
PH YSI CAL 8 EVIE% D VOLUME 10, NUMBER 6 15 SEPTEMBER 1974
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A XP' theory of self-interacting boson fields with 0(Ã) symmetry is considered. A nonperturbative

method is developed to compute the effective potential, which becomes exact in the large-X limit. The
stability of the vacuum and possible spontaneous symmetry breakdown of the theory are studied in this
limit. The existence of a local mimimum requires 0 & l + (XX) '96m', which may be either a true
bound or an indication of the breakdown of the N ' expansion. The function P(X) that appears in the
Callan-Symanzik equations is calculated in the large-N limit of the massless theory without reference to
a perturbation expansion in A.. It is observed that the presence of a nontrivial zero of P(X) is a
necessary condition for a spontaneously broken symmetry in the massless theory. On this basis, it is
shown that this P(X) is unlikely to have a nontrivial zero. The leading-logarithm approximation to the
effective potential is discussed within the above framework.

I. INTRODUCTION

A number of the basic questions of quantum field
theory all too often seem to have only tentative
answers based on a perturbation expansion in the
coupling constant. One such issue dealt with in
recent applications of field theory is that of the
spontaneous breakdown of symmetry. ' Another is
the short-distance behavior of renormalizable
field theories, as expressed by the renormaliza-
tion group or Callan-Symanzik equations. ' A com-
plete understanding of questions of this sort is
lacking, in part due to the limitations of calcula-
tional methods.

We have tried to develop a calculational scheme
which does not involve a perturbation expansion in
the coupling constant. For the moment we have
studied the somewhat academic case of A.P' theory
with O(IU) symmetry. A nonperturbative method,
which becomes exact in the large-N limit, has
been developed for the calculation of the effective
potential of the theory. This enables us to ex-
amine questions of the stability of the vacuum,
spontaneous breakdown of symmetry, and pos-
sible nontrivial zeros of P().), the function that
appears in the Callan-Symanzik equation, without
recourse to an expansion in A. .

In this paper this scheme is presented, together
with simple applications of the results. In order
to provide the framework for this discussion, we
rederive the familiar loop expansion of the gen-
erating functional' ' for the one-particle irreduc-
ible (1PI) Green's functions by a somewhat un-
familiar method. This allows us to identify the
terms in the functional differential equation for
the 1PI generating functional which are dominant

in the large-N limit. ' The result is a coupled
pair of functional equations, which are closed in
this limit. When the generating functional is spe-
cialized to constant external field, the functional
equations reduce to ordinary equations for the ef-
fective potential of the theory. It turns out that
these equations can be solved exactly in the large-
N limit, with the solution expressed implicitly in
terms of a transcendental equation. This tran-
scendental equation lends itself to a qualitative
analysis, which we discuss, as well as a numerical
analysis, which is not presented here.

Initially, our system of equations involves un-
renormalized quantities and a cutoff. The renor-
malization of these nonlinear, implicit equations
is carried out, resulting in a coupled pair of equa-
tions for the effective potential, which is expressed
in terms of renormalized quantities only, and is
finite. The qualitative behavior of the effective
potential is studied, leading to conclusions as to
the stability of the vacuum, and possible spon-
taneous symmetry breaking in the theory. Since
the effective potential for the massless theory
satisfies a homogeneous Callan-Symanzik' ' (CS)
equation, we are able to compute the function P(X),
which appears in the CS equation, exactly in the
large-N limit, independent of a perturbation ex-
pansion in A. . It is shown that a neeessa~y con-
dition' for spontaneous symmetry breaking in the
massless theory is that P(X) have a nontrivial zero.
As a result, we argue that it j.s unlikely that this
P(A. ) has a nontrivial zero.

The paper concludes with two appendixes; one
gives the details of the renormalization, and the
other describes the truncation of our equations
required to produce the leading-logarithm approx-
imation. ~
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II. THE LOOP EXPANSION

A. Functional differential equations

Consider N self-interacting scalar bosons in the
presence of an external source, with O(hl)-sym-
metric interaction, described by the Lagrangian

(O'
I
o-&, = w(j)

= (const) [dj,]e p
' Jd' z(y„j)

(2.3)

The functional W( j) satisfies the functional dif-
ferential equation

Z((j)„j)= —,
' [(a„y,}'—g'y']

——,j'+j,(x) y, (x), (2.1)

, 5w(j) ~ 5'w(j)
5j.(-x) 3} 5j.(x)5j(y)5j(z) . =.

=fj,(x) W(j) .
where p = p, p„p' =(p')', and repeated internal
indices are summed. The equation of motion for
the field is

(2.4)

The generating functional for the connected dia-
grams' of the theory, Z( j}, is defined by

(&.+~') j.+ —„y'j.=j.(x) . (2.2)
Z(j) = —flnW(j} . (2.5}

The generating functional- for the vacuum amplitude
in the presence of the external source' is

This functional satisfies the functional differential
equation

5Z( j) x 5'z(j), ~&
2

5'z( j) 5z( j) 5'z(j ) 5z( j)
5j,(x) 3! 5j,(x) 5j,(y) 5j,(z), , 3t 5j,(x) 5j,(y) 5j,(z) 5j,(y}5j ~(z) 5j,(x)

5z(j) 5z(j) '
3! 5j,(x) 5j,(x)

(2.6)

The generating function r(p) for the 1pf Green's
functions' is obtained from the Legendre trans-
formation

Prom this one obtains

5'r(y) 5j.(x)
5y.(x) 5y, (y) 5y, (y)

' (2.8)

z(j) =r(y) f4 «J.(~) y.(*),

with

(2.7a)

(2.7b)
and

5'z( j) 54.(y)
5j.(x) kg(y) 5j.(x)

5'r(4)
5y.(x) 5y.(y)

O'Z( j) 5'y, (x)
5j.(x) 5j (y) 5j.(z) 5j (y}5j.(z)

5'r(y) -' 5'r(4) ' 5'r(@)
5y (z) 5y&(y) 5@~(y) 5y,(t) 5y, (x) 6$~(w)

(2.10a)

5'r(e)
5p,(~) 5%.-(f ) 5@~(~)-

'

From Egs. (2.6)-(2.10), r(@}is found to satisfy the functional equation

5r(y} +(4+ I') 0.( )+x3l [0 ( )]' 4.( }5g, x

5'z(j) 5'z( j) ~ 5'z(j)
3. 5j,(x) 5j,(y) ' 5j,(x) 5j,(y) ', , 3} 5j,(x) 5j,(y) 5j,(z)

(2.10b)

(2.11}
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where the functional derivatives of Z( j) appearing
in (2.11) are given implicitly as functionals of p
by means of Eqs. (2.8)-(2.10).

Vfe give a graphical representation in Figs. 1
and 2 for the terms that appear in Eqs. (2.8)-
(2.11). Since Z( j}is the generating function for
connected graphs, [5 Z(j)/5j(x) 5j(x)] must contain
at least one closed loop. For the same reason
[5'Z( j)/5j(x) 5j(x) 5j(x)] contains terms with af
least two loops. By contrast, each of the terms
on the left-hand side of (2.11) involves tree graphs,
as well as (of course) graphs with an arbitrary
number of loops. The observations of this para-
graphe enable us to construct a loop expansion'
for I'(p) which proceeds by induction.

s'z(j)
bj(x)bj(y) x

~*r(e)
~e(*}be(y)

!!'Z(l)
b j(x)bj(y) b j ( s }

X I

Expand

8. The loop expansion a3r(,e)
a e(x) ~y) ae{'a)

1(y) =g a" I'„(!!)
n=0

Z(j) =ps" Z„(j),
n=o

(2.12b)

b2 z( ~

)
~j(x»j( )

O'Z(j) ~ o. 5'Z.(j)
5j(x) 5j(X) ~ 5j(x) 5j(y) ' (2.13)

where a is a dimensionless parameter which
"counts loops, " and I'„(p) and Z„(j) are functionals
which generate n-loop graphs only, One substi-
tutes (2.12} into (2.11), identifies equal powers of
a, and then sets a = 1. In light of the observations
at the end of Sec. IIA, we have

b'z(j)
&j(x) bj(x)&j(x)

FIG. 1. Graphical representation of the individual
terms that enter Se functional differential equation for
I'{fQI}). The double lines represent the complete two-point
Green's function in the presence of an arbitrary external
field. The shaded blob represents one-particle irreduc-
ible parts in the presence of an arbitrary external field.

so that

5'Z(j) ~ . 5%(j)
5j(x) 5j(y) . ~0 5j(x) 5j(y) . (2.14)

etc.
The equations generating diagrams with a fixed

number of loops are

5'Z( j)
5j(x)5j(y)5j(e) . =.

-5j(x) 5j(y}5j(e) . (2.15}

51;(y)
5 y.(x) ' 3!

= —(Cl„+g') y, (x) ——[y(x)]'y, (x) for n=0

(2.16}

and

51'„(y) iX( 5Z„,(j) () 5Z„(j} ()] & 5Z-(j) f
5y, (x) 3! j 5j.(x}5j,(x) ~' .5j,(x) 5j,(x) ~'

( 3! 5j.(x) 5j,(x) 5j,(x)

si (d )
54 (x)

51;(e)
&4 (x)

FIG. 2. Graphical representation for the 51 {Q)/6$ {x), with the same conventions as Fig. 1. The wavy line represents
explicit dependence on the external fieM, interacting locally at the point vertex.
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where the last term in (2.17) appears only for
bb) 2. Equation (2.17) determines the s-loop ap-
proximation, 6r„(p)/6(t((x), entirely in terms of
functionals with (n —1) or fewer loops. It is this
feature which makes the inductive determination
of r($) possible. To make this practical, so as
to integrate (formally) the first-order functional
differential equation for r„(p), one must evaluate
the terms on the right-hand side of (2.17) explicitly
in terms of P by means of Eqs. (2.8}-(2.10). We
illustrate the induction scheme by an explicit eval-
uation of r,(p), r,(p), and r, ((t(). In addition to
demonstrating the nature of the loop expansion for
the 1PI functional, these calculations will provide
crucial observations for the construction of r(p)
exact in the large-N limit.

C. The zero-loop and one-loop approximations

The functional equation satisfied by the tree ap-
proximation, (2.16), is easily integrated to give

c (c) fc=*l'('.c (*)( .—l c* (c (**)(.

-&~ [g, '(x}]' +constant . (2.18}

Qf course r,(p) is identical to the classical action,
so that (2.18) agrees with the usual result' given
for the generating functional of the 1PI tree graphs.

Proceeding with the induction scheme, the one-
loop functional is given by

6r, (y) i~ 6'r, (y) ' 6'r.(y).c.(*(
-

r(
' cc (*(cc.(*(.

However, from (2.18)

(2.19)

( )'6 ( )
= — (Q, +p,')6„+—6„$'(x)+—y, (x) yb(x) 6'(x —y) . (2.20)

(2.21)

It is sometimes convenient to write

The inverse of this functional defines the free-
particle Green's function in the presence of an
external field p, (x),

G x
60 (x) 64 (y)

6G 'b (y, z) G„(z, y)

Then

x5'(y-z) 6'(x-z) . (2.25)

= -', X [2G,„(z, y) y, (x) + G,„(z,y) y, (x)]

G.b&x, y)=&ylG. blx&=&y, 5lGlx, s&, (2 22)

where G is a formal operator and l x& is a formal
vector in the appropriate function space. There-
fore,

6r(y) i
6y.(x) 2

5

( ) bc cb

d'y&yl[»G ']bbly&

6'r.(y)d'
6 ( }'6 ( } G,(z, y)= —6„6 (x —y) .

(2.23)

i
( )

TrlnG ', (2.26)

In terms of the definition (2.21), (2.19) becomes
where the trace is over both internal and space-
time indices. Thus,

= —[2G„(x,x) 4(b(x) +G„(x,x) y,(x)] .
6r, (y)
&y, x 31

r,(p) =
b i Tr lnG '+constant, (2.27}

(2.24)

This equation is easily integrated by noting that

where G is the formal operator defined in (2.22).
Once again, our results agree' with other deter-
minations of the one-loop functional.

D. The two-loop functional

From Eq. (2.17) we have

6r, (@) ~~ 6bz (j) 6 z.(j) x 6'z.(j)
6y, (x) 3( 6j,(x) 6j,(x) ' "

( 6j,(x) 6j,(x) ' 3( 6j,(x) 6j,(x) 6j,(x)
(2.28)
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To proceed with (2.28) in particular, and the n-loop equation in general, one must compute the functional

derivatives that appear on the right-hand side of (2.28), and of (2.17) in the general case, in terms of P.
We sketch this procedure for the general case, and give the details for (2.28).

From Eqs. (2.9) and (2.12), suppressing internal indices,

»(x)»(z) ~ 64 (z}64(y)
(2.29)

Identifying equal powers of a, one obtains

~'&.(j) 6'I'.(4) 6. )»(x)»(z) 6y(z) 64 (y)

6'z.(j) 6'l,(d), 6'2,(j) 6'I;(4) ], 0
-»(x)»(z)- -64)(z) 64 (y)»(x)»(z) 64(z) 6$(y) ]-

etc. Therefore,

(2.30a)

(2.30b}

( )6. ( )
d z(f w G()(.(xyz) 6 ( )6y ( )

G(())(N)) y)

with G,~(x, y) defined by (2.21). Similarly, from Eq. (2.10b) we obtain a similar result for
6'&, (j}/»( )x»(y)»(z). In particular,

(2.31)

».()»,(y)».() " ' "' ' ' 6y, ( )60,(f)64,()
Making use of Eqs. (2.31), (2.24), and (2.25), we obtain

(2.32}

iA, d'z G„(x,z) Gz(,(z, x) [2G,~(z, z) +&,~ Gzz(z, z) J

iA.
(f 'z d'a) G,.(x, z) G„(w, x)

x [2G„(z,u)) 4)~(w) G~,(M, z) y,(z) +2 @,(z) G~(a), z) G~g(z, u)) y, (a))

+2&,(w) G,&(z, au) G~,(a), z) 4),(z) + Q,(z) @,(w) G,~(z, a)) G~,(ce, z)

+2G,~(z, a)) 4)q(a)) G~(w, z) 4),(z)] .

Similarly, from Eqs. (2.20) and (2.32)

d'z G„(x,z) G„(x,z) Gq(x, z) [5~, (j)q(z) +6~ 4)z(z) +6)~ 4),(z)] .6sg.(j)
jll x j)) x Jc

(2.33}

(2.34)

This completes the construction of 61;(4))/6y(x) in terms of 4)(x) and the free-particle propagator in the

presence of an external field. The (formal) integration of the first-order functional differential equation

(2.28) is not difficult. To this end consider the functional

(2.35)

which means

4),(x) d'z [2G„(z,z}G„(x,z) G„(z, x) +G~~(z, z}G„(x,z) G, (z, x)]6f(4) 4~

2A.
@,(x) d'z [2G„(z,z) Gz, (x, z) G,z(z, x) + Gqq(z, z) G„(x,z) G„(z, x)] . (2.36}

Comparing (2.33) with (2.36) one concludes that

6'&,(j), 6'&,(j) & 6f(4),
6 ( )5'( )

' 6 ( )6'( )
' 4 6 ( )

(2.37)
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The remaining terms of (2.37) combine simply with (2.34) to form a single functional. Define the func-
tional

Z(f) = d'z d'm Q, ( z) ya(m} [2G„(z,cv) Gaa(z, w) G„(z,w)+Gaa(z, cu) G„,(z, u) G„(z,u))] . (2.38)

It is straightforward to compute bJ(P)/bp, (x) and
to compare it with (2.34) and the remainder of
(2.37), As a result, one obtains

~1'.(4) ~ bf(4) ~' ~~(4)
by. (x) 4! I}4,(x} 38 by, (x) '

so that

(2.39)

I', (p) = —,I(p) ——Z(p) +constant. (2.40)

Our construction of I', (p) agrees with earlier de-
terminations' of the two-loop 1PI functional by
other methods.

A graphical representation of the function I(y}
and Z(P) is given in Fig. 3. We now make several
observations which are essential to the develop-
ment of the large-N expansion presented in Sec.
III. First note that l(g) is represented graphically
by a two-loop bubble graph with a single four-point
vertex and free propagators in the presence of an
external field. By contrast, Z(p) is represented
graphically by a nonbubble graph with two three-
point vertices, each proportional to the external
field p. Stated differently, the bubble term f(p)
only arises from terms of the form

4 (x)[b'Z, (j )/bj(x)bj(x)]

in the functional equation for bi'a(p)/b@(x), while
the nonbubbfe term Z(p) originates from both

y(x)[b'Z, (&)/bj(x) bj( )]

does not contribute to the bubble graphs. Finally,
notice from Eqs. (2.28), (2.32), and (2.34) and
the above discussion that [aside from the depen-
dence of the propagator G(x, y) on g] the terms in
bl', (p)/bp(x) that generate the bubble graphs are
linear in p(x), while the terms that generate the
two-loop nonbubble graphs are cubic in fIJ), due
to the presence of two three-point vertices. These
distinctions, which are easily generalized to n
loops, will play an essential role in understanding
Secs. II F and III.

One may continue the loop expansion by induction,
as sketched above, to determine I', (P), . . . , I'„(y},

However, we proceed no further in this
direction.

E. The renormalized 1oop expansion

So far we have only considered the loop expan-
sion for the unrenormalized 1PI Green's functions.
Since the renormalization of the loop expansion has
been treated by other workers, '' we only make a
few remarks to enable the reader to translate
earlier work into our language.

The Lagrangian density (2.1) may be modified
to read

@0j}=-'[(' 4)'-p'0']-
4,

0'

+-,'g(a, j)'--,'B4'- —cja

[b'Z, (j}/bj(x)bj(x}»(X}]
+j,(x) 4,(x), (2.41)

in the functional differential equation. In other
words, the term

[b'Z. (j}/bj(x)»( )»( )]

where A, B, and C are wave-function, mass, and
coupling-constant counterterms, and p' and X

are finite, renormalized quantities. Analogously,
(2.11) may be replaced by

bi (4), (x+c), . (x+ c) &'z( j) I
8'z( j)[Z+y ]%a(x) 3 0 (x)4a(x)+x 3( 8 ( )b ( )J A(x) b ( )8 ( )

(x+c) ' &'z( j)
».(-)».(-)».(.) (2.42)

For the purposes of the loop expansion, write

A= pa"A„, u" C„.

n=1
(2.43) One constructs the loop expansion as before, taking

note of the loop dependence of the counterterms by
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means of Eqs. (2.42) and (2.43). One determines
the renormalization constants A„, 8„, and C„by
means of the usual renormalization conditions, de-
scribed in detail b'y Coleman and %einberg' and
Jackiw. ' %'e have carried out the renormalized
loop expansion by our methods in detail up to the
two-loop functional. Our results agree with earlier
work, so that we omit the details here, as they
are not essential to the mainstream of our develop-
ment.

F. The bubble approximation

The purpose of this section is to develop the
bubble approximation to the functional I'(le), which

in A,Q' theory is characterized by those vacuum

graphs which contain only four-point vertices pro-
portional to A. and free propagators in the presence
of an external field. The nonbubble vacuum graphs
contributing to I'(P) contain two or more three-
point vertices (each proportional to jig} as well as
four-point vertices, and free propagators.

It is easy to understand this characterization
graphically. The loop expansion for I'(p} is rep-
resented in Fig. 4, while the loop expansions for
[I'(ltl)] b„bb„and [I'(p)] „,„b„»„are shown in Figs.
5 and 6, respectively. Note that the p dependence
of [I'(p)],„»„can be attributed entirely to the
propagators, while the ill dependence of [I'(p)]„,„b„bb„
arises fram the three-point vertices, as well as
the propagator s.

Next, consider the consequences of this separa-
tion for 51'(p)/5ltl(x). As a result of the observa-
tions made in the preceding paragraph, we can
represent [51'(p)/5$(x)]b„bb„as in Fig. 7, and

[51'(Q)/5$(x}]„,„b„bb„as in Fig. 6. Now refer back
to the exact functional equation for 51'(lfl)/5p(x),
given by Eq. (2.11), and represented graphically
by Fig. 2. The loop expansion for the term pro-
portional to P(x) [O'Z/5j(x) 5j(x)] is shown graph-
ically in Fig. 9, and for the term proportional
to [O'Z/5j(x) 5j(x) 5j(x)] is illustrated by Fig. 10.
From this analysis, it is obvious that we have the
separation

J(e}-
FIG. 3. Graphical representation of the two terms

comprising the two-loop functional. The wavy line
represents the explicit P dependence of the indicated
vertex. The solid line represents a free propagator in
the presence of an external field.

y(x) . 5. - +
5

(@) r 5 I(&ll)'

5j(x) j(x) - & 4 (x) —bubble - 0(x) —nonbubble

(2.44)

5'Z 51'(4)
5j(x) 5j(x) 5j(x) 5y(x) „.„,„„„only, (2.45)

&'Z

5j(x) 5j(x) 5j(x)
- —(~e) -I—

nonbubble j
(2.47)

The somewhat obtuse notation of (2.46) and (2.47)
indicates that [51'(p)/5$(x)]„,„,„»„ is obtained
from [I'(P)]„,„,„», in two separate and unique
ways: (1) from the differentiation of a propagator,
as in Eq. (2.46), and (2) from the differentiation
of a three-point vertex, as in (2.47). The division
of [51'/5$]„,„b„bb„given by (2.46) and (2.47) is

where - means "contributes to."
It is instructive to compare Figs. II and 8 with

Figs. 9 and 10. From this comparison it is seen
that the separation given by Eqs. (2.44) and (2.45)
may be refined further. That is,

5'Z 5r(y)
5j(x) 5j(x) l5 y(x)

I5G 51
+ ——— [ (2.46)

0 - nonbubble 1

and

+ 4- + ( } +

FIG. 4. Graphical representation of the loop expansion for I (Q), with conventions as in Fig. 3.
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b bbl

10

I"IG. 5. Graphical representation of the loop expansion for I'(P) &„»&„with conventions as in Fig. 3.

unique. All of the points discussed in this section
are illustrated in detail by the two-loop functional
discussed in Sec. IID.

Our next objective is to formulate a set of cou-
pled functional equations which generate [I'(p)]b„bb„

I

in the large-N limit, based on the above discus-
sion. We find it easier to present the final result,
and then present the arguments leading to our con-
clusion. The functional differential equations which
which we propose for large N are

with

51(y) 5r.(4) ~X j 5'Z( j)
4(+) -bubble 64e(+) 2' ] -6ju(+) jb(+)- bubble

,~ („) 5'~(i)
57b(+)-57b(+) - bubble

(2.48}

5'I'(@)
-5ljl (&) 5kb($) b bbl

6'g( j)
-5j~(+) 5lb(3') —b bbl

iX 6uZ( j) O'Z( j)
-6j.(~) 5jb(~}-b bble -62 (~) 52 (~)-b bbl

6'(»- y), (2.49)

5 5bg j (2.50)

r(e) nonbubble

@N~nAA+ I l + +ULk~~ Q/tl'

where G„(x,y) is defined in Eq. (2.21), and I',(P)

I

is as defined in (2.16) and (2.18).
That Ell. (2.48) is a necessary condition is

obvious; [O'Z/5j(x)5j(x)5j(~)] must be dropped
from (2.11)because of (2.47). However, because
of (2.46) it is also obvious that this is not suffi-
cient. Additional conditions, Eqs. (2.49) and

(2.50), must be specified. To understand these,
consider [5/5ltlb(y)][51'(p}/5&e(x)]b„»„as given

~r(e) ~l;(e)
g+(x) b 4'(a) bubble

1 2

H:G. 6. Graphical representation of the loop expansion
for I (Q) „&„»&,, with conventions as in Fig. 3.

FIG. 7. Graphical representation of the loop expansion
for [6I'/5&l q„»~„with conventions as in Fig. 3.
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wi'(e3 h I' (4}
54 (&) b 4 {x) nonbubble

X X

FIG. 9. Graphical representation of the loop expansion
for Q{x)f5 &(j)/6j{x)6j (x)), with conventions as in Figs.
1 and 3.

FIG. 8. Graphical representation of the loop expansion
for |&I'/&pl„~p„gM, , with conventions as in Fig. 3.

5'&(j) 1

5Q (y) 5j (x)5jq(x) sbm-
(&-"). (2.51)

by the right-hand side of {2.48). There are two
types of terms generated, those given by (2.49}
and those given by (2.50). Since [6'Z/5j(x)5j(x)]»»„
depends on Q only through the propagator, it is
obvious that

$2g
y(x) 54(y} -52(x)5j(x)- b vs

is quadratic in Q, aside from the propagator de-
pendence on Q, since

aG aG '
G G.

5Q 6Q

Thus, the terms coming from (2.50) generate con-
tributions to [O'Z/5j5j] which are quadratic in Q
(aside from dependence originating in G), and
hence generate contributions to 51'/5$(x) which
are cubic in Q (aside from any propagator depen-
dence on Q). The conclusion is that (2.50) gen-
erates only nonbubble graphs. With this identifi-
cation, one obtains (2.49) from (2.48) by functional
differentiation. This analysis is exemplified in
detail in Sec. IID, and by Eqs. (2.33}-(2.38) in
particular, where the two types of terms are
clearly separated.

Now consider XP' theory with O(X invariance
in the large-& limit. Since

trG q
= G~~-NG,

it is clear that for large N, [I"(Q)]»»~, dominates"
[I'(Q)]„,„~„»„byat least a factor of & in each fixed
order in the loop expansion, i.e., for n fixed loops.
Thus, for N large, we may replace Eq. (2.50}by

We now deal with a subtle issue in order to
complete the justification of (2.48)-(2.51) as the
correct equations in the large-N limit. One notes
that I'(Q)h„hh~, can be usefully divided into ttvo
classes of graphs: (1) those graphs which form
tree diagrams of bubbles, i.e., the branches are
made up of linear chains of bubbles, and (2) those
graphs in which trees formed of bubbles interact
to form at least one closed loop of bubbles. Let
us call the graphs of class 1 bubble tree graphs,
and those of class 2 bubble loop graphs. These
two classes of graphs are easily distinguished.
For example, in Fig. 5, graphs 4, 7, 8, and 12
are bubble loop graphs, and the others are bubble
tree graphs. These particular bubble loop graphs
can be obtained by forming a single bubble loop
from a bubble tree of 2, 3, 3, and 4 bubbles,
respectively.

Now consider N large, with a fixed number of
closed loops in the conventional sense. It is easy
to see that the bubble tree graphs dominate the
bubMe loop graphs (with the same number of con-
ventional closed loops) by at least a factor of ¹

Specific examples are found in Fig. 5, where
graph 3 is proportional to @', while graph 4 is
proportional to N2, and graphs 5 and 6 are pro-
portional to N', while graphs 7 and 8 are propor-
tional to N'. Hence the bubble loop graphs are
subdominant in the large-N limit, and can also
be neglected to leading order in W.

Similarly [5F(P)/5$(x)],„»„can be divided into
the same two classes. For example, graph 3 of
Fig. 5 leads to graphs 3 and 4 of Fig. 7, and
graph 4 of Fig. 5 generates graph 5 of Fig. 7.
(We have not drawn topologically equivalent graphs

FIG. 10. Graphical representation for @IS(j)/6j(x)6j(x)5j(x)j, with conventions as in Figs. 1 and 3.
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separately. ) Our next task is to translate this
classification into analytical terms.

The analysis we seek is a refinement of Eq.
(2.46) and the discussion following. To do so we
examine a specific example, graph 5 of Fig. 7.
This graph is obtained by the contribution of (2.46)
to (2.11), but with 5'Z/5j(x)5j(y) constructed from
the first graph of Fig. 6. Further examples show
that we may write, in a schematic way (where-
means "contributes to"),

5'Z 51 (Q)
5j(x)5j(x) „b bbl 5&(x) b„»„l

tree graphs. Although we are aware that we have
not provided a satisfactory mathematical proof,
our conclusion is supported by the results pre-
sented in Sec. III and Appendix B. There it is
clear, for the special case of a constant external
field, that (2.48) and (2.49) do indeed generate
the bubble tree graphs when our solution for the
effective potential is reexpressed in terms of the
perturbative loop expansion. Naturally the reader
who desires a proof will require more rigorous
analysis; however, our results do indeed seem
to characterize the large-N limit of A. Q' theory.

(2.52)
-54 (X}- nonbubble

which indicates that terms on the left-hand side
of (2.52) generate the right-hand side of (2.52).
Most importantly, the only way of generating
graph 5 of Fig. 7 is by means of this particular
term. Thus, if we dropped

$2g
P(x}

-52(X}5j(X)" nonbubble

from the right-hand side of (2.11), we would not
generate the bubble loops.

Putting these various arguments together, we
arrive at Eqs. (2.48)-(2.61) as representing the
large-N limit of the theory. In particular, we
expect this set of equations to generate the bubble

III. THE EFFECTIVE POTENTIAL

A. Bubble approximation

Although Eqs. (2.48)-(2.61) provide a closed set
of equations for the generating functional [I'(p)]b„bb)„
the actual solution of these equations is hampered
by a lack of knowledge of the free-particle Green's
function, G„(x,y), in the presence of an arbitrary
external field P, (x). However, no such difficulty
exists if one restricts the external field to a con-
stant field fI), , as one can compute the appropriate
free-particle Green's function in both coordinate
space and momentum space for this special case.
In particular, for a constant field (I), , one has the
coordinate- space representations

and

G-'„(x,y; j ) = [(Z, + q')5„+ 5.,v'~y'+ v'~y, 4, ] 5'(x- y)

(xlG..ly& = G"(x,y;e)

(3.1)

+ P. '+ —,'Xy' ft)' ~ + P.'+ —,'X(I[)'

= o( y; u' ~ e&*e,') ', '+ o(*,v;u' e'&e')(e..— (3.2)

n(e) = -u(e) J e *, (e. e = -.e~a.t, (3.3)

As a consequence of the limitation to constant ex-
ternal fields, the functional differential equations
for 51'(P)/5$(x) reduce to an ordinary equation for
SV($)/9$, , where V(P) is the effective potential
for the theory. Since

where
—G '„(x,y; P) = -G '„(x,y;()))

+ —,[2G.,(x, x; P)
iX

+ 5„G„(x,x;(QI)]5'(x-y)
(3.6)

and

the system of equations (2.48)-(2.51) for the bubble
graphs reduces to the following coupled equations
for [V((t))]b„»„(with the subscript "bubble" omitted):

sV(y} sV, (y) =- —,[2y,G.,(x, x; 4)+ 4.G„(x,x; y)],
0 0

(3.4)

8

ay, G„(x,x; Q) = nonbubble

= 0 for N large .
Vfe have defined

G.,(x, y;4) = 5nZ( j}.5j.(x}5ib(y) g.....,

(3.6a)

(3.6b)

(3.'I }
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for the exact Green's function in the presence of a
constant field.

BGx x' ' x+3 1=—0 — (for large N) . (3.17)

G» (x, y; P) = G(x, y; ie'+ &X(f)3)

+ (1)i- 1)G{x,y; p,'+ &&y').

(3.6)

Owing to the dominance of the terms proportional to
6eb in the propagator, we may replace E((ls. (3.4)
and (3.5) by

and

~i'((t)) s)'()((t)) = —sike, Gbb (x, x; Q}
Ya a

(3.9)

-G '„(x,y;(t)) =-(0, + i33+ &X&3)6.36u(x-y)

+ pi &5,3 Gee (X, X; (f) )6 (X —y)

(3.10)

in the large-N limit. %e can also write the exact
propagator in the presence of a constant field as

G..(x,y;4) = G,(x, y; i', 1bj')

u (*);u &. e ,)(e '—, e
'') ".

(3.11)

It is convenient to define

and

1
u(e, y;n')=(», y)0, +ma (3.12)

B. Large-N limit

The coupled system of equations may be simpli-
fied in the large-N limit by noting that

43G"(x.y'4) = 4. G( x»' ~'+ r'~4*)

[There is also a dependence of G on M, which has
not been explicitly indicated in (3.11) and (3.13) as
no confusion will result. ]

This completes the formulation of the equations
for 8V/S()) valid for the large-N limit. Remarkably,
these equations can be solved to give an exact
solution for V(P) valid for large N, and not depen-
dent on a perturbation expansion in X.

C. The 1 jN expansion

In this section we attempt to describe a system-
atic 1/N expansion" which should clarify the sense
in which our results may be described as exact in
the large-N limit. In identifying the leading terms
for N large, we considered all the vacuum graphs
with n loops (33 fixed), and selected the dominant
vacuum graphs for N large, which turned out to be
all bubble graphs with n loops. At this stage, the
set of all bubble graphs with n loops is summed
over n to yield a system of equations which char-
acterize nonperturbatively this set of graphs.

In particular, for n =2 loops, the complete
contribution of the bubble graph gives

[~(4 }jbubble: (( = 3

1= (M.) awful(X/3) + f33(Xyu) + —f33(X/3), (3.18)

while the nonbubble graphs with 2 loops give

[~(e}j......,.:..
= (1 'y')[~g. ,(1 y') + g..(1 y')1

1= (~) g33(1l4') + —Eas(ale') (3 19)

G(x, y; i3', 1lk') = G.(x, y; ~', 1l4'),

so that

(3.13}
For n = 3 loops, one has for the bubble graphs

(4) 1 bubble
'.n e 3

G '(x, y;3s') = (CI, + m') 5'(x-y). (3.14) = (1A) Nf33(XQ ) + f (1l())3) + —f (1).y3)

and

G '(x, y;u', ~C')= G '(x, y;V'+ s~A')

—zi MG(y, y; flu, X())3)5'(x -y),
(3.16)

The coupled set of equations to be solved in the
large-N limit are

' ~ =-rliNXltl. G{y,y; }l3,1(y3), (3.15)
~%a ~la

+ —
3 fuu(1l0')

1

while the nonbubble graphs contribute

[~(k)jnunbubblel un 3

The general case with n+ 1 loops gives

(3.20}

1 1
[1'(&)~bubb~:eel= (~)" Nfn3{1b4'*)+ fnu(1bA+ —fu3(~4*)+ '''+ nfn 3+3()4'}— (3.22)
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(('(()1..„,.„„:...= ())) ) ): ,"(&y.'i ~ —2..(&('I ~ " ~ —.)(. .„(&(')]. (3.23)

In the above, the f,&(X(P2) and g;, (X(P }are (in prin-
ciple) calculable functions of X(P2. The form of
Eqs. (3.18}-(3.23) has its origin in the structure
of n-loop vacuum diagrams, built from

(1) free propagators which depend on X(P2,

(2) four-point vertices which depend on A..
(3) pairs of three-point vertices which give (&(P)2,

and
(4} traces over internal indices which give a

finite polynomial in N, which only appears as over-
all multiplicative factors in various Feynman
integ rais.

(This is the only way in which dependence on N

may arise in an individual graph. ) The reader can
then easily verify the form of Eqs. (3.18)-(3.23)
by examining specific vacuum diagrams.

Note that in our version of the large-N limit, the
term (f(0(.) g»(&(p') from n = 3 is dropped, while the
term N'& f»(&(t)') from n = 2 is retained. This em-
phasizes the nature of our large-N limit, which
does not compare terms with a different number
of closed loops. We now add (3.22} and (3.23) and
sum the result over n. This gives an expression
for the effective potential, which accounts for all
graphs, and hence describes V((t)) completely in
terms of a I/N expansion. The result is

oo 1v(4') = v, (42)+ g (Ni}" Nv„(~42)+ v (~42)+ ~ ~ ~ + —„v„„„(~y2)
n=l L

1= Vo(4) ) + NV2(X(p2; NX) + V2(A Q;NX) + —V2(X(3))2; N)() + ~

(3.24)

(3.25)

where (3.25) is obtained from (3.24) by interchang-
ing the sum in the square brackets with the sum
over n. It is clear that our large-N limit is ob-
tained from (3.25} by keeping 1A and X/2 fixed,
and letting N get large, with the result

V((P ) —V2((P )-Nv, (XQ &LA). (3.26}

D. Solution for the effective potential

We find it easier to solve Eqs. (3.15- (3.17} in
momentum space. To this end we define

Our method calculates V, (XP', 1A} exactly, and in
this sense gives the limiting behavior of XP' theory
for N large. [As yet we have not learned how to
calculate the correction terms to (3.26).]

in the combination p2+ &X(P2. [If one is not work-
ing in the large-N limit, G depends on both
G(p', p'+ AX(P2) and G(p', p'+ &X(p2). Thus for
arbitrary N, G depends on p,

2 and A(p2 separately. ]
We shall see very shortly that G(p', m') depends
on a cutoff; however, we do not indicate this vari-
able explicitly among the arguments of G.

Using the above definition, Eq. (3.16} (for the
unrenormafized Green's functions) becomes

G(p';m') '= G(p', m') ' —&iNXB(m'), (3.31)

where of course m' = p.'+ ~X/' is of particular in-
terest. It follows directly from (3.31) that

G(P'; m'} = G(P'; m')

+ v2M G(P; m')G(P'; m }B(m')

(&IG(m*)ly} = 2„}.e"" *'G(P'; m'),tu (X -3t) (3.27) (3.32)

l d4p, G(P', m'} = B(m'), (3.28)

&~IG(~', ~4') ly) = 2, , e"'* ' G(p'; ~'+ 1~0'),
(3.28)

and

G(P'; m')
G(P Pm ) 1 I ~G(P2, 2)B( 2) ' (

We can find B(m'} implicitly in terms of the free
propagator alone. Integrate (3.32) over p' to obtain

4p

2,}.G(P', u'+ )r~4') = B(u'+ v~4') (3.30)
B(m )= 2( ') r lAB'( ')I 2 .t (l"' ''IG(P'; ').

(3.34)

As is evident from (3.15) and (3.16) the dependence
of 6 on the mass variables for Em'ge N occurs only

Multiply (3.33) by G(P;m') and insert the result
in (3.34) giving
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»» x~
-

» 1
B(m ) B(m ) + v lAB(m )

(2 )4 G(g g) g[g(p 2)-g / .N B( g)]
(3.35)

Since

-1
G(~' '= p*-m" i"
B(m)= + A —m ln

i '

»
A»+ pg»

16m' i . pn'

where A' is a cutoff. Thus,

(3.36)

(3.37) 8i NXB(p—') (4.1)

to be finite. (Note that p.
' is the physical mass

only if (Q) =0.) One obtains

limit. The mass renormalization is also trivial.
Define

P'=v'+&I '

B(m') = B(m')

»
~

~ » ~ I ~ ~
~~

~

d'p ' 1 1
(2v)' Q-m' P'-m'+ v'iM. B(m*)

'

Performing the integration and using (3.29) and
(3.30), finally

B(m') = B(m' —r'i MB(m'. )}, (3.38)

or more explicitly

B(m') =
~ A' —[m' —v'iMB(m'}].

16m
A'+ m' —v'i' B(m')

m' —v VnS(m')

(3.39)

Equation (3.39) determines B(m') as a solution of
a transcendental. equation. The effective potential
is then determined by

BV(rh~
= (P,'+ v'Xy')y, —AM&, 8(P.'+ s'.Zy, '),

(3.40)

ev(~')

where we have defined

B(I '; .' &0')—=B(v'+-8&0') —B(~'),
so that

B(P;0}=0.

From the definition (4.3), and from (3.39)

, [p,'+y ——,'iNXB(P'; y)]16n'

xln
A'+P'+y —6iNXB(P'; y)

P'+y --,'iNXB(p, '; y)

(4.2)

(4.3)

(4.4)

(4.5)

with B(m ) computed from Eq. (3.39). Since B(m )
is in principle known, one can solve (3.40) to find
V(P'), by numerical integration if necessary.

There are two issues which must be faced before
the solution for the effective potential can be con-
sidered satisfactory. They are the following. '

(1) The functions we are discussing are given in
terms of the unrenonnalized parameters of theory,
and (2) a detailed numerical study of Eqs. (3.39)
and (3.40) is not completely trivial, and it may
obscure the qualitative features of the theory.
Fortunately, both of these objections are easily
met: (1) The coupled set of equations are renor-
maiized in Secs. IV A and IV 8, and (2) the qualita-
tive behavior of the renormalized equations can be
studied without appeal to detailed numerical solu-
tions.

IV. RENORMALIZATION

A. Mass and wave-function renormalization

It is obvious from Eq. (3.32} that there is no
wave-function renormalization in the large-+

Thus the mass renormalization has removed the
quadratic divergence, and the renormalization
conditions

G(0. +2) 1 ~2

(4.6)

G(P" p'

are satisfied for the two-point function.

B. Coupling renormalization

Following Coleman and Weinberg' we specify
the renormalized coupling constant by choosing
the value of &'V/&Q' at a fixed value of P, . For
the case p, '&0, one may choose this to be (II), =0,
which then fixes the 1PI four-point Green's func-
tion when all momenta vanish. When p,

' =0, this
prescription cannot be adopted because of infrared
divergences, so that we fix the coupling constant
by specifying the value of O'V/8$' at p'=M'. From
Eq. (4.2) it is straightforward to compute
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@y gNX ag
3 &(5aa5~+ 5sA~+5ae5~) 1 — —@'~y}ca ac

—iN ~~'(5„Q,P, +permutations), ' —iN —„,&'P, P,Q, Q, ,', ~ (4 7}1 O'B(p'; y) . g ~'B(V.'; y) I

which provides the basis of the discussion of the
coupling renormalization. Because of the tech-
nical problem induced by the infrared divergence,
we discuss the cases P'40 and p.

' =0 separately.
(1) p. 'e0. We require

gpss

1—= g X(5,~5~ + 5~,5,~+ 5„5~~),
a b c d /=0

(4.8)

which implies, from Egs. (4.5) and (4.'I), that

XB&(p', —,XQ') =X B(P'; —,).P')—

It is clear from (4.4) and (4.12} that

(4.12)

B~(P'; o) =o

where we have defined the renormalized, quantity

Using (4.9}with (4.2} we have

(4.9) »a(P'; y}
8$ ' 9=0

=0 (4.13)

by construction. Equation (4.13) implies for P'
small that

B( ''x4'}

(4.10)

Bs(P';y) = o(y'). (4.14)

or

6 a 8=(P' 'X+y')y, , ih%y.-B-„(y.', ,'X@'), —(4.11)

We prove in Appendix A that B&(g'; y) is finite
and independent of cutoff. As a result of that
discussion, one finds that

1+
9 a Ba(II iy}= 16 2y 16 2[& +y 6&~~Be(P iy)jln —2 t pg (

—2.
)

~(
NX —2 1

96m ten 16m +y --,i+XB~ p, ;y)
(4.15)

Equations (4.11) and (4.15}specify &(p') in terms
of renormalized quantities only. This result is
exact in the large-N limit (with XQ' and NX held
fixed). Since Ba(P', y) can be evaluated (numeri-
cally) from (4.15), V(Q') is completely known

(numerically) in terms of the finite arbitrary pa-
rameters of the theory. As we shall see in Sec.
V, we may analyze the qualitative behavior of the
effective potential without recourse to detailed
numerical analysis.

Of course, the system (4.11) and (4.15) could
be solved by successive approximations, which

would reconstruct the renormalized loop expan-
sion in the large-N limit. Obviously this is con-
siderably less interesting than our nonperturba-
tive solution to these equations.

For illustrative purposes, and for use in Sec. V

we compute Bs(P', y) for small y. Making use

of (4.14) one finds from (4.15) that

(4.16)

v'(p') ku'0'+ —,(0 )
0

N(Xy')'
432@'(96v') (4.17)

which has the form dictated by Eg. (3.26).
(2} P'=0. The presence of infrared divergences

becomes evident if one computes the derivatives
of B„(P',y) from (4.15) and takes the limit p, '-0.
Thus, instead of (4.8}we choose

Combining this with (4.11), we have for the large-
+ limit of the potential
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84@

84.84ssk. sou a=»
= 3 P. »(5Q~5~, + 5~,5~+ 5„5M),

(4.18)

where the left-hand side of (4.18}is to be evaluated

by averaging over the sphere Q'=M', M' is an
arbitrary mass, and X„is the renormalized cou-
pling constant appropriate to this convention.
From (4.7) we find that

sB(0; y) ~4 O'B(0; y) 4y' O'B{0;y)
sy N sy' N(N + 2) sy'

Proceeding in a manner similar to that of (4.10) !(4.12) we obtain from (4.18) and (4.19)

8 V(4') =-&» 4.[4' —&NB» {e&» 4")]~

(4.19)

(4.20)

where we have defined

(4.21)(o; )
' (o; )

' ' (o; )
» e» = se 8"

sy +N sy2 +N{N+2}

We demonstrate in Appendix A that B»{8X»@'}is finite and independent of cutoff. It is further shown there
that

I 2 2 N i 2 B»(8~»M } ~~» 4 ~ B»(8 ~»A{-~„~)], . {, }],1 (4.22)

Equations (4.20) and (4.22) determine the effective
potential, given M' and A„. Equation (4.22) is
a homogeneous equation in that it does not specify
B„(-,' X»M'), i.e., it is form -invanant for any
value of M", which is a direct consequence of the
homogeneous Callan-Symanzik equation for a

massless theory. "'
It might appear from (4.22) that B»(,'X»M') i-s

an undetermined constant, independent of A.„
and M', but this is not the case. The renormaliza-
tion condition (4.18}, combined with (4.20), re-
quires that

N(N. 2)
'B ' ""&'.4(N. 2)

'" "' ""&'.4M
" ""'"&'

842 s(y2)2 s(@R)3
(4.23)

which relates B»(6X»M'} to X» and M'. We found
it extremely tedious and unenlightening to evaluate
(4.23) using (4.22). However, we wish to compute
(4.23} in the one-loop approximation to illustrate
that (4.23) is nontrivial. The one-loop approxima-
tion can be obtained by neglecting B»(-,X»p') in
the right-hand side of (4.22). The result is

B„(-,!~'). . .= ",y'[In(4'/M')+D], (4.24)

where

(4.25)

Applying (4.23) to this approximation, one finds
that

i X». . . (¹+6N 4}+
» (8»$ )f QQp 9 2 Q 1n(4 /M )

(4.26)

which demonstrates that B„(8X»M ) is not an in-
dependent constant. Combining (4.26) with (4.20),
one obtains

V(4'). . .
NX» ~ (3N'+ 14N + 8)

4! 96m' M' 2N(N+ 2)

(4.27)

which agrees with other determinations of
V(P'). . . obtained by direct application of the
loop expansion. ' [One may compare (4.27) with

Eq. (3.10) of Coleman and Weinberg' for N = 1,
by replacing —,XQ' by &X/' in the free-particle
propagator, and the subsequent development.
This comparison with N=1 is possible at the one-
loop level, since the only one-loop vacuum graph
is a bubble graph. ]

V. STABILITY OF THE VACUUM

Since we have available a nonperturbative solu-
tion for the effective potential, we may examine
the stability of the vacuum and possible spontane-
ous symmetry breakdown, without recourse to
the loop expansion. The stable vacuum is found

by locating the absolute minimum of the potential,
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for which a necessary condition is aV/sf, =O.
One must then establish whether this extremum is
in fact the absolute minimum. If this occurs for
(It, 40, then one has a broken symmetry, and the
true ground state will not have the full 0(Ã) sym-
metry of the Lagrangian. Since we must deal with
a number of technical details, we examine the
cases p, '40 and p. '=0 separately.

(5 2)

To continue the analysis, we present the following
intermediate result:

iBs(tt'; y) =0 for y=0 only.

Proof. iBs(tt'; yo) = 0 requires from (4.15)

(5.4)

The only solution to (5.4) is y, =0. Thus, iBs(tt'; y)
only has a zero at y =0.

We note that if NX & -96tt', Eq. (5.2) can only be
satisfied for iB„(tt'; y) real and positive (negative)
for y positive (negative). The behavior of iBs(jf';y)
may be determined in the neighborhood of the
origin from (4.16}and (4.1'l), where it is stated
that

and

2

iBs(p'; y) ~,(52,) +0(y')

X, , N(Xp')'
V(y2) ~ &~242+ (y2}2+

(5.5)

Thus, for y sufficiently small, the sign of

(4.1I)

A. p2 40
One solution to sV(p )/8$, = 0, with 8 V/8$, given

by (4.11}, is obviously Q, =0. If there is a solution
with Q, 0, it requires

[lt'+-,'XP' --,' iNXB„(tt'; —,'XP')] =0. (5.1)

However, from Eq. (4.15), this in turn requires

iBs(jX', y) is determined by (5.5). Since iBs(ti'; y)
has no zeros other than y =0, it cannot change
sign; this fact may be combined with (5.2) to test
for a possible extremum. If (5.1}is satisfied,
then (5.1}and (5.2} combined imply that

P' (NX+96r') p (5.6)

where the (possible) extremum of V(P') is denoted
as P,'. The origin is a minimum of V(Q') for
tt'&0 and a maximum for P' &0. From (4.15) and
(5.1) we observe that iBs(Tt'; y) changes from real
to complex (or the converse) as Q' passes through
this extremum. This observation makes it possi-
ble to discuss the stabiLity of the vacuum without
detailed numerical solutions.

Consider first tt' &0. From (4.11) and (4.15}this
means that V(P') is real in the neighborhood of
the origin and becomes complex for fgI)' & fgI},', which
means that the vacuum is unstable for all ft}' ~ ft),'.
Thus, if V(Q') has an extremum at P,' e0 for
P'40, it is expected to be a maximum. Thus the
only minimum occurs at Q' = 0, and the potential
will continue to decrease for all Q' & (II},'. There-
fore, to obtain a stable vacuum one must exclude
the possible maximum at Q' = Q,', which limits
0 & 1+(NX) '96m'. " If NX is outside this range,
ft)'=0 is no longer a minimum of the potential. The
various possibilities that occur for p'&0 are sum-
marized in Table I.

Now consider p,
'

& 0," in which case the origin is
a maximum of V(42'), so that Q, =0 cannot be a
stable vacuum. This is consistent with (2.32),
which for Q' = 0 becomes

(5.7)

If P'&0, P' is not the physical mass, $, =0 cannot
be the ground state, (5.7) is not the Physical two-
point function, so that ($}eO must occur. The
potential will have a minimum if (5.6} is satisfied
which will be an absolute minimum of the effective
potential, if sV(y')/sy, &0 for all y'&go'. If
(5.6) is not satisfied, there will be no minimum,
which limits NX to the range 0 & 1+ (ÃX} '96m'."
The various possibilities that occur for li' &0 (see
Ref. 12) are summarized in Table II. (See note

TABLE I. Qualitative behavior of the effective potential for p & 0. Columns 1-3 are
determined by Eqs. {5.5), (5.6), and (4.11), respectively. (See also Ref. 13 and note added
in pzoof. )

BV—=0:f' ~0 Stable vacuum

0&1+(NX) '96

-96m' &NA. & 0

No

Yes
(maximum)

Local minimum (fIt, =0)

None

(P, =0 relative minimum)
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TABLE II. Same as Table I, but for P2(0. (See also Refs. 12 and 13 and note
added |n proof. )

0 ~f2 ~08V

8$
Stable vacuum

0&1+(NX} 'gem2

-g6~' &NX & 0

Yes
(minimum}

No

Local mimimum
(Q' &o}
None

added in proof. )
Let us fix P'&0 and 0&1+(NX) '96m', so that

there is a minimum of the potential at P,' e 0. De-
fine

(5.8 }

2 0

Therefore,

8V(p'}
BP,

=0 for Q'=0 only.

(5.15)

(5.16)

s2 V($2)
s4'. 6th

From (4.15)

i~»B~(I '; y}—q, q~3X 1-0 6 ey
6

(5.9)

»s(F'; y)
8$

9'+y 'iNIB-s-(TI'; y)ln

NX g'+y ——,'iÃgB„(P'; y)'1

(5.10)

6i
(5.11)

Hence

at the minimum. %e can calculate the physical
propagator at zero momentum from (4.11}, which
gives"

Since

[Q' —iNB„(—'X„P'}]00 for P'00, (5.17)

there are no other extrema. Stability requires
sV(y')/sy, remain real and positive for all p'.
Therefore it must also be real and positive at
any other conveniently chosen value of Q', M' say,
as can be verified by examination of (4.20) and
(4.22). Thus, stability of the vacuum is achieved
if

X~[M' —i NB„(8K~M')] —=K (5.18}

is real and positive, in which case V(P') will have
an absolute minimum at Q =0. If K is not real and
positive, there will be no stable vacuum.

If p'=0 is a stable vacuum, the physical mesons
remain massless, as there is no spontaneous sym-
metry breakdown. However, see note added in
proof.

62 V( $2) -0 (5.12) VI. RKNORMALIZATION GROUP

8 p2=0
%'e now discuss the possibility of spontaneous

symmetry breakdown for massless ~Q' theory
with 0(Ã) symmetry. If spontaneous symmetry
breakdown is to occur, the right-hand side of
(4.20) must vanish, which requires

[4,'- iNB„(-,'~„4,')] ' 0. (5.13)

to leading order in the 1/N expansion. This cor-
rectly predicts that the inverse propagators vanish
at zero momentum. However, Eqs. (3.31)-(3.37)
are not accurate enough to determine the mass of
the "o' mesons" in the event of broken symmetry. "

Our discussion of the massless theory required
the introduction of a mass M whose only function
was to define the renormalized coupling constant
~„, and to set the scale of the renormalized field,
but which is otherwise arbitrary. This arbitrari-
ness is reflected in the form invariance of Eq.
(4.22), which should be contrasted with (4.15) for
the massive theory. In the massless theory a
small change in M can be compensated by a change
in ~„and an appropriate rescaling of the field. In
this section we study the consequences of this re-
scaling.

Following Coleman and steinberg, ' the generating
functional for massless P4 theory satisfies a homo-
geneous Callan-Symanzik equation, '

Inserting (5.13) into (4.22) implies

B„(6X„QD')=0,

which when combined with (5.13) means that

(5.14)
M +P(A}—+y(A) d'xP, (x}5

I'(P') =0,
8 8 4

(6.1)
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8 8
+ p—+ny I'"&(x„.. . , x„)=0.

8M 8A.
(6.2)

We can apply (6.1) directly to our work by con-
sidering the special case P(x) =constant, leading
to a partial differential equation for the effective
potential'

for an appropriate P and y. (In this section we
write A.„as A., since no confusion will result. ) Di-
mensional analysis indicates that P and y only de-
pend on A.. The functional I'(p') can be expanded
in terms of 1PI Green's functions to give the more
familiar equation2

renormalization is finite in the large-N limit,
which implies' that y(A) =0 in this limit, so that
(6.4) becomes

a a ~ av(4')2M', +P(X)— =0 for N large.
8A, 8$

Since av/a/, is known nonperturbatively from Eqs.
(4.20) and (4.22), we may reverse the usual argu-
ments and compute p(A) from the known behavior
of av/a/, in the large-N limit. On dimensional
grounds, we may write

8 8 8
M +P—+yQ~ V(P ) =0. (6 8)

a„(-',~4') = i y'F(y'/M', ~),

In our formulation of the problem, it is more con-
venient to work with aV/a/„so that

where I' is a dimensionless quantity dependent on
P'/M' and A.. Then

M +P—+y 1+/A =0. (6.4}
e a a ev(4')

8M 8X b 8y

%'e have shown in Sec. IIIA that the wave-function

=
~ XP,P [1 +NE(P /M', X)] (6.'I)

F(I, ~) ~, z(1+NF(z, ~)) [
J1+NE(1, &) 96v' 1+NE(1, &}

Substituting into (6.5) we find that

2Nxz (a/az)F(z, x)
{I+NF(z, ~)+N~[aF(z, X)/aX]}

'

(6.8)

(6.9)

The apparent dependence of the right-hand side of (6.9) on z is in fact not present. (If there were such a
dependence, we would have an inconsistency. ) It is straightforward to compute aE(z, x}/az and aF(z, A)/aa

from (6.8). We then find

(NA. /48z )[1+NE(1,X)]

{1—(NA/96v')[I+NE(I, x)]+Nx[(1+NE(1, X)} ' ÃX/96-z'-]aE(1, z)/azj ' (6.10)

which is only dependent on A, , as it should be.
Since E(1,X) vanishes for A. -o, we have

(6.11)

[1+NF(z, A)]so for any z. (6.12)

In particular, we may choose M' to be at the mini-
mum, if there is one, fixing z = 1, implying

(6.13)

so that the numerator of P(X) never vanishes. If

as expected. The possibility of a nontrivial zero
of p(&) for some value of &e 0 can be studied in

the large-N limit by an analysis of (6.10 }without

recourse to perturbation theory. The function P(A.)
will vanish if the numerator of (6.10) vanishes.
However, since av/ap, co except for p' =0 (as
discussed in Sec. V), we see that (6.'I) implies that

the denominator of (6.10) were infinite for some
value of A., then P(X) could vanish at this point. A

preliminary (but not exhaustive) study seems to
show that this is unlikely.

We a,rgued that P(A.) most likely did not have a
nontrivial zero, since we proved that the numera-
tor of (6.10) did not vanish. Further, we related
this property to the nonvanishing of Eq. (6.7}for
P'to. If the numerator had vanished, it would

have correlated two features of the theory':

(1) p(~)=0

(6.14)

(2)
a V(4&') 0

8 (Ibe

at this value of ~. This shows that the spontaneous
symmetry breakdown of the massless theory has
as a necessary condition the existence of a non-
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trivial GeQ-Mann and I ow eigenvalue. %e believe
that this condition for spontaneous symmetry
breaking may be a general feature of injured
stable, massless field theories which have no
fundamenta/ parameters with dimension of length,
and only a single coupling constant. (The model
of Coleman and %einberg, ' with two coupling con-
stants, does not seem to have this property. ) In
quantum electrodynamics this correlates a possible
Gell-Mann-Low eigenvalue with (g g) e0, and the
breakdown of y, invariance.

ÃA, 5R2

(NX+ 96x') p' (7.2)

(7.5}

and defines

This equation achieves a more compact form if
one rescales the classical field by

VII. CONCLUSIONS (7.4}

%'e have shown that it is possible to compute the
effective potential exactly in AQ' theory, with O(N)
symmetry, in the limit of N large. As a conse-
quence, we were able to analyze the stability of the
vacuum and the possible spontaneous symmetry
breakdown of the theory. %'e found that the existence
of a local minimum in the large-N limit required
the renormalized coupling constant to satisfy
0&1+ (NA} '96m'. (It is not clear whether these
are true bounds, or only an indication of the break-
down of the 1/N expansion. ") We were also able
to argue that p(X), the function that appears in the
Callan-Symanzik equation in the massless theory,
is unlikely to have a nontrivial zero. Further-
more, we showed that the existence of a nontrivial
zero of J3(A) in the massless theory is a necessary
condition for spontaneous symmetry breakdown in
the massless case.

In Appendix B we showed how to truncate our
exact system of equations (for large N) so as to
generate the leading logarithm approximation. '
In fact the leading-logarithm approximation gen-
erates a spurious singularity in p' space. How-
ever, the approximation is not expected to be valid
in the region of the singularity.

At the moment the study of the large-N limit in
particle physics is largely academic. (It does
have applications to statistical mechanics. ) Its
virtue is that it presents a method which avoids
a perturbation expansion in the coupling constant
in favor of an expansion in 1/N This allows .one
to analyze many issues of principle which are not
accessible in the usual perturbation expansions.
These methods might be useful in physically in-
teresting theories if the corrections to the large-N
limit are small.

Note added. One may combine Eqs. (4.11) and
(4.15) to obtain a single equation describing the
effective potential. It is convenient to define

(V.l)

so that"

SR =P + sgp +gSR ln (7.5)

(7.6}

which is identical to Eq. (5.6).
The rescaling (7.4) makes it clear that NX

= -96m' is a singular point of the theory, and the
analysis of Sec. V shows that 0&g&-~ is unphysi-
cal. Unfortunately, Eq. (7.5), taken by itself,
tends to obscure the existence of bounds for ÃX.
One aspect of this property may be recovered by
expanding (7.5) in the neighborhood of p' =0, where

(7.7}

which exhibits the singular nature of g= 1 (NX =~).
This phenomenon can also be observed in (4.17),
which is the analog of (7.7}before the rescaling
(7.3}.

The many-field limit is not new. In statistical
mechanics the large-N limit gives rise to the
spherical model, " invented by M. Kac. In this
limit, the Hartree approximation becomes exact. '
The study of the large-N limit has also been ad-
vocated by other workers. "

Note added in proof.

From (V. l) and (V.2) one easily finds that

This is the "gap equation" of the theory. Equation
(V.S) provides a convenient equation for studying
symmetry breaking. Spontaneous symmetry break-
ing thus requires

SR' =0

whereupon one obtains
BV(@') ~ 96v'

(7.8)
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and

Re» &0,
2 p'

y2) 2

(7 9)

which is identical to (BS) obtained from the re-
normalization group. Accordingly, the effective
potential in the large-N limit has no lower bound
for all choices of the free parameters. This dif-
ficulty is also signaled by the presence of a tachyon
state in the model. "

A more detailed study of the gap equation (in
collaboration with L. Abbot) shows that if a local
minimum of the potential occurs at some (II)2 &0,
one always finds

Re, =0,BV

8$

the analysis of Sec. VI suggests that P(z) =0 is re-
quired for this to occur.
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at a large~ value of p', which is consistent with
the behavior reported in Sec. IV and Eq. (7.8).

It has been conjectured" that V(g') may have a
minimum for very large (I}', outside the domain of
validity of the large-N expansion, which in fact
represents the true vacuum of the theory. If so,

APPENDIX A: RENORMALIZATION

In this appendix we show that the quantities
Bz(P'; y) and B„(y), defined by Eqs. (4.12) and
(4.21), respectively, are finite and independent
of cutoff. [In what follows we suppress the P' de-
pendence of Bs(P,'; y) to simplify our notation. j
From Eqs. (4.5) and (4.12) we can write

(X/~) B„(z)=, P' In,~ —(~/X.) z

1 ~
A'+ P'+ z —+i NXB„(z)

(Al)

where z = —6XP', and X(A) is the renormalized (unrenormalized) coupling constant. From (4.5) one finds
that

BB(y) i X A A2+P'
8p, 0 16m' A. A +p' p' (A2)

{AS}

Taking the limit A'-~ in (A1) and noting that B„(z)/A -0, since the quadratic divergence has been elimi-
nated with the mass renormalization, one obtains from substitution of (A2) into (Al)

( }
~

15 15

If B„(z)is indeed finite and independent of cutoff,
then the right-hand side of (AS) is also finite, so
that consistency demands that we show that the
left-hand side of (AS) is also independent of A'.
However, from (4.9) and (A2), we relate the re-
normalized and the unrenormalized coupling con-
stants by the expression

1 1 ( 1A A'
&

—
& 'II+ 9, -ln, +1 ~. (A4)

When (A4) is substituted into the left-hand side of
(AS), all A' dependence is eliminated, and one
arrives at Eq. (4.15) of the text.

The discussion of B„(z)is similar.

Combining Eq. (4.5) with (4.21) one obtains

AzBs(z) = — [z —6iÃAzBz(z)jin6 4 N g —-'gM~B~(, z j,
' sB(0 y) 4y s'B(O, y) 4y' O'B(O, y)

sy N sy' N(N+ 2) By' (A5}
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with z = —,][.„(P2. From the renormalization condition (4.19}, one may reexpress the second term on the
right-hand side of (A5) in terms of (X„—X). Substituting (4.19) into (A5) yields

(A6)

Setting (P2 =M' in (A6) gives

1 1 M 2 N 6A2/]].e
][„[M2—[le„(-,'~„M2)] 96v2 M2-ii)iB„(-', ][.„M2) (A7)

Eliminating ]]. from (A6) using (A'I), one arrives at
the final result given by Eq. (4.22) of the text.
Hence B„(', A„(t)2—) c, an be expressed entirely in
terms of renormalized quantities, and is finite.

APPENDIX B: LEADING-LOGARITHM APPROXIMATION

8( ')=2(m')+ i»~B( ')j,[G(P', m')]'

[-.'»2(-)] j ,"'.[G((,-*))'

d4p
+ [-,'iA]][.B(m)] ' P, [C(P2, m')]'+ ~ ~ ~,

Several authors have computed the effective po-
tential in X&4 theory and considered the leading-
logarithm approximation to V((t)2) in the large-i)i
limit. ' This approximation is obtained from the
solution to the renormalization group Eqs. (6.3)
with P(X) computed to lowest nontrivial order.
Equivalently, one sums the linem" ehgin of bubble
graphs which contribute to the effective potential.
The linear-chain (leading-logarithm) approxima-
tion only sums a subset of the bubble graphs which
we are able to treat exactly. The purpose of this
appendix is to discuss how our system of equations
may be truncated to produce the leading-logarithm
approximation.

In order to facilitate the comparison with the
work of other authors, we discuss our system of
equations before mass and coupling renormaliza-
tion has been implemented (cf. Sec. IIID). The
question of renormalization is easily dealt with
after our equations have been truncated, and we
have the advantage that we need not treat the cases
P2& 0 and P2 =0 separately. [For purposes of de-
tailed comparison, we attempt to make contact
with the work of Jackiw, ' his Sec. IIIC, especially
his Eqs. (3.25)-(3.27), which we denote by (J3.25)-
(J3.»).]

The effective potential in the lax ge-N limit is
given by Eqs. (3.29) and (3.40). It is convenient
to rewrite (3.39) [or equivalently (3.35}] as

B(m') =B(m')

d'P [G(P', m')1'
(2z)' [I - -'iA][.C(P* m*}B(m*)]'

(Bl}

where m' = tj.'+ —', A.P'. Expand the denominator of
(Bl) in powers of MG(P2, m')B(m'), so that

(82)

where

g(m2)
16v2 [1 —][a„f(m')] '

(83a)

(83b)

dg(m') A' A'+ m'
dm2 A2+ m2 m2

(J3.26b)

(J3.26 a)

and a„=N/96v2.
Let us improve the solution for B(m') by sub-

stituting (83a) back into the right-hand side of
(82). There is now an infinite number of terms
on the right-hand side of (82}which depend on

powers of B,(m'). Now truncate this new infinite
series at the quadratic term on the right, i.e.,
at [B,(m')]', so that

which has the graphical representation shown in

Fig. 11. The infinite series in (82) still expresses
the exact content of the large-N limit, as no ap-
proximations have as yet been made.

One must solve (3.39) or (82) for B(m'), and
substitute the result in (3.40) to obtain sV/s(P, . In

the text we solve this exactly, in terms of the
transcendental Eq. (3.39), which has a solution by
numerical methods. An alternate (but less useful)
approach is to solve (82) approximately. Suppose
that we linearize (82) in that we only keep terms
in (82) which depend linearly on B(m'). Let us
denote this approximate solution as B,(m'). Then

d'p j-i
B,(m') =B(m') 1 —-', ii)i][. .[G(P', m')1"
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B(m')—

FIG. 11. (a) Graphical representation of Eqs. (3.35) and (82) for St(m2), with conventions as in Figs, 1 and 3, but with
Q a constant field. (b) Graphical representation of Eqs. (3.40) and f32) for SV/+, with conventions as in (a).

(),( *) =()( ')+ ,'i)(&)),(m') f —.[G((*,m')1' ~ [~(((i i)( *))'J . [G(P*. *)['.

Carrying out the integrations one obtains

[-i/16w'f(m')] iN& '[ i g(m') I' i sf(m')
16m' [1-&„f(m')] 6 I16w' [1 —![u„f(m'))[ .16m' sm'

(84)

16m' 1 —&„f(m') " [1 —![s„f(m')]' sm'

The approximate solution to the effective potential
(corresponding to the leading-logarithm approxi-
mation) is

(-)]fPl + g~ 2 PE

%'e see above that fairly drastic approximations
must be made to reduce our exact equations to
(85) and (86).

Zackiw' computes V((!)')—V,(@') in his Eq. (3.25)
for the massless theory, in the leading-logarithm
or linear-chain approximation, for N large. From
his results we have calculated [sV(&p')/sp, ]
—BV,(P')/8(t)„which after rearranging terms
coincides exactly with our (85) and (86). Further
Jackiwe and Coleman and %einberge find for the

renormalized effective potential in the leading-
logarithm approximation when N gets large,

(87)

Equation (86) has a spurious singularity in (!)'

space. Of course the leading-logarithm approxi-
mation is a rather poor method for computing the
effective potential in the region where the singu-
larity occurs. For (t)' very large

4
2V(~ ) .= 4[a iny

which is independent of X and monotonically de-
creasing. This behavior is identical to that given
by (7.8).

*Research supported in part by the U. S. Atomic Energy
Commission under Contract No. AT(11-1)3230.
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The idea of generating functionals for proper vertices
originates with J. Schwinger, Proc. Natl. Acad. Sci.
USA 37, 452 (1951);37, 455 (1951). The path-integral
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formulation of quantum theory is given by Feynman,
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Lectures on Elementary Particles and Quantum Field
Theory, 1970 Brandeis Summer Institute in Theoretical
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C. DeDominicis and P. C, Martin [J. Math. Phys. 5, 14
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~The loop expansion for the 1PI Green's functions is dis-
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Lee and J. Zinn-Justin [iMd. 5, 3121 (1972)], and
R. Jackiw [ibid. 9, 1686 (1974)].
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in the large-N limit in two dimensions. Their result
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