala) can be obtained by another
method as well, i.e., by operating with

on (A9)-(All).
Comparing the latter with the expansion of (A14},

one obtains

Nm}}]y, 2}}}+g =am}}+},f)z}}}+x(2n + 1 + 2 m + 1) }

u(&) xr(j ) —u(j ) —n~'2n 2fs+y ~'myf+y mm ~'gg gyp

N(" =X('~ =0

APPENDIX 8

In this appendix me mill give a fem comments on
hom to "spin*' our ring, which mas discussed in
Sec. IV. Because a closed string is invariant
under rotations about its axis of symmetry, me
expect this to be manifested as a redundancy in
our equations.

Consider the Pomeron ring Y,(o) which is to be
attached to another ring Y,(o -o,) at a certain
time. Then the continuity conditions of the world
sheet require (via the Goto-Naka equations)

[Y,(o) —Y,(o -o,)])d'& =0,
(al)

[P,(o)+ P,(o -a,)][N&=0„

X(4~ =X(6~ =0,

!v!') = —c„c (an+am)-',

(A16)
where [6'& represents the transition vertex for the
sudden rotation of the ring by an angle 0',.

The solution to (al) is given by

(6'&=exp -i P,(o). Y,(o-o,)do [6',&,
0

(2 n 1)!! }}yg
2}}+1 (2 n)! )

(2 n —1)!!
(2 n)!!

(A17}
with

P.(& -o,)l!!'.&= Y (o) l!!'.&=0.

Let us introduce the following expansion:

(aa)

(as)

2' 2 FNX
Y&(o —o,) =,x+ 2 x, „(o,) cos + y, „(o0) sin

1 2 tKT . 2 PlO'

p, (g o ) = —p+ p, „(o,) cos +q, „(o,) sin
C '

Qf

(a4}

2 g0'0 ~, 2 so'o
x( }}(vo}=x) }}cos —y4 }}sm

2nao 2mo
yg „(o'0) =xg „sm + yg „cos

(a5)

with

x),.=xi,.(0}, yi,.=y),.(0}

Similar relations mill be obtained for p& „,q; „.
Using the creation and annihilation operators

defined as

I

one can show (a2) to be

ld'&=.(016(p, +P.) exp[(s,', ~,"l «o.}l s„V]l0), ,

(a6)

x)„=~(4„+a~„),yq„=~ (bq„+b,"„),

f' cos
B(a',) =6„„

'PRO' 0sin

sin

cos
(a6}
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It is convenient to introduce the spherical basis
states instead of (86): I0(a) = Q na„~ a„.

tf =1
(811}

In the new representation (O'I} can be reexpressed

In (810) the first two factors form an identity op-
erator.

To take account of all "spinning" degrees of
freedom, one has to integrate over eo. The last
factor in (810}, therefore, provides the projec-
tion operator:

I]P(&.)&= o ~(P, +P, ) exp[(a,'la, )+(P,'lP, )]
1 ff0( . 20'~P -=— do, exp —i '[I,(a) —1,(P)]

0

x exp -i ' [l,(tM, )-l,(P )] 0)
26'0

0 j.

2 sin((2 ja)[L,(a) —J.,(P}]]
1,,(a) 1„—(P)

(810) where the equivalence only holds on states.
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