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We show how a class of relativistic center-of-mass (c.m.) variables for a composite system with

arbitrary internal interactions can be constructed to any order in 1/c' by means of a nonsingular

unitary transformation which arises from a study of the Lie algebra of the Poincare group. The class

of c.m. variables so constructed subsumes the c.m. variables previously obtained by means of the

singular Gartenhaus-Schwartz transformation. We explicitly determine the c.m. variables to order 1/c',
and as an example consider both internal electromagnetic {EM) interactions, where simplifications are

pointed out with regard to a previous study, and external EM interactions, where the complete form of
the "correction" term to the Foldy-%outhuysen EM interaction Hamiltonian is given. The results of
some earlier studies of relativistic corrections to phenomenological potentials are also shown to be

included in our results, and separability is briefly discussed.

I. INTRODUCI'ION

Kith the possible exception of those physical
systems which are currently described as "ele-
mentary particles, " most physical systems-
molecules, atoms, nuclei, . . . -can profitably be
considered to be composite systems formed from
"more elementary particles. " In this paper, we
will consider only those composite systems for
which the creation or destruction of the con-
stituent particles, whether virtual or real, plays
a minor role in the phenomenon under study. The
composite system can then be regarded as com-
posed of a fixed number of relatively stable par-
ticles. Dynamical variables for the composite
system can then be introduced, and related to the
Lie algebra of the invariance group through the
expression of its infinitesimal generators in terms
of these, where the otherwise arbitrary internal
interactions of the composite system are now ex-
pressed as direct interactions. The composite
system can then be studied in terms of the Lie
algebra of the Galilean or Poincard group.

The infinitesimal generators of the invariance
group can be expressed in terms of the dynamical
variables of the composite system in either of
two ways. The first, and most familiar, is to ex-

press the generators in terms of the constituent
particle variables' by which we will mean the set
of variables fr„,p„, s„), where r~, p„, and s„
are the position, momentum, and spin of the

p. th particle of the composite system. The second
is to express the generators in terms of a (not
necessarily unique) set of center-of-mass and
internal variables which we shall collectively
refer to as c.m. variables. These variables
are defined in terms of the constituent particles
such that the infinitesimal generators take a
specific form in which they are related to the
center-of-mass variables in the same way as
for an irreducible representation. This form of
the generators shall be referred to as the "single
particle" form. %hat is interesting, and what we
will be most concerned with, is that the above
dual procedure of expressing the infinitesimal
generators in terms of dynamical variables may,
with advantage, be inverted. Instead of expressing
the infinitesimal generators in terms of a given
set of c.m. variables such that the Lie algebra of
the invariance group is satisfied, the Lie algebra
of the invariance group can be used to construct a
class of c.m. variables which are defined in terms
of the constituent particle variables. In this way,
relativistic c.m. variables can be constructed.
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The advantage of c.m. variables is that they
have the effect of describing a composite system
as if it were in fact a composite system; that is,
as if it were a "single particle" whose behavior as
a whole is separated from the details of its in-
ternal structure. The description of composite
systems in terms of c.m. variables has been par-
ticularly useful during the past few years in the
study of soft-photon scattering from a bound sys-
tem of particles. The study had been instigated
by the question of an explicit demonstration of
the low-energy theorem (LET) for Compton scat-
tering' and the Drell-Hearn-Gerasimov (DHG) sum
rule for composite systems, ' and an explicit
treatment of c.m. variables, especially to order
1/c', has been applied to loosely bound systems
by a number of authors. ' ' More recently, the in-
corporation of some special cases of internal in-
teractions into composite systems to order 1/c'
has been considered. '

The purpose of this payer will now be set down.
First, as the contents of the original articles con-
cerned with the validity of the LET for Compton
scattering and the DHG sum rule for composite
systems6 9 have been elaborated upon and ex-
tended in scope, confusion has arisen with re-
gard to the following point: The "correction" to
the Foldy-Wouthuysen (FW) electromagnetic (EM)
interaction Hamiltonian as originally discussed '
and rederived in later publications"'2 is not the
complete "correction" tenn to order Ijc . It is
important to realize that in the series of publica-
tions concerned with the validity of the LET for
Compton scattering and the DHG sum rule, only
those terms which could contribute to the theorem
and the rule mere ever considered. Furthermore,
we have been informed that an oversight w'ith re-
spect to this point has recently occurred in the
literature. " To preclude further confusion in the
literature, the complete expression for the "cor-
rection" to the FW EM interaction Hamiltonian has
been included in Sec. III of this paper.

Second, we develop a general procedure for
systematically constructing a class of c.m. vari-
ables satisfying the conditions referred to above
for a composite system with arbitrary internaL in-
teractions to any order in 1/c . The procedure
makes use of the Lie algebra of the Poincar6
group, and leads to the definition of a unitary
transformation alluded to in a previous publica-
tion. s The resulting c.m. variables are more gen-
eral than those constructed by means of the
Gartenhaus-Schwartz (68) transformation, '4 and
in contradistinction involves a nonsjngular trans-
formation. The relationship between the GS trans-
formation and our procedure is discussed, and
explicit results are given to order 1/c'.

Third, we wish to point out that some results
previously derived by others with regard to c.m.
variables in the presence of internal EM inter-
actions" may in fact be had by inspection, and
that the results of some earlier studies of rela-
tivistic corrections to phenomenological poten-
tials"" are included in our results as a special
case. In this connection, separability' is briefly
discussed.

II. DYNAMICAL VARIABLES

A. The Poincare group

If the infinitesimal generators of the Poincard
group are denoted by 0, f, %, and 3C, and repre-
sent respectively the generator for infinitesimal
space translations, space rotations, "velocity"
transformations, and time translations, then the
unitary transformation

e g E ~ II -g 8 k y+ g u k 3k. + & T~ (2.1)

changes the state of the system in the active sense
to a new one which is space-translated by a, ro-
tated by an angle 8 about 8 = 5/8, boosted by a
"velocity" u=ctanh '(v/c) in the direction 8=v/o,
and advanced in time by 7, and the infinitesimal
generators satisfy the Lie algebra

(2.2a)

(2.2b)

(2.3a)

g =+ (rk X pk +8k) ~ (2.3b)

(2.3c)
sg xpg, (r„H„+H„r„)—,-&P„,c a~+muc

3C=QHk+ pU, Hk =(pk c +mk e ), (2.3d)

where the constituent particle variables are taken

[x„x]=i6', ,

where the units are such that A = j.. In terms of
the constituent parhcle variables jr„,p„, s„j,
where r„, p„, and%„represent the position, mo-
mentum, and spin of the p, th particle of the com-
posite system, and in the presence of arbitrary
internal interactions, the infinitesimal generators
of the PoincaH group may be expressed as fol-
lows:
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[4& ~V/] =it l/»V»

and Eq. (2.2c) that U and fare related b'y

[V, , (P/J =i5,/ U/c

and 0 satisfies

(2.5b}

(2.5c)

V„QK~/ —(i j}+p—[V, , V/]=0,
p

(2.5d}

to satisfy the familiar free-particle commutation
relations

[».', «Jl = [pg', p'.]= [s„', r„']=[s„',p„']=0, (2.4a)

[«„',p„']=i6„„6„, (2.4b)

[s„', s„']= l6 „„t„»s„' (2.4c)

Uis an internal interaction potential, 0 is the
corresponding "interaction boost, " and P is simply
a parameter, here introduced to distinguish the
contribution due to the presence of internal inter-
action, which allows us to "turn off" the internal
interaction by letting P-0. Note that g and g re
tain their free-particle forms, so that from Eq.
(2.2c}X must change if X does. Furthermore,
because the commutation relations of the constit-
uent particle variables remain unchanged in the
presence of internal interaction, the Lie algebra
restricts the form of U and f. Equation (2.2a)
implies that U is a rotationally and translationally
invariant function,

[U 5]=[U,@=0, (2.5a}

Eq. (2.2b) that 0 is a vector under rotations,

[h, R, ]=[h, P, ]=[h, S,]=0,
[Rl g P/] $6l/

[~l 3/]=i&l, A ~

(2.7b)

(2.'lc)

In Sec. EIC, it will be shown how the remaining
3N- 2 independent (3-component, internal) vari-
ables of an N-particle composite system can be
constructed in the presence of arbitrary internal
interactions to any order in l/c'.

8. The GaNean group

The Lie algebra of the Galilean group can be ob-
tained from the Lie algebra of the Poincarb group
by contracting the latter group with respect to
speed and space." This may be accomplished by
allowing the speed of light c to increase without
bound wherever it occurs explicitly in the Lie
algebra of the Poincarh group as given by Eq.
(2.2). Care must be taken, however, with respect
to the generator X. In the contraction, it is as-
sumed that X is expandable in powers of l/c,
where the leading term is the total rest energy of
the system. With this understanding, the Lie
algebra of the Galilean group follows directly
from Eq. (2.2).

terms of the infinitesimal generators of the Poin-
car6 group, the Lie algebra implies the following
commutation relations among 5, 5, f, and h,
and conversely:

[Rl, R/] = [Pl, P/] = [Sl, R/] = [Sl, P/] =0,
(2.7a)

where (i —j) means interchange i and j of the pre-
vious term. These are the only independent con-
ditions on Uand 'F. The question of independent
commutation relations of the Poincar4 group is
discussed in Sec. IIC.

The infinitesimal generators of the Poincarb
group can also be expressed in "single particle"
form, by which we will mean the following":

[5 „d,]=[4 „X]=[a„X]=0,

[&l &/]=itl/»&» [&l 4'/]=i»l/»6'»

[f}„st,]= i~ i/»st»

[ ls, t5' ]-/ll/ 6~ t [st( t j3]c- t0

[st„X]= id', ,

(2.8a)

(2.8b}

(2.8c)

J =fx 0+/,

X=, (I'X+~)—j. fx5
2Q X+h P

[P»c2 +h»(P)]l/»

(2.6a)

(2.6b)

(2.6c}

(2.6d}

These expressions serve to define 5, 0, f, and

h, the center-of-mass position, momentum, spin
(internal angular momentum), and mass (internal
Hamiltonian) of the composite system in terms of
the infinitesimal generators of the PoineaH
group. Or, given Eq. (2.3), the above expressions
serve to define 5, 5, f, and h in terms of the
constituent particle variables r„, p„, and Im'„. In

where M =Q„m„, and m„ is rest mass of the p, th
particle of the composite system. Although %e
Lie a1.gebra of the Galilean group is the limiting
case of that of the Poincarb group in the sense
described above, it is significantly different in
structure. Note in particular that the Lie algebra
of the Galilean group does not close on itself, but
rather contains an element which is neither mero
nor a homogeneous, linear function of the infini-
tesimal generators of the group. The presence
of the constant M in the Lie algebra of the
Galilean group implies additional complications
not associated with the Poincar4 group, most
notable of which is the Bargmann superselection
rule which forbids the creation or destruction of
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matter. " In spite of the additional complications
which arise, the presence of the constant M is
necessary if the Lie algebra is to correspond to
physical particles, "so that not only does the Lie
algebra that would have resulted had $C not been
expanded in powers of 1/c' have a nontrivial cen-
tral extension, that is replacing zero with a con-
stant times the identity operator, but it is precisely
this extension which corresponds to physical par-
ticles.

If the generator X is also assumed to be ex-
pandable in powers of 1/c', then, in terms of the
constituent particle variables, the infinitesimal
generators of the Galilean group can be obtained
by contracting those of the Poincard group with
respect to the speed of light c. From Eq. (2.3),

6 =Pp„, (2.9a)

(p=5,
g=f x 5+K,
x =M% —t 0,
"="'P'

2M ~

(2.12a)

(2.12b)

(2.12c)

(2.1M)

where h, a rotationally and translationally in-
variant function of internal c.m. variables only,
is the internal Hamiltonian of the composite sys-
tem

h(P) =wc'+a&'&(P)

2
h" (p)=g " +pfI'

P 2@ijf

(2.12e)

ables, the infinitesimal generators of the Galilean
group assume a "single particle" form. From Eq.
(2.9),

vt =Q(rp x $v +sv),

X = Q(tÃ p r v fP ~ ) + P/

(2.9b)

(2.9c)

Furthermore, the commutation relations satisfied
by these c.m. variables are consistent with those
given by Eq. (2.7) in the case of the Poincard
group

m ~2+ " +pa~'~ (2.9d)

(2.10a)

rp =pp+%~ pg =Fp+ Pv gg =gv, (2.10b)
M

f =Q (p v x 7f p +cp ), (2.1Oc)

where K and 5 are the c.m. position and momen-
tum, p„, g„, and o„are the internal position, mo-
mentum, and spin associated with particle g, f
is the total internal spin of the composite system,
and the p„and „vstai fsythe following subsidiary
conditions:

(2.11a)

(2.lib)

The c.m. variables so introduced have rather
special properties. In terms of these c.m. vari-

where the superscript indicates orders in 1/c'.
The "interaction boost" V&'l may be set equal to
zero without loss of generality by a procedure
discussed in Ref. 1, and for expediency this choice
will be made in this paper. The conditions on
U are then that it be a rotationally and transla-
tionally invariant function such that

m„r» U& l]=O.
By analogy with classical mechanics, we intro-

duce a set of nonrelativistic c.m. variables through
the following definitions

[R4 (Pp vv cp)]=[PI (Pu &v cd]=0
[R, , R ] = [P, , P~] = [p „',pJ]= [v„', wJ] = 0, (2.13b}

[S„R,]=[S„P,]=[a, R,]=[a,P, ]=[a, s,]=o,
(2.13c)

[R4 & Pj] ~t)&i s [Pv ~ tfv ] Kjt)vv tl1v/~)6~y

[S& S~] = f~;~A fs; p p] = i~&g.pv,

[S&, wp] =fE ggw&p, [Sg, (Tp] =16&ggvp
~ 4

g p y
0'p J —g5 P7J 6 jfp O'P ~

(2.13d)

(2.13e)

It follows that the infinitesimal generators as de-
fined in Eqs. (2.12) in terms of these c.m. vari-
ables must satisfy the Lie algebra of the Galilean
group.

C. Relativistic e.m. variables

Using the Lie algebra of the Poincard group,
we will show how one can construct relativistic
c.m. variables to any order in 1/c2 for a com-
posite system with arbitrary internal interac-
tions. Our criteria for constructing these vari-
ables will be the following. Expressed in terms
of the relativistic c.m. variables, we require that
(1) the infinitesimal generators 6', g, x, and 3C

satisfy the Lie algebra of the Poincarb group as
given by Eq. (2.2), (2} the infinitesimal generators
$', g, St, and 3C have the single-particle form as
given by Eq. (2.6), and (3) the infinitesimal gen-
erators 6' and g retain their nonrelativistic forms
even in the presence of arbitrary internal inter-



10 RELATIVISTIC CENTER-OF-MASS VARIABLES FOR. .. 1781

actions as given by Eqs. (2.12a), (2.12b), and

(2.10c). The relativistic c.m. variables con-
structed on the basis of the above criteria are not
unique. We will find that the above criteria and
our assumption that the generators X and X are
expandable in powers of 1/c' in the presence of
internal interactions lead to a whole class of rela-
tivistic c.m. variables. (If St and X are analytic
functions of 1/c' in the presence of internal inter-
action, i.e., expandable in powers of 1/c', then
there are no other solutions. ) Furthermore, there
may exist relativistic c.m. variables which satisfy
our criteria, but the generators X and 3C are not
expandable in powers of I/9 in the presence of
internal interactions. This class of relativistic
c.m. variables is not considered in this paper.

We begin by observing that the nonrelativistic
c.m. variables, as defined in the previous section,
satisfy the criteria above with respect to the
Galilean (rather than the Poincar(() group Wit. h

sufficient insight, one could presumably define a
new set of c.m. variables to some higher order in
1/c' which would satisfy the above criteria to the
corresponding order with respect to the Poincard
group. One may approach the problem, however,
in a more systematic way. On the basis of pre-
vious work, ' one may ask whether this new set of
c.m. variables, defined in terms of the constituent
particle variables bosom'e higher order in 1/c',
can be constructed from the nonrelativistic c.m.
variables, defined in the last section, by means of
a unitary transformation. The answer is yes, and
provides insight and a means of constructing this
class of relativistic c.m. variables.

Consider the Lie algebra of the Poincarb group
as given in Eq. (2.2). Of the nine commutation
relations between 5', g, 3:, and 3C, only six are
independent:

(2.14a)

(2.14b)

(2.14c)

As shown in Appendix A, the remaining three
commutators involving 3C can be derived from
five others. Of those commutators above, the
last two, Eqs. (2.14c), are the most important.
The first of these shows that of the four gen-
erators, %plays a minor role with respect to the
independent commutation relations above, in the
sense that it is embodied in @and "projected out"
by 6'. This will imply that the relativistic c.m.
variables constructed by means of a unitary
transformation will satisfy our criteria with re-

spect to the generator 3C if it satisfies it with re-
spect to the generator 3',. From the second com-
mutator, an explicit manifestation of the Wigner
rotation so closely associated with relativistic
kinematics, we will show that the proposed uni-
tary transformation exists for all orders in 1/c'.

We now make one other observation. Consider
the infinitesimal generators of the Poincar6 group
as given in Eqs. (2.3). Let us write any one of
these as 6 (r„,p„, l'„), a=1, 2, . .. , 10. If we sub-
stitute in each of these for the operators r„, p„,
and s„ in terms of the GaLilean c.m. variables
5, Iy, p„, ((„, and c„as given in Eqs. (2.10b), we
now have for the generators

which, by virtue of the commutation relations
(2.13) and subsidiary conditions (2.11) satisfied by
these variables, will continue to satisfy the Lie
algebra of the Poincarb group. In terms of these
variables, however, G„will not have the single-
particle form of Eqs. (2.6). Our objective will
be to bring them to this form by means of a unitary
transformation.

Suppose there exists a Hermitian operator
(j( = (j((%, 0, p q, 7„,o q) such that

e G r~-~~+ pj, -m'~+~ s~-o~ e

~(K ~( p((~ ((((~ &(() =G(r((i p((~ s(() ~ (2.15e)

where r„, p„, and s„are given by Eqs. (2.15b}-
(2.15d). Because the transformation is unitary,
the commutation relations of r„, p„, and s„

(2.15a)

where Q is any one of the infinitesimal gen-
erators of the Poincard group expressed in
single-particle form, as given by Eq. (2.6), on
the left-hand side of Eq. (2.15a), and in terms of
constituent particle variables, as given by Eq.
(2.3), on the right-hand side, and 5, 5, p„, w„,
and c„satisfy Eqs. (2.13}and (2.11). The es-
sence of Eq. (2.15a) is the statement that if
r„, p„, and s„are replaced by the relativistic
c.m. variables defined by the equations

(2.15b}

(2.15c)

(2.15d)

in Eq. (2.3), then the infinitesimal generators of
the Poincarb group 6', g, X, and 3C would satisfy
condition (2) of the criteria set down at the begin-
ning of this subsection, or
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among themselves are still given by Eq. (2.4),
since 5, 5, p„, w„, and o„satisfy Eqs. (2.12) and

(2.11). This implies that 8, t}, X, and R satisfy
the Lie algebra of the Poincarb group, so that
condition 1 is satisfied.

The interpretation of fge} as it occurs in Eqs.
(2.15a}-(2.15c), is to be as follows. The function

P defines the possible relationships between ob-
jects N)hose abstract meaning remains the same,
(r„,p„, I„}and (5, 1,p„, ((„,5„},so that p„and
g„, for example, always represent the momentum
and internal momentum of the p, th particle, re-
spectively. The relationship between the two,
however, is determined by g Assuming r„, p„,
and%„ tobe given, the p„, m„, and o„can be de-
fined in terms of these by determining (t), per-
forming the unitary transformation, and then I-
verting the results. The form of |t) will now be
determined.

From condition (3), Q must satisfy the equa-
tions

~(n)
(=f+ g

n=x

~( n3

~ =a"&+
n=X &

g(n)R=F" + Q C

(2.1'la)

(2.1'Ic)

and substituted into Eq. (2.1&e). Collecting terms
of like order in 1/c',

suit. It shows that a unitary, nonsingular equiva-
lent of the Gartenhaus-Schwartz transformation'~
exists, and can, in principle, be determined to
any order in 1/c' for arbitrary internal interac-
tions of a composite system. The proof is as
follows, and makes use of a technique found useful
in molecular physics. ~

Let $ = e 'e; then with Eq. (2.16d) written as

(2.1&e }

$, «, and R may be expanded in powers of 1/c',

6'=e'~6'e '~, (2.1&a} (2.1&a)

(2.16b)

3:(5, 5, p„, v„, o„)

=e X rp =pjf +~ pjt =Fp+ k'g sp =op e ~

M

(2.16c)

e&4ye-i(t)

so that g =()i(li, p„, ((„,o„) is a rotationally and
translationally invariant function. Next consider
the generator FC. From Eq. (2.15a) we have

«"' = j('" + [«") )")]
«(n) —k(&) + [«(n) $(n)]+@&)$(&) $(&)«(~)

«'"' = F"'+ [«") ((")]

g (f (a)g(n-a) ~(a) (n -a))
o =1

(2.1&b)

(2.1&c}

(2.1&d}

Because the generator X, in particular, satisfies
the Lie algebra of the Poincarii group [condition
(1)], and ()i commutes with the generator g [con-
dition (&)], the first commutation relation of Eq.
(2.14c) implies that the generator Q satisfies Eq.
(2.15a} if Sc does, so that Eq. (2.16c) is sufficient
to determine (j). For convenience, Eq. (2.1&c)
will be rewritten as follows, but it w01 mean the
same thing:

Note that Eq. (2.1&a) corresponds to the Galilean
case discussed in the previous subsection.
Furthermore, from Eq. (2.12c}, «" =M% —t5,
which together with Eq. (2.16a) impUes that
[«(n), $(")] is just the 0 gradient of $(") times iM,

I(. = e'%e '~ . (2.16d} (g(a)~(n -a) ~(a)«(n -a))

We will now show that Eq. (2.1&d} can always be
solved for g, provided that p can be expanded in
a power series in 1/c'. This is an important re- This equation has the solution"

(2.19a)

n P I«(n): (tP. «(n) 'f(n) (Pa)~(n -a) ~(a)«(n -a)) tll(n)
M

(2.19b)

where the O~ "& are arbitrary functions of internal
c.m. variables only, provided the 0 curl of. the
right-hand side of Eq. (2.19a) vanishes. This is
equivalent to the statement

n -j.
«(n) «(n) h(n) (h(a)((n -a) ](a)«(n -a))

a=

- (i-j)=0 . (2.20)
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((n) + ( 1)n
— y(m) -n

n=l C nn1 St m=1

that is,

~
(~) &@(&)

i'
t(2) iy(2) ~ [p{1)]2

2f
~ 3

&'" =- e'" —,', 9"',e'")- —,', le'"]',

(2.21)

(2.21a)

(2.21b)

(2.2lc)

The demonstration that Eq. (2.20) is satisfied
for all n is given in Appendix B. It requires only
that the second commutation relation of Eq.
(2.14c) be satisfied, or more generally, that con-
dition (1) be ss.tisfied.

Because the g|') are related to the E&") in an in-
creasingly complicated but direct fashion,

[6„w]=o,

[g„w,]=i&„.,wn, 1

(2.23b)

(2.23c}

which is related to U through Eq. (2.5d).
It is also important to note that the class of c.m.

variables defined by $ (or p) is parametrized by
the two functions II and P|) . It is by virtue of the
arbitrary functions II'") that the c.m. variables
generated by this procedure will be more general
than those generated by the Gartenhaus-Schwartz
transformation. ' In the next section,

flan

' and the
corresponding c.m. variables are explicitly con-
structed and a comparison is made.

D. c.m. variables to order 1/c and comparison

where V7 is a translationally invariant vector func-
tion,

y(2) -it{2) 1 [t(1)]2 (2.22b)

y(2) it(2) Q(1) g(2)}

where {,j is an anticommutator, or conversely,

y(" =i)(", (2.22a)

We begin with Eq. (2.18b), Eq. (2.18a}being the
Galilean case. Its solution for ( '), or from Eq.
(2.21a) (t)(", is given by Eq. (2.19b),

-iy") =]("= —' dP (({(')-F"}-1II"'.
M

(2.24)

+ —[t'"]'-—[5("]',if 3f (2.22c)
Explicitly expressing ~z' and 'F' in c.m. variables
according to the convention of Eq. (2.16c) im-
mediately yields (f)('). From Eqs. (2.6c) and
(2.3c), respectively,

the g'"' are also shown to exist for all n, and the
resultant $ is unitary. The @~") couM equally
well be determined, once their existence had

been established, by expanding Eq. (2.16d) directly
in 1/c2.

It is well to keep in mind at this point that the
I ie algebra of the infinitesimal generators iP, f,
3'., and & which led to the results above is only
satisfied, with respect to the constituent particle
variables, if the conditions upon U and 0 as given

by Eq. (2.5}are satisfied. In particular, it will
be expedient to solve Eq. (2.5c) for

st(K, 5, P „,v„, (r „)

1 2 0
2

5 Mc2+I((( )(p)+ + +H.c.[
2c' 2M

' 'I

fx5
(2Mc'+ ~ ~ ~ )

so that

((("= — 5 I1")(p)+ +H.c.
]

(2.25a)

, (5U+ VK)+%,
2c

(2.23a}
where I1 ') is given by Eq. (2.12e), and

mp g3' rp =p p+~ pp = Kp+ w) sp =0'p
M(, ((, ((„~(m„/(n)2)' ~ ir„x (ii„+(m„/)n)P] - „()}2 IP2+ 2Ã((C + +''' +8 C. —

(2 2 )
-i 7)2+

I

(~)
+ p +

so that
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g(~) ~ 1 W~ pgvg '5 5 Ãg BR@ M (lg X 'Jfg (lg x 0
2 2m~ M 2m~ M 2M 2m], 2M

where

0("=RU 0)+W"'

y pf(&) (2.25b)

(2.25c }

and Eq. (2.11)has been used. Consequently, with the aid of the Eq. (2.25c},

y(1) dgj, ~Q(1) l~ ~ vQ + ) 0 vQ + PPvll H M oil vol + ll(') (2.25a)

This may be easily integrated to yield the final result:

v2 P

~(l) l~ PQ vg
H I~ Pg 0 ~H ~~ ll ( y (1) P (fg, g(1) yPt(1)

(2.26b)
Il(j) —~(j) y Pg~&)

where II~'~ is an arbitrary function of internal c.m. variables only. Other than the function II"~, which
indicates an arbitrariness in the choice of the c.m. variables even in the absence of internal interactions,
p-0, and 4('), which contains the contribution to the c.m. variables specifically due to internal interac-
tions, ~15~'~ is the Hermitian operator discussed earlier with respect to the LET for Compton scattering
and the DHG sum rule. '

The relationship between the constituent particle variables and the c.m. variables to order 1/c' is easily
determined from Eqs. (2.15b) through (2.15d). The results are

g ~n

2m

(pox v„}x5 o„x 5'

2M c 2mqMc

2c „2m~
(T„xv„(T„x0 p g(q)

2mvMc ~~ 2M c Mc

(2.27b)

+ ~ (u(') —P (f5 @")+pg") p (2.27a)
0

m r ~ P

(2.27c)
2m„Mc'

The corresponding expressions for 0, 0, p„, w„, and cr„ in terms of r„, p„, and s„result from inverting
Eq. (2.27) while making use of Eq. (2.11). Note in particular that

(2.2Sa)

r~xpp+g~ = x +

5=+ (p„x v„+o„),
(2.2ab)

where [P"',g] =0 has been used so that condition (3) is explicitly satisfied. Condition (2) is also easily
shown to be satisfied:

p.'X, = ~ . r„m„c'+ " +H.c. — " ." —tp„+
2 2m' 2mpc" c

5 h(P)+ +H.c. —2, -tP,1 P' t(x 5
2Mc~

2

h(P) =Mc +l) )(P), h (P)= g " +PU, (2.28c)
p 2m/

while the corresponding result for ~ follows from the first commutator of Eq. (2.14c). The relationship
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between the h'"' and U "' also follows from the first commutator of Eq. (2.14c) together with Eq. (2.16c}:

2
[&c' I'(P))~'=e'~I+ ir ~ " 0 c'+m 'c'

—z/a

pp ~ pp ~p

(2.28d)

or, equivalently,

I (n)(p)
h(P) =Mc + Q

n=0

I")(P)=g '" +PU(o),
2ppl ~

I ())(p) P 7fy g 1fg Wy 7/g

8m'' q mqM 2m' 2))f

II2

+P U( +PU(' +)[P ' I) (P)]

(2.29a)

(2.29b)

(2.29c}

where it must be remembered that

( ft) (ft) ~ 4e ~ JI eU rv =pu+~ pv = ~~+ ~~ s~ =au

in Eq. (2.29). The operators P(") adjust the rela-
tionship between {r&,p&, s&) and {I,, II, p&, rr&, o„].
so that it is relativistically correct to order
1/c'". Alternately, Eq. (2.29}can be inverted
with respect to h "& and U("), and serve to define
the U(" . Since the transformation exp[if] is
unitary, and {5,Iy, p„, w„, o„j satisfies Eqs. (2.13)
and (2.11), {r„,p„,o„) satisfies Eq. (2.4), so that
condition (1) is satisfied.

Comparing the c.m. variables as defined by Eq.
(2.2'I) to order 1/c' with those generated by the
GS transformation by Osborn, '~ we note that in
the absence of internal interactions, P-0, the
c.m. variables of Osborn' correspond to the par-
ticular solution II(') =0. In short, to order 1/c',

x p„exp[-i —,'u(K I~+H.c.)],
1 {P-'(5 5+H.c.) = — X —+H.c.2 2 K

where from Eq. (2.3) and to order 1/c',

(2.30a)

(2.30b)

they are precisely given by Eq. (2.2'I) with (c&„') =0
and P=O, so that they are subsumed by our re-
sults. Since the c.m. variables of Bakamjian and
Thomas' are the same as those obtained by
Osborn, ' our remarks apply to them also.

A comparison of our results with those resulting
from the GS transformation' in the presence of
internal interaction will be less direct. It will be
accomplished by first deriving these variables to
order 1/c', and then comps, ring the results di-
rectly with Eq. (2.27) above. Here we are refer-
ring to the general GS transformation in which
the generators X and K explicitly depend upon 0
and U, respectively, and land Uare arbitrary
functions of the dynamical variables except for
the restrictions imposed by the Lie algebra.

The GS transformation is a singular transforma-
tion which maps the operator II into zero. It
exists for all operators which commute with P.
The c.m. variables are found by transforming
r„-r„, p„, and s„;R and II are defined by the in-
finitesimal generators of the Poincarh group. The
transformation of p„will be given as an example;
the results for r„-r, and s„are similar. Let
p„(a) be defined by

p„(o)= exp[i —,'n(K 0+H.c.)]

—,'(0 II+H.c.) = Q " (r„5+H.c.)

2

where Eqs. (2.23) have been used. The result of a straightforward calculation is

(2.30c)

7r
2 m(n)= -(I-e )& ™+

(2.30d)
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vrhere it has been assumed that

(2.31)

subsumed by our results.
In the next section, we consider both internal

and external electromagnetic interactions as in-
structive examples.

and A„(P) is zero, or contains s factors of 5.
This permits the follovring replacement, to order

c2 e

[v7" .0 -
]

!{22+2 c )J. .rr, 2 @"

, Q an[A„(P), w„],
C n=1

(2.32)

(2.33)

which contributes to Eq. (2.30d) as indicated
above. The limit of p„(a) as a- ~ is defmed to
be the internal momentum variable m&. Taking
the limit as n -~ of Eq. (2.30d) and inverting the
result yieMs

2 ~ 2

III. ELECTROMAGNETIC INTERACTIONS

A. Internal EM interactions

Other than the restriction given in the Introduc-
tion, the internal interactions considered thus far
in this paper have been completely arbitrary. In
this section, are wish to consider the old and fa-
mBiar problem of two particles interacting electro-
magnetically, and treat this as a composite sys-
tem arith internal interactions. In particular, ere
wish to single out for consideration a more recent
treatment of this problem by Close and Osbornio
in order to consider some of their results as an
example, and to illustrate an important point.

Following the quasi-field-theoretic approach of
Close and Qsborn, "one finds that, in terms of the
constituent particle variables, the Hamiltonian for
bvo particles interacting electromagnetically is,
to order I/c2,

which is to be compared to Eq. (2.2Vb). In this
scheme, the commutation relations of the c.m.
variables follow directly from Eq. (2.V), and GS
transforming Eq. (2.4) with r„-r„replacing r„.
Choosing Q„m+„=0yields Eq. (2.13}, while

P„s„=0results from GS transforming P=Q„p„.
Note that in the presence of internal interactions
the GS transformation again corresponds to the
particular solution D~') =0, so that they are also

2
~o) px + p2

2Slg 22R2

4
~(z) p~ 12

3 8 s
I

U(o) &&~2

4vrfr, r, f

'-

(3.la)

(3.lb)

(3.Ic)

(3.Id }

(~) E ~62 1
U pj i~ ~ ) pg +H~co pl ' (1'1 —1'2), ,2 (rl —r2) 'p2 +H.c.

16FSfg1%2 I rg —rg I 16',ns2 z f'r, —r2(

&1P2 s2'(rl —r2} Pl &201 sl'(rl —r2) x P m
- . -2-+ —3 p ip asj. 'sao sri —r2)

2Fsg j [rj rga 2FMI (r~ -12(

i" ii 2 1 2 ~l (rl r2}s2 (rl r2) el 2 I ~21 1 ~lP2 2(r )s Jr, r2]
2

)-F, - r2)' 8 m, m, ' 2m, 2m,

~1 gl' (rl r2) X pl fl 62 S2'(rl r2) X p2'4~, (3.le)

As one of their results, Close and Osborn" then
derive the corresponding expression for the
Hamiltonian in terms of the c.m. variables. This
may be misleading.

The point is the follovring. Although not ex-
plicitly stated, the c.m. variables chosen by
Close and Osborn'o are those generated by the
QS transformation in the presence of internal in-
teractions. An advantage of these c.m. variables

is that the form of the Hamiltonian follows directly
from Eq. (3.l) by inspection, not calculation. In

fact, one has

h(p) =lim exp(2 2'a{% 5+H.c))[ff+pU]

xexp(-i2'ag 5'+H. c.]), (3.2a)

where 0 is defined in terms of {r„,p„, s„]by Eqs.
(2.6) and (2.3), so that
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(3.2b)

(3.2c)

(3.2n)

and similarly for H ~" '(~). Consequently, one can
look at Eq. (3.1) and know what the form of the
Hamiltonian is in terms of these c.rn. variables.
For comparison, we make the replacement

P ~a=-p and px-po=q- The result is

where

U (~)= U (rp —rp~p„-p„, Pp sg~ sg op) ~

(3.2m)

3C = [P 'c'+ h'(P)]~',

~(o) ~ + ~ + ~4

(3.3a}

(3.3b)

4 4

&~~m2 I& I

hf
(

~ ~
)

$ xp 6qeq Q~ on Q xP
2sm, m '"*' '"' ' ("(' 6s m' m' gP

3(r, Ou, g)8 & ll 2 I 2 ~v&
/q(8 f

/5

~x~s 1 1 &up i ~xpn 6s(y)8 m, ' F22 2 gpss, 2m, (3.3c)

which is to be compared with Eq. (6.11)of Close
and Osborn. " Here o, and e, denote internal spin
operators, that is, ~S times the Pauli spin op-
erators used by Close and Osborn. Since the
form of h is known in terms of these c.m. vari-
ables, and the form of f follows from GS trans-
forming f-5x%, the form of the remaining in-
finitesimal generators of the Poineard group 6',
g, and X is also known from Eq. (2.6). So, one
knows by inspection the detailed form of the gen-
erators expressed in terms of these c.m. vari-
ables before the relationship between these c.m.
variables and the constituent particle variables
has been explicitly determined, %at is, before the
nonsingular 68 transformation, by which these
c.m. variables are defined, has actually been per-
formed in the presence of internal interactions.

This is quite different from the program we
have outlined. In our procedure, the central
question with regard to c.m. variables, constituent
particle variables, and relativistic invarianee of
a composite system has been what relativistic in-
variance implies about the relationship between
the two sets of variables. We have found that a
whole class of c.m. variables, defined with re-
spect to the constituent particle variables, is
permitted by the Lie algebra af the Poincard
grouy, that is, is consistent with relativistic in-
variance of a composite system, and that the de-
tailed form of the infinitesimal generators then
follows accordingly. In particular, to continue
our example, h and h would be given by Eqs.
(2.29b) and (2.29c). The conceptual difference be-

P~'& =(-,'(r, +r, ) -K/U&o&, (3.4b}

dP 4"&=- (j,+p, ) 5

(3.4c)

where Eq. (2.25c) has been used. Or, in terms of
g, using Eq. (2.2a), the above is equivalent to

d "&=- ~ m, -m, y

(3.4d)

The operator p " is then given by Eq. (2.26b),
and the c.m. variables are given by Eq. (2.27).
Note that both p and 5 explicitly depend upon the
internal interaction. Also, one may verify that
h"&, as defined by Eq. (2.29c), is in fact equal to
the expression given by Eq. (3.3c), with Q~'& de-

tween the GS transformation and our procedure
may be used to advantage, however. If II '~ =0,
the form of h and h ' is known in terms of the
c.m. variables from the notion of the GS trans-
forrnation as discussed above and given by Eqs.
(3.3b) and (3.3c) (before g '& has been determined),
while the effect of the internal EM interaction up-
on the relationship between the two sets of vari-
ables is particularly simple to determine by means
of p~". Given the choice for F"used by Close
and Osborn" [Eq. (6.1)],

,'(r, + r, ) U"&—, (3.4a)

we have



R. A. KRAJCIK AND L. L. FQLDY 10

fined above.
In contrast, it is of interest to note that there

always exists a 77 such that the resultant c.m.
variables, defined in terms of (F„,p„, s„},are
independent of the internal interaction. In the ex-
ample above, that 0 would be

f(1) ( 1 1 2 9) 1 2 RP(0) (3 5)
4v[r, -r, (

for which V7"~ would be zero, and P"& would be
independent of P. In the language of the GS trans-
formation, for this particular 0'", 5 as defined
by the generators of the Poincar6 group would
be independent of the internal interaction, so that
the GS transformation could not introduce the in-
ternal interaction into the definition of the internal
c.m. variables. Such an example is contained in
Sec. IV.

B. External EM interactions

%e wish to reconsider the problem of the LET
for Compton scattering and the DHG sum both as
an example and in order to bring forward the
complete form of the correction" to the FW EM
interaction Hamiltonian introduced in a previous
publication. s Although the existence of additional
terms has long been known, "the EM interaction

Hamiltonian discussed previously' considered ex-
plicitly only such terms as would contribute to
the LET for Compton scattering and the DHG sum
rule. More recently, however, terms which
would contribute to higher order in photon mo-
mentum have become of interest, "and require
the complete form.

To consider the LET for Compton scattering
and the DHG sum rule with regard to a composite
system, the simplest choice was made both for
the composite system and the c.m. variables;
P-O, which corresponds to a "loosely bound"
system of particles, and a~'& =O. External EM
interaction was introduced in the usual way, that
is, by the sum of the F%' reduced EM interaction
Hamiltonians of the constituent particles. To
order 1/c', the c.m. variables were generated by
means of the unitary transformation exp[i/ "/c']
for which the replacement p„pPP„-e„A(r„)
had been made. ' It was found that a "correction"
term, H~~, was required in order to preserve
relativistic invariance to order 1/c', and hence
satisfy the LET for Compton scattering and DHG
sum rule. It arose from purely kinematic con-
siderations, that is, for want of a set of c.m.
variables which satisfied the criteria, given at
the beginning of the previous section. The com-
plete form of Hz~ is as follows:

H~ =-Q ,'aq[f( -„) a„' 8 c ] ", 1- p„i„[V„f(r„)], (3.6a)

(3.6b)

7r'„=—v„(p„-p„—e „X(r„)), and similarly for P'.
In the previous publication, the second sum of
Eq. (3.6a) was considered to be part of the EM
Hamiltonian which could not contribute to the LET
for Compton scattering or the DHG sum rule in
the same sense that the collection of Darwin and
quadrupole-moment terms were considered to be
part of H&~'z&. Since the noncontributing part of
the EM Hamiltonian could be dealt with cursorily,
only those terms which could contribute to the
LET for Compton scattering and the DHG sum
rule were explicitly given.

Recall that r„, p&, and ig„occurring in Eq. (3.6)
are given by the nonrelativistic expressions in Eq.
(2.10b), the correct relationship between the con-
stituent particle variables and Qe c.m. variables
being generated by the unitary transformation to

order 1/c'. In essence, one may correctly calcu-
late to any order in 1/c using the familiar non-
relativistic relationship between the constituent
particle variables and the c.m. variables provided
the unitary transformation defined by Eq. (2.15) is
then used to account for the difference between
the nonrelativistic relationship and the rela-
tivistically correct one. In explicit calculations
such as the direct verification of the LET for
Compton scattering and the DHQ sum rule for
composite systems, this can be a considerable
advantage.

Finally, it should be emphasized that it is not
necessary to verify the LET for Compton scatter-
ing with regard to composite systems by a direct
calculation of the scattering amplitude. ' 9 " All
that is required of the composite system is a
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verification of the fundamental assumptions on
which the LET for Compton scattering depends.
In particular, with the assumption of an energy
gap between the "ground state, " that is, the state
from which Compton scattering takes place, and
the first excited state, if one can show that the
matrix elements of the 4-current for the composite
system are time-reversal invariant and transform
properly under a Lorentz transformation to order
1/c', then the 4-current is conserved to order
1/c' and the LET for Compton scattering follows
from an argument by Lapidus and Chou. ' The
demonstration that the matrix elements of the 4-
current for the "loosely bound" system of par-

ticles considered above satisfy these conditions
is given in Appendix C.

IU. CORRECTIONS TO PHENOMENOLOGICAL
POTENTIALS

We wish to briefly consider a topic closely re-
lated to relativistic c.m. variables, that of rela-
tivistic corrections to phenomenological potentials,
as these corrections are already contained in Eq.
(2.29c), and higher-order equations in 1/c'. In-
verting Eq. (2.29c) with respect to h~' and U"',
we obtain the relativistic corrections to order
1/c' of the phenomenological potential Ui'&, for
an N-particle composite system:

2 2

P

+ip — dP 4"& —gp, a"&(p} -2pj~„'&, U"&]+a&"(p) -I&&'&(0),
0

(4.1a)

where

g~~) ~j) + pg(j)

p

h" &(0) = — " +i (ui,'&, Q " . (4.lb)Sm„' " ' q2m„

The corrections to the phenomenological potential
Ui'& in Eq. (4.1) are to be compared with the re-
sults of Shirokov" and the closely related more
recent results of Bhakar. " Implicit in Shirokov's
paper and explicit in Bhakar's paper is the as-
sumption that 4'" =0, that is,

O'" =RU"& (4.2)

Neither considers terms which are functions of
internal variables only. Consequently, Shirokov's
expression for U~' [Eq. (23)] is given by Eq. (4.1)
with %=2,

V7"& =0 (4.3a)

It is thereby included in our expression as a
special case. Furthermore, the relativistic cor-
rections given by Bhakar'6 are included in those
given by Shirokov, "and so are too included in our
expression for U~') Unfortunately there are
typographical errors in the integral operator form
of the relativistic corrections as given by both
Shirokov [Eq. (22)] snd Bhakar [Eq. (2.14)]. Cor-
rections to the typographical errors are included

1E"&(p}- k"&(0}-i p[rd"' U'"] ip[g"' k'"-(p)] =0

(4.3b)

with Refs. 15 and 16.
Several remarks are now in order. First, we

note that Eq. (4.1a) represents nothing more than
a particular rewriting of the first-order relation-
ship between (i) U and @of o'ne representation of
the Poincard generators [Eqs. (2.3)] and (ii) h(P)
of another equally valid representation [Eqs.
(2.6)). The essence of this first-order relation-
ship is that, given U" [o»i' (p)], (a) any U"'
and 0"which satisfy the Lie algebra satisfy the
first-order relationship with I&&'&Q), and (b) as-
suming a -translationally invariant vector function
Wi'& [=V&'& -580&], any U&'& which satisfies
the first-order relationship with h&" (tI) satisfies
the Lie algebra The first statement determines
k"'(P) to within an "integration constant" [Eq.
(2.29c)]; the second statement is what makes the
relationship of interest in studying relativistic
corrections to phenomenological potentials [Eq.
(4.1a)] .

Within the representation of the Poincarb gen-
erators in Eqs. (2.3), the forms of U and 0 are
restricted by conditions imposed by the Lie alge-
bra. Qne can assess the forms of U and 0 in Eqs.
(2.3), however, on the basis of physical criteria
other than that of relativity, and here is where
the condition of separability must play a vital
role. ' " Briefly, separability demands that any
multiparticle system must have the property that
for all divisions of the system into two subsys-
tems of particles infinitely far removed from the
other, the resultant subsystems must be corn-
pletely independent of one another. This condition
then limits the physically acceptable forms of U
and f. Furthermore, since f depends upon the
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form of V, one can easily see that any effect the
condition of separability has upon F'will in turn
be reflected in the definition of the relativistic
c.m. variables. In particular, beyond %=2, the
simplest choice for FI), namely,

0" =SU"

is clearly not acceptable since it is not separable
even in the case where U ') is a sum of two-par-
ticle interactions such that U ') is itself separa-
ble. For with this choice, if the system consisted
of two subsystems I and II each with internal in-
teractions but with no interactions between the
two, then the transformations under a Lorentz
boost of the state vector of each subsystem would

U(0) I u(0)—a @II (4.4a)

(4.4b)

depend on the location and dynamics of the other.
Hence the general need for the function 4(') is
clear from this example.

One other example will be given to clarify the
connection between separability, the first-order
relationship between U, 0, and h(P), and rela-
tivistic c.m. variables. Suppose one is given a
representation of the Poincarb generators in Eqs.
(2.3) up to order 1/c' in which U and f are both
separable and covariant and defined as follows~':

= a 2~ g +ps +
4 ~ ryII '

pv pII +Ppv piI 'rpII ~ @pv
pp 46' y, PSIt~PV

1

+4M *[('v '&v»"'&v)+(&"'P")(&v. rv»s(v')]
2

— ~ ——XPv. &. s(v) (
pp PP 0$ P Alii

+
I (Pa Pv Pa, [f (0) s(0)]+ [Q s(0) (0)] ~ (PQ tv+Pa
2 tS +tS +tS "" ""' "a "" V"' "a tS +tS +tS

Aflak

[I It O V g
(4.4c)

where sc&„'„) is a function of P„„=r„-r„, p„„
= (ts„Pv —tsvii„)/Mv„(with Mv„=tsv +ts ) s alld

s„which is rotationally invariant, symmetric in
its two subscripts, zero if the subscripts are
equal, and vanishes sufficiently rapidly as r„„-~, so that all terms are separable. Consequent-
ly, gt(~J also conlIllu'tes WIth %vv = (tsar v+tsv ra) /
Mvv~ ~vv=pv+Pv~ and I) vv rv Xpv+rvxpv
+s„+s„. This particular choice is of interest in
that it includes the N-particle results of
Zhivopistsev, Perolomov, and Shirokov 6 as a
special case, and shows that the presence of
three-body terms in U~" is generally required if

a ' (p)=h(')(0)+ pU' (Int)

+ IP[&(1) U(0) ]+ IP[g(I ) II(0) (P)] (4.5a)

where II(" (= a&'."+P1'„")is an arbitrary scalar
function of internal variables only,

U~' is to be both separable and covariant. " Since
U(') is given, and U(') and 0 ' satisfy the Lie
algebra, (a) implies that U(') and 0 ') satisfy the
first-order relationship between U, 0, and h(P),
and hence determine h(')(P) to within an "integra-
tion constant" [E(I. (2.29c)]. The result is

+

U"'(int) =-,' — "" u(v'J+ " " [(p„„ tt'„„)(w„„p+(II„„)'(II„'„p„„),u(„'J]
I PP mymI uI

+ v [(PVv II((v)(SVv IIVv) + (IIVv II((v)()ttv )Otv)l I(pl/ ]
pv py Sly

(I +() +().~ -~ () () -~ () ()). ~' +"'()JI+

@II ~ ~+ (0)X 'lapp F]Ip y Qpp

(4.5b)

PPI =PP -PV y

PVv —(tSVPV + tSvPv)/MVv
W+
Wpp gp + 7Tp

Clearly 1I ') (p) is a scalar function of internal
variables only. Moreover, as we have learned in
Sec. III, U(')(int) may be found directly from U ')

by inspection. (In the last sum, replace K„„with
f„„-r„$x)I, v, or (I, which does not change
the triple sum, as [rIs„'J, u„')] is antisymmetric
in v and (I, and proceed as before. ) Hence, it is
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easy to check.
With regard to Eq. (4.1a), one simply considers

as physically acceptable only those relativistic
corrections, i.e., U~', which are manifestly
separable when written in terms of individual
particle variables by means of the nonrelativistic
definition of c.m. variables, with the restriction
that the assumed translationally invariant vector
function P"' be such that F'~ is also separable.
(A separable U~" is assumed to be given. ) By (b),
U ~ satisfies the Lie algebra, and hence is then
a separable, relativistic correction. ~

The connection between separability and rela-
tivistic c.m. variables is through the function Q,
which depends upon the form of 0, and hence %.
Separability restricts the form of %, and generally
forbids 4 from being set equal to zero. (The two-
body case would be an exception, for example. )
In the example above,

@"'=-',
Q

(It„„-K)u&„'&

Ppv pv (4.6a)

P

c=-- ~,
I dP. @"&

„'0

Three of the nine commutation relations between
g, g, X, and X given in Eq. (2.2) may be derived
from five others. These together with the com-
mutator of g with itself form the six independent
commutation relations of the Poincard group

fd „6,]=0,
f&j &j) =&e ja&a [& &j)=&&jja6'a

[4j 1+j]- ~~ i jA+0

(Ala)

(Alb}

[St„6j) = i6jjX/e', [St„X,.]= -f~„,a,/e'.

(Alc)

Special thanks from R.A.K. are due to J. L.
Friar of Brown University for many stimulating
and helpful discussions, particularly those con-
cerning the "correction" to the FW EM interaction
Hamiltonian, and for bringing Refs. 15 and 16 to
our attention.

We are also indebted to Dr. F. Coester for re-
calling to us the important role of separability
in these problems.

Q P p u
' ~+Ij|

/lP

[c, n„]=——Qp„', P[jjI, , w„]

[C, o„]= - Ig fj '„„P[sp,o„) .

(4.6b)

(4.6c)

(4.6d)

(4.6e)

The three dependent commutation relations follow
as a result of com~uting 6' with the three com-
mutation relations above which contain +. Begin-
ning with Eq. (Alb), we have

[+j, f4j, &j)l= f~j„[6'j,&a]

or using the Jacobi identity and Eqs. (Al),

6„[J,, x]= (}.
Since this must be true for all i, j, and l, it fol-
lows that

[4;,x]=(}.
Using Eqs. (4.6b)-(4.6e) in Eq. (2.26b) and Eqs.

(2.2Va)-(2.2'ic) yields P, r„, p„, and s„, respec-
tively, which then serve to define the relativistic
c.m. variables p„, p„, and f„.

It should be clear from the above example that
there are many other acceptable forms for U and
7 which are both separable and covariant, "and
that these all could be treated in the same way as
the above example.

ACKNOWLEDGMENTS

%'e wish to thank the physics faculty at the
University of Washington, where part of this work
was done, for the hospitality extended to us during
our stay. One of us (R.A.K.) would like to thank
Leon Heller of the Los Alamos Scientific Labora-
tory for his interest in this work, and for many
clarifying conversations.

Similarly, from the first commutation relation of
Eq. (Alc), we have

[6 „[Se„6,])=f6„[6„X]/2, (ASa)

and from the Jacobi identity and Eqs. (Al), this is
equivalent to

&jj[+„x)= &jj[6'j,x),
since i, j, and E are arbitrary,

(A3b)

(ASe)

[6'i, f&, & ll = -fe,[6', &,)/e', (A4a)

or again using the Jacobi identity and Eqs. (Al),
Eq. (A4a) becomes

6„{[3:„X)-f6,}= 6„{[3:„X]-f6,} . (A4b)

Finally, from the last commutation relation of Eq.
(Alc },
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Since i, j, and E are arbitrary,

[x„x]=i6, .

%e show that a solution exists for $("}, for all
n ~ 1. The condition to be satisfied is Eq. (2.20},
which results from the requirement that the 5
curl of the 0 gradient of $

" vanish, i.e.,

s.{.[~{,[R. &{"}]]=0, n~ 1 ~ (Bla)

Since $'"} commutes with $' [Eq. (2.16a)], this is
equivalent to

f„[x,'},[x ",(("'j]=0, n 1. (Blb)

Contracting with s,.» on 0 and using Eq. (2.19a)
yields Eq. (2.20}, given here as
P'

&(0) &(n) y(n) (y(a)~(n -a) ~( )&a(n -a))

(i —-j) =0, (Blc)

where the sum is identically zero for n=1. The
demonstration has two parts, n=1, and n&1, and
depends only upon [X, , X&]= ie;»g&-/c' We wi. ll
need to expand the commutator of X with itself
in powers of 1/c'

@(n) (m)-
3 (o) +o} 3' ~4fa~a

C
2n y f + 2m 2

m= C c

(B2a}

or, equivalently,

[x,'",x('&] =0,

[x( & x{')j-[x(') x(')]=-i.„,g, ,

n -1
[x'" x'"'] —[x"' x'"']+ g [x'"' x'" ']=0

a =I

n~ 2 . (B2d)

Recall that {{{')=F" [Eq. (2.18a)]. Both ){ and k
satisfy Eq. (B2a). The former follows because the
commutation relations of Eq. (2.V) are satisfied,
the latter because the commutation relations of
Eq. (2.4) are satisfied.

The first part of the demonstration, n=1, is
simple. Using Eq. (B2c), Eq. (Blc) is trivially
satisfied:

([{{(0){{(1)] [K{0) ){(1)]j ([Q(0) $(1)] [Q(0) )t(l) jj

= -ic ) {gn+nie; »)„n=0 . (B3a)

The second part, n&1, is more complicated.
Using Eq. (B2d) repeatedly, Eq. (B1c) can

eventually be shown to be satisfied. Let

C = K(O) &(n) y(n) ~ (y{a)g(n -a) t{a)&(n -a)) (i ~)f
a =I

Then,

n -1 n -1 n- -1
[&(a) &(n -a)]+ ~ [)t(a) y(n -a)] ~ [p(S) 1 (a-S)]t(n -a) + t{a) [&( S) &(n -a-8)] j.

j
a=1 0{ -"1 a =1 -1

-I n-
p(a) &{n -a) y(n -a) (i {y)t(n -a-y) g(y)&{n -a-y))

a=1 f =I

{{(a) y(a) (y(S)t{a-S) $(S)){{a-S))If(n-a} (i j}
=1

(B3b)

Only the six double sums survive the initial direct
cancellation, and these will be shown to cancel in
pairs.

C(1) + C(2) + C(3)
4f

n- n- -I
g( ) — (/p( )((y) ( - -y) l){"}$(y) (

— -y})
f i Kf f Ki

a =I

n -I
(Q( S)$(a-S)){(n-a) p( S)n {a 8) (n -a) )-

C(x) ~ [y( 8) 1 (a-8) jg(n -a)
aW =I

n-2 n- -I
()t{a)y(y) i{(a)l)(y})((n-a-y)

a= 3 =I

n-2 n- -1
C(n) V n(a}l&{S) (n-a-S)]

a =I =I

n -I
g( S) (g(a-S)g(n -a} g(a-S) (n -a) }K ~

a- =I
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In the second double sum of C(, ~~, let n'= n+y. It
then becomes

a'-l
(p(a)h(a'-a) l(a))t(a'-a))g(n-a')

n M a=1
n- '-l

[)t(a) )t(a'-a}]~(n -a')
n M a=1

so that C(, ',.~ =0. Similarly, let z - P=y in the sec-
ond double sum of C(~42). The resul~ is

n- n- -l
(I(3)8f( ))~( n -8}))(-8)t()'}„(n-8-)'))j

=1

which exactly cancels the first sum, so that
C,&2~] =0. Finally, wit 0. —P=P', and n —o. =n —0.'

—P' in the second double sum of C,&), it too exactly
cancels the first double sum, leaving C,&~ =0:

trix elements of the 4-current for a "loosely
bound" system of particles to order 1/c' are in
the form given by Lapidus and Chou. ' This cur-
rent is conserved to order 1/c', and the LET for
Compton scattering follows from an argument by
Lapidus and Chou. '

Consider the charge density as expressed in
terms of constituent particle variables,

/[[=+ 8 [[() (rk)+ 3 (gg g[I )v[[ () (r[[)
4&n„c

3 (g)[ —gtI )s 3
' [p [[ x V

[L () (r [[) + H c .]2' pc

(C la)

where c„()k„)is the charge (intrinsic magnetic
moment) of particle p, ,

n-
((a')(&(8')&( na'-8') &( '8) )((n -a'-8'))

fa =I =1

n-2 n- '-l
~(a') [&( 8'} &(n -a'-8')

]
n =l

'0, sp —-0
S

0
~~+ ", s„~o
sp 2m ps'

(Clb)

This completes the demonstration that Eq. (2.20)
or (81c) is satisfied for all )3» 1. Consequently,
Eq. (2.19a) has a solution for all n» 1, and that
solution is given by Eq. (2.19b).

APPENMX C

%e show that, with the assumption of an energy
gap between the "ground state" and the first ex-
cited state and time-reversal invariance, the ma-

g

y (C1c)

and V„ is the gradient with respect to r„. The
matrix elements of j,will be determined to order
1/c' in terms of relativistic c.m. variables
characterised by II("= 0 and P F' =0, so that the
corresponding state vectors take the form

~
5& (2)

~
S, M &

-=)5; S, M &, where 0, S, and M repre-
sent the total momentum, spin, and spin projec-
tion of the composite system, and all other
quantum numbers have been suppressed.

2

(0„S,M, (q, ~5„S,M,&= 5„.S, M, g ((}~ P+„)+ 4 +(g„'-g„') 8„+ "S, v„+ "S,(}3(f+p„)

3(g[', g[',)o„-((„+ " 0 x Tr„+ " 0, ()3(0+p„) +H.c.
2PPl pC

+~[gt'~, rq5'(8 p„)]) 3„'s, tn, (C2a)

k l gkp

lies

jf
(}3(f+ ) (}3(g)+ k Vk O3(g) + PnPn 8 33 (~)

+ 0 ~ e (C2b)

where V~ is the gradient with respect to 8, is
equivalent to a power series in 53-P, when con-
sidered between states of total momentum P, and

where repeated latin indices are summed, and
is given by Eq. (2.26b) with II"}=0 and P-0.

Expanding ()3(H+ p„) about 5,

P, . Since we are interested in Compton scattering
from a composite system, for which an energy gap
is assumed, in the limit as the momentum trans-
fer approaches zero, the power series converges,
and only terms to order (P2 —P, )' are important.

Time-reversal invariance is invoked in the fol-
lowing way. Let 7. denote a vector operator in
standard form, constructed only from the in-
ternal variables such that it is either even or odd
under time reversal. Let S denote the spin op-
erator f of the composite system, expressed in
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standard form. The matrix elements of v~& be-
tween the states iSM& and iSM'& are related to
those of S~~ by the %igner-Eckart theorem" as
foQows:

S T(~)
(S M iT oiS M)

& ii
( ) &(S M iS iS M&

(S M'is"&iS M& =( )"'-""(S Mis"'iS M'&

(C3c)

where 6) is either +1 or -1. according to whether
its argument is even or odd under time reversal.
So, from Eq. (C3a), we have

(C3a) [e(7.)+1]&S,M'i~~,'& iS, M& =0, (C3d)

where M and M' are the projection of S in the di-
r~ctio~ of quantisatton &Sil7"'IIS& and &SIIS'" IIS&

are the reduced matrices of 7. and 0, and S x0,
so that the quotient of the two reduced matrices
is w'ell defined. Using the phase convention of
Wigner, ~ time-reversal invariance implies that

(S, M'i~i,'liS, M& =(-)"'-"e(~)&S,-MiT", lis, -M'&,

(C3 )

where, since the reduced matrices are indepen-
dent of M and M' and M and M' are arbitrary, the
replacement M'- -M and M- -M' has been made.
Consequently, by comparison, those matrix ele-
ments of internal variables rz' which are zero by
time reversal invariance are easily identified.

%ith the above remarks and assumptions in
mind, Eq. (C2) can be evaluated in a straightfor-
wa. rd, though careful, manner to yield

(P„S,M, iy, iP„S,M,)

where

),;S,M, f()'()() &&(P—),) (P,, P, )p'(8) ~-, (;- ~) l')) x)))) t)() )),;S,M, ~ O(P'),
Mc

(C4a)

(c4b)

]1

5 =Q( p () x st( + 8)() ~

(C4c)

(C4d)

kg~()p()p((-g ~ (A Z)I)5(g-+ , (g„g„)[(o-„xv„)p„+H.c.]2' pc

+ Z 2 [p()(p~s)( +H c ~ )+H c 1-Q s(op& vv) p() ~

pv 8m' Mc 2m„Mc
(C4e)

The gyromagnetic ratio of the composite system
g, defined as p/S where p and S are the magnetic
moment and spin of the composite system, enters
the calcula, tion by way of the signer-Eckart
theorem already discussed above. Assuming no
exchange currents, the magnetic moment of the
composite system is given by

S, M=S g[flP+gPO'~ 'n S, M=S

where n is the direction of quantization, and

, &Slif. IIS&, , &Silo„IIS&'
&Sllflls&

"
&Sllklls&

This serves to define the gyromagnetic ratio of
the composite system in terms of those of the
constituent particles. Furthermore, in deriving
Eq. (C4), explicit use of the assumed energy gap
has been made to relate the following matrix ele-
ments to order 1/c:

0=& 5„.S, M, ii[h, m„p„' p„']i%„;S, M,&/c'

=
& P„S,M, ip„'v„'+s„'p„'iP„S,M,&/c', (Cs)

so lhat, from Eq. (C3a),

(C5b)
where h is the internal Hamiltonian given by Eq.
(2.29}with II "=0 and P-0. Equation (C4) is seen
to be more general than the corresponding equation
of Lapidus and Chou, owing to an explicit account
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of the internal structure of the composite system.
The matrix elements of the current operator

j need only be determined to order 1/c. This is
easily accomplished from the techniques discussed
above. In terms of the constituent particle vari-
ables,

j= ([g„'p„d'(r„)+H c .]+.g„'s„xv„d'(r„)},

(CVa)

from which it is easily shown that, in terms of the
c.m. variables to order 1/c,

(P„5,ltf,
~ jig„S,ltf ) = P„S,m, (5, +ly, )5'(K)+igS x(5, - ly, ){)'(R) ~„&,le, + 00"), (CVb)

where all terms have been previously defined.
Equation (CVb) is to be compared with Eq. (45)
of Lapidus and Chou. ' Because the matrix ele-
ments of the 4-current for the composite system

are in the form given by Eq. (45) of Lapidus and
Chou' the LET for Compton scattering follows in
the same way as their general proof.

*Work performed under the auspices of the U. S. Atomic
Energy Co~~ission.
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