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A relativistic wave equation which describes a particle having mass m, spin 3, and only
positive-energy eigenvalues is presented. The theory apparently evades the conditions which
prevented minimal coupling to electromagnetism in the spinless positive-energy theory of
Dirac. A more general method for reducing the Klein-Gordon operator is pointed out.

I. INTRODUCTION

In 1971 Dirac’ proposed a relativistic equation
describing a massive, spin-zero positive-energy
particle. Remarkably, although the theory admits
a conserved current, with positive-definite proba-
bility density, the particle cannot be coupled mini-
mally to the electromagnetic field.

Interest in this structure has expanded following
the appearance of a paper? by Biedenharn, Han,
and van Dam in which they presented a generaliza-
tion and interpretation of Dirac’s new theory.
They have constructed a series of relativistic wave
equations which are of successively higher order
in the momentum operators (Dirac’s equation being
the lowest-order case) and which describe, for a
given order, positive-energy particles of a cor-
responding higher spin, s. Each such relativistic
equation describes, as well, particles of all spins
lower than s, and shares the no-minimal-coupling
facet of Dirac’s theory.

Of considerably greater importance is Bieden-
harn, Han, and van Dam’s interpretation of the
generalized theory as a description of a relativistic
composite system bound by harmonic-oscillator
forces when viewed within the framework of a new
quantum version? of the old front-form descrip-
tion? of classical relativistic mechanics. The
combined theory then exhibits a mass spectrum
m®« spin.

Subsequently, the need for higher-order wave
equations has been obviated by the formulation of
the theory? as a complete Poincaré algebra. This
viewpoint has been employed to construct® a rela-
tivistic theory which exhibits a multiplet structure
as well as a mass-spin spectrum, and recently®
Biedenharn and van Dam have reported a relation-
ship of such quantum front models to the dual reso-
nance model.

The purpose of the present communication is to
present a relativistic wave equation, linear in the
momentum operators, which is a description of
a massive, spin-3 particle having only a positive-
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energy spectrum, i.e., the spin-3 state of the new
quantum? front model. The equation is only trivial-
ly different from one of the secondary equations
written down by Dirac® for the spinless case.
However, it may be of some interest, not only for
its spin-; character, but also because it appears
to neatly evade those pathologies which serve to
prevent a minimal electromagnetic coupling in
Dirac’s theory and in the higher-spin generaliza-
tions of Ref. 2. Additionally, and perhaps of some
greater interest, the spin-3 theory makes use of
additional generality in the application of the new
technique! of “factorizing” the Klein-Gordon equa-
tion via commutation relations.

In Sec. I, for completeness, for comparison
with what follows, and in order to fix the notation,
we include a brief review of Dirac’s work. In
Sec. III the spin-; theory is presented, and its
coupling to electromagnetism is formulated and
discussed in Sec. IV. In these two sections, we
carry along a parallel discussion of a different
formulation of the spinless theory in order to de-
lineate as clearly as possible the mechanism which
avoids the no-coupling restriction in the spin-3
case. Section V contains a short summary of our
results and conclusions. In an appendix we have
added a discussion of Dirac’s theory of the rela-
tivistic electron after the fashion of Secs. III and
Iv.

II. DIRAC’S POSITIVE-ENERGY THEORY!

The massive, spin-zero, positive-energy wave
function of Dirac, y(x*, 4, 4;), is a single-com-
ponent wave function involving, in addition to the
Minkowski space-time, two dimensionless har-
monic-oscillator degrees of freedom described
by the commuting dynamical variables ¢, and g,.
Let n, and 75, denote the commuting dynamical con-
jugates,” so that [g,,n,]=i5,, (j, k=1, 2) and define
a column matrix of four rows by
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Then the new relativistic equation proposed by
Dirac reads®

(@ P* +ipm)Qy(x*, ;) =0, 2)

where m is a positive number, and the real 4 x 4
matrices a, and B, satisfying the relations

ayBay+ay Boy =28gy , (3)

may be taken to be

10 0 -0,

Qo= s O =
017 -0, 0
0 o, |:1 0}

azz[m Ojl » %% Lo -] @)
01

i [ .
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The similarity of Eq. (2) to the usual Dirac equa-
tion for the electron is completely superficial.

Equation (2) is actually four equations on the
single-component wave function y. Let

Ta=; (apP" +ipm),Q, - (5)

Then Eq. (2) reads

T,=0, a=1,2,3,4. (6)

The condition that there exist a wave function ¢
which is simultaneously a solution to the four equa-
tions (6) is that®

[T,, T,]v=0. (7)
The commutator may be directly evaluated to yield
[Ta’ Tb]=Bab(P2—m2) ’ (8)

and since B has nonzero matrix elements, any so-
lution y of Eq. (2) satisfies as well the Klein-
Gordon equation

(P* - m?)=0 . @)

Dirac’s new equation is not a Lorentz invariant;
rather it is Lorentz covariant. If it is satisfied
in any one frame, then it is satisfied in every
Lorentz frame. The wave function y transforms
under the Lorentz group generated by

M[JU=L‘“/+Suy y (10)

where L, denotes the usual space-time generators
and the antisymmetric Hermitian operator S,

generates Lorentz transformations on the space of
functions of ¢, and ¢,. Let the operators J

= (J,, J5 J5) and K= (K,, K,, K,) generate rotations
and pure Lorentz boosts, respectively, on this
same manifold. Then these operators may be de-
fined to be'

Jy==S;3=3(a,9,+1m5)
Jy==Sg =%(q12+7712 -qzz "7722) s
J3=-512=%(42771—qﬂ72) )

1,2 o2 2.2 (11)
K, =810=5(¢," =n,* - g," +n,°)
K;=55=3(1n5 - 4,95)
Ka=sso=%(qm1+n242) .

With this realization of the Lie algebra, the
Casimir operators of the Lorentz group become®

F=3SuS" =30 -K*)=-5 ,
G=3€e"*85,,8,,=T-R=K-T=0,

(12)

which defines a Majorana representation.® As is
well known, there exists in this case a unique
vector operator, V,, which together with S,
serves to generate the Lie algebra of SO(3, 2):

[Vu: Vv]= ispu
[Vu’ Saﬂ]=i(guBVa -8uaVs) (13)

[Suvs Sa s] =i(&uoSup = &usSve +&vpS e = BvaSus) -

With the realization (11), the operators V,and V¥
=(Vy, Vy, V,) are'®

Vo = 7:'(‘112 +q22 +7712 +7722) )
Vl = %(—41771 +112712) ’

V2=3(@ma+qm)) , (14)
Vi=1(a,°+4.* -0 -n,7) ,

satisfying the identity
D=V, V¥=-3, (15)

which of course follows also from Eqs. (12) and
(13).

From Eq. (2), Dirac obtains equations which are
of second order in the 7; but linear in P* by multi-
plying Eq. (2) with any 4 X 4 matrix © and contract-
ing with the transpose of @:

QTa, P! +ipm]Qy=0 . (16)

Fifteen independent equations may be obtained in
this way (2= o, a,a, gives identically zero), and
these may be chosen to be

(VP —tmy=0, (17a)
(mV, -4P, +iS,,P")y=0, (170)
(imSyy+ VyPy = V,P )y =0, (17¢)
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and
wHy=0, (17d)

where W* is the Pauli-Lubanski operator following
from Eq. (10):

Wk = 3etve8s, P, . (18)

It follows from Eq. (17d) that the solutions to Eq.
(2) carry zero spin. Equation (17a) is just
Majorana’s equation,® and Dirac’s new equation ef-
fectively projects out of the Majorana spectrum
the timelike [via Eq. (8)] spinless solution.!'? The
fact that Eq. (2) has only positive-energy solutions
has been shown directly,® but it is sufficient to re-
call that the timelike solutions of Majorana’s equa-
tion have positive energy only.!

Dirac has remarked,! without explicit proof, that
his new equation does not admit the possibility of
minimal coupling to electromagnetism, this in
spite of the existence of the conserved (Majorana)
current

J“(x)=f dq,dg * V'Y . (19)

In their recent paper,? Biedenharn, Han, and van
Dam have presented a proof of this statement along
with a very thorough discussion of Dirac’s sys-
tem. It is not necessary to review here the de-
tails of their proof since we shall recover the rel-
evant results in another fashion in Sec. IV. It is
sufficient to remark that from Eq. (2) with the re-
placement P, -II, =P, +eA, they are able to ob-
tain in particular the relations

FhUViy=0, (20a)
Foualghvy =0, (20b)

where &, is the usual electromagnetic field ten-
sor. It then follows? that a coupling to arbitrary
electromagnetic fields implies that y is invariant
under the complete SO(3, 2) group generated by the
operators V, and S,,. ¥ is then not a function of
the g,, and the wave equation then implies that
is a constant. The higher-order, higher-spin gen-
eralizations which are presented in Ref. 2 all lead
to Egs. (20) and thus to the same no-coupling con-
clusion. The spin-} equation which we shall dis-
cuss is different from that of Ref. 2 so that the
no-coupling conditions may be avoided.

III. A FREE SPIN-} POSITIVE-ENERGY THEORY

The basic equation which defines the positive-en-
ergy spin-3 theory is

(mV, =P, +iS,, P )(x*, q,,4,) =0, 21)

where y is again a single function of the indicated
arguments. However, in order to facilitate the

discussion of electromagnetism in Sec. IV, and
for comparison with Sec. II, we shall analyze the
following equation:

(mV, —kP, +iS,, P')y=0, (22)

where « is an arbitrary real number. Equation
(22) reduces to Eq. (21) above for xk=1; for k=1 it
reduces to Eq. (17b) and is thus a simple general-
ization of that equation. However, we shall show

(i) that the only permissible values of « are 3
and 1;

(ii) that these values imply spins 0 and 3, re-
spectively;

(iii) that with x = 3 the entire physical content of
Sec. II may be recovered; and

(iv) in Sec. IV, that the no-coupling conditions,
Egs. (20), obtain for the spinless case but do not
arise for the case of spin 3, i.e., k=1.

In Eq. (22) we are again presented with four
equations for the single function y. Define

Ty=mVy,—KkP,+iSy,, P’ . (23)

The condition that a solution to Eq. (22) exists is
that

[Tu, T, ]¢=0 . (24)

By means of the Lie algebra (13), the commutator
may be expressed as

[Ty, Tv]=im? =P*)S,y+P, Ty =P, Ty , (25)

and the last two terms, the “extra” terms when
compared to the form of Eq. (8), vanish when ap-
plied to a solution of Eq. (22). Then the condition
that y be a solution of Eq. (22) is that

(P? -m®)S,, =0 . (26)

Since the S, generate the Majorana representation
of the Lorentz group, we may contract Eq. (26)
with S¥” and use Eq. (12) to obtain

(P?-m?)p=0. 27

Therefore, the six equations (26) imply either that
¥ vanishes or that it satisfies the Klein-Gordon
equation.

Before continuing the analysis, we shall develop
a few convenient identities. We remark that in
any representation, such as that of Majorana,
which contains a unique vector, V,, we must have

VSw=aV, , (28)
with A a constant. Contracting both sides on the
left with V, and using (13), we immediately obtain

-5 Sw S =iV Y, . (29)

Equations (12) and (15) then yield
A==2F/D=-3%. (30)
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Similar arguments yield

SwV'=ixv, , (31)
as well as
e"veBs, Vy=0. (32)

Finally, multiplying (32) with V°and using (13)
twice yields

€uaaﬁsaﬁ=i€“ua85ya350. (33)

Now continuing the analysis, consider'? the con-
traction of Eq. (22) with P¥:

(mV,P" - kP?)y=0 (34)
implies, via Eq. (27), Majorana’s equation®
(VP —km)yp=0, (35)

while contracting Eq. (22) with V" and using (28)
yields

[mD-(k+2)V*P,Jp=0. (36)

Equations (35) and (36) together imply that the
only consistent set of equations (22) are those for
which the constant k satisfies the quadratic equa-
tion:

k®+xk-D=0. 317)

For the values of A and D obtaining, this implies
k=% or k=1 as the only possibilities.

In particular, with k restricted to these values,
and therefore positive, Egs. (27) and (35) restrict
¢ to be a timelike solution of the usual form of
Majorana’s equation. It follows again'! that y has
only positive-energy eigenvalues.

Equation (22), like that of Dirac, is not a Lo-

1

S
(po(Q,P)—exP\l - 2(—P0+P3)

The general momentum eigenfunction solution of
the spin-% equation (21) is

¥ =(Aq, + Bg,)dolq, plexp(=ip*x,) , (44)

with 4 and B arbitrary. The spin-} character is
reflected in the two degrees of freedom A and B
which transform one into the other under the action
of the Lorentz group in the manner appropriate to
a spin-3 system.*

The wave function (42) has been interpreted® as
a description of the ground state of a relativistic
composite system bound by a harmonic-oscillator
interaction when analyzed in the new quantum
front form of relativistic mechanics. The wave
function (44) is just the first excited state of that
system. Unfortunately, while the complete spec-

rentz invariant but is rather Lorentz covariant,
the wave function y transforming via the gen-
erators M, given in Eq. (10). The spin carried
by the field for the two allowed values of k may be
computed with the Pauli-Lubanski operator from
Eq. (18). We have

WHW, = —$S,, S*"P*+8,,S"*P°P, , (38a)
or, using Eq. (12),
W?=-2FP*+S,,S"8P°P, . (38b)

Saturating Eq. (22) with S*“P_ and using (31) and
(35) yields

(SuoS*BPPg )= L km®)y . (39)
Thus, with (27),
W2 = -m?(2F - Ak)Y , (40)

or, with the values at hand,

\0 , K=%

2 - <
W= |-im*y, k=1 (41)
so that the solutions to Eq. (22) are spinless if
k=% and carry spin 3 if k=1.

We should remark at this point that we are not
discussing an empty set of solutions. For k=3,
as we remarked earlier, Eq. (22) becomes Eq.
(17b), so that any solution of Dirac’s positive en-
ergy equation is also a solution of that equation.
Dirac! has given the general momentum eigen-
function solution of his equation:

¥p=Nyolg, plexp(=ip“x,) , (42)

where N is a normalization factor, and where

[m(qf+q;)+z'p1<qﬁ—qf)-zz'pz(qlqz)l} . 43)

trum of the interacting system has been given a
unified description as an interacting algebraic
formulation of the Poincaré group,® no single
relativistic wave equation describing the complete
system has yet emerged.®* Equation (22), as we
have shown, also cannot be applied piecewise to
the higher-spin excitations.'*

It remains in this section only to show the rela-
tion of the theory defined by Eq. (22) to the com-
plete formulation of the (noninteracting) positive-
energy theory of Dirac outlined in Sec. II. We
have so far obtained from Eq. (22) Egs. (9) and,
for k=%, Eqgs. (17a) and (17b). We shall obtain be-
low Egs. (17c) and (17d) for the spinless case.

We contract Eq. (22) with 3 e°*8#S_, and use
Eqgs. (32) and (18) to obtain
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(=kW° + 3i€°*B5S_ ,S,"P, )y =0 . (45)
The identity (33) then yields
(1-k)W=0. (46)

For k=3 (spin zero) this equation is just (17d);
note, however, that in the spin-3 case (k=1) no
statement obtains. It is exactly this mechanism
which will eventually permit the evasion of the
no-coupling statements (20).

It follows further from Eq. (46) that

(1 - k)e*’2Bp W p=0, 47
a statement which may be reduced to read
(1 = K)[S wP? =i Py Sy P* +iP Sy P%Jy=0.
(48)

Using now (27), and the wave equation (22) in the
last two terms, we obtain

(1 =&)[imSyy, +P V=P, V, J=0, (49)

which recovers Eq. (17¢c) for the spinless case,
and again implies no statement for the case of
: 1
spin 3.
We have shown that the physical content of Sec.
J

II, exclusive of electromagnetism, may be ob-
tained from Eq. (1'Tb), and that a considerably less
restricted theory may be obtained from Eq. (21)
for the case of spin 3.

IV. MINIMAL ELECTROMAGNETIC COUPLING
Consider the equation, for k=3, 1,
(mV, =kl +3S,1")p=0, (50)

which follows from Eq. (22) via the minimal cou-
pling replacement P,~1II, =P, +eA,. We define
the operator

T,=mV, —kll, +iS, 11" , (51)
N 7 7 u

and consider the conditions on any solution of Eq.
(50) following from

[Tu’ TUJ¢=0 . (52)

The commutator may be evaluated by means of the
algebra (13) and the definition

[y, 0,]=de(0 A4, - 8,4,)=ieF,, . (53)

After considerable algebra, we may obtain

[Ty, T)]=i(m® = T%)S,, +iek(k = )Fuy + elk = 3)(S o F% = Su F*u) = 31€(SuoSup +SupSu)F2 =1, Ty + I, T .

(54)
The last two terms vanish when applied to any solution of (50), so that the (six) conditions upon y read
[(I1? = m?)S,y — ek = 1)Fyp+ie(k = 3)(SpoF = SuqF*u) +3€(S 1 Sup +SupSu o )F*Blw=0 . (55)
whose forms are different for the spinless (x=3) while that obtaining for the spin-} case is
. 1 -
and spin-3 (k =1) cases. [(M2 = m?) + LeS,, T Jy=0 . (58b)

We may immediately obtain one independent
condition by contracting Eq. (55) with S*”. Now,
the identities (28) and (31) along with Egs. (13)
and (15) may be used to obtain the results

S*Suq =il +1)S,” - V, V' + Dg. (56a)
and
S“US“aS,,B = (D"A2 -A)Saﬁ
+iVaVﬂ_iD(A+1)gaB N (56b)

so that, with (12), we obtain from (55) the condi-
tion

{4F (1 = m®) +e[(D-22 =X = 1) =k(x = 1)
-2(k - 3)A +3)]S,, " }y=0. (57)

The numerical values peculiar to this realization
then imply that the condition on the spinless case
is

[(I12 = m?) +eS,, F* ]9 =0, (58a)

It is immediately apparent that unless something
further intervenes, the physics of the spinless
case will be dubious indeed.

We remark at this point that contracting the
wave equation (50) with I1* and using the condi-
tions (58) results in the interacting Majorana equa-
tion

(V¥ —km)y=0 . (59)

The final operator identity necessary to our
analysis may be obtained from the observation
that Eq. (32) implies as well the statement

El-lavoeopﬁ'rspew_=0 , (60a)
which may be written
Stey? _stPye syt =0, (60b)

Taking the commutator of this equation with V2
and using (13), we may obtain
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SuoSus= SvaSus =Suv Sap+ iSuw&as +Sva8us — 1Suelus »
(61)

an identity which may be used to simplify the last
term in the constraint equations (55). The results
are the equations

[Su (I = m? + $eS, s F%B) —ex(k = 1)F
+ie(k =1)(SyoF% = SveFu) =0 . (62)

It is then clear that for k=1, i.e., the spin-3
case, the only condition on a solution of Egs. (50)
is the single equation (58b). However, for the
spinless case, there are additional constraints
implied by (62) which may be conveniently ex-
tracted using Eq. (58a). We obtain

(1 = K)[SyuySepF® = 5Fpw + (S F% = Sy Fu)y =0,
(63)

where the factor (1 - k) has been inserted to em-
phasize the applicability to the spinless case only.

Rather than proceed with (63) at this point, we
shall obtain the (complete) additional information
about the spinless case directly from the wave
equation (50). We contract that equation with
1e°2Bkg . and proceed exactly as in Sec. III to ob-
tain the analog of Eq. (46):

(1-x)W)y=0, (64)
where

WO(I) = 3€°%*B¥S ,II, . (65)
1t follows that

(1 —k)e"" By Wy =0, (66a)

which simplifies, with (28), to read
(1 - k)iS(V 1)+ 3V, I, -3V, I, Jp=0 .
(66b)

Using now Eq. (59), for the case of k=3, inside
(66b), we obtain the analog also of Eq. (49):

(1 = K)[imS,, + VIl - V, 1, ]y =0 . (67)

This equation embodies all of the additional in-
formation about the spinless case, i.e., Egs. (63),
and (64) as well, may be recovered from (67). To
interpret these conditions directly, it is only
necessary to contract Eq. (67) with $4¢*8*’II; and
use (64) to obtain

(1-KF v yp=0, (68a)
from which follows immediately
(1 -k)Flan s y=0. (68b)

We have recovered the results? already quoted in
Eq. (20).
We conclude that minimal coupling is incon-

sistent for the spinless case. Again, however, no
such statement obtains in the spin-i case.

V. CONCLUDING REMARKS

We have shown that the complete physical con-
tent of Dirac’s spin-zero, positive-energy theory,
including the no-minimal-coupling conditions, fol-
lows from one of his secondary equations, (17b).
We have also shown that a slightly different equa-
tion, (21), defines a positive-energy spin-3 the-
ory which apparently evades the inconsistency
with minimal coupling to electromagnetism.

We shall summarize the (interacting) spin-3
theory. The defining equation is

(mV, -1, +iS,I")y=0, (69)

while the six conditions that there exist a simul-
taneous solution to the four equations (69) col-
lapse to the single equation

(% —m?® + 3eSyy )9 =0 . (70)

Also following from (69) and (70) is the Majorana
equation (with interaction)

(V,II* =m)y=0 . (11)

In the free theory (4,=0) Eq. (69) effectively
projects out of the Majorana spectrum the time-
like, spin-3 case. As for the interacting theory,
Barut and Kleinert!® have shown that the timelike,
spin-3 solution of the interacting Majorana equa-
tion (71) possesses a gyromagnetic ratio of -1,
which value is consistent with Eq. (70). We must
emphasize, however, that we have not proven
that Eq. (69) in fact possesses a nontrivial set of
solutions for arbitrary electromagnetic fields;
we have only shown the absence of any incon-
sistency and we claim nothing further. (However,
in an investigation of the simplest possible case,
that of scattering from a static Coulomb potential,
we have obtained a formal, perturbative solution;
others are being sought.)

We present this model not only to show the ex-
istence of a linear, spin-3 case, but also to under-
score the fact that there exists a completely un-
investigated class of physical models which may
be obtained via a reduction of the Klein-Gordon
equation, not by “factorization,” but by com-
mutation relations. Our generalization of Dirac’s
procedure! has consisted essentially in the in-
vestigation of a particular case in which the con-
sistency of equations of the type

T,y=0 (a=1,2,...,n) (72)
requires that the operator
[T,, T,]= B,p(P? =m?)+ Cyp T: (73)

where B,, and C,,. are operators antisymmetric
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in @ and &, should vanish on y. Inclusion of the
last term of (73) represents the generalization.
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APPENDIX

We present here what we believe is an amusing
note. It consists of the observation that Dirac’s
relativistic equation for the electron may be cast
into the form

T,y=0, (A1)
with

Ty=m(sy,) + 30, +iZ 00, (A2)
where

Tw=-itlywmnl, (A3)

and the y, are the usual Dirac matrices. Equation
(A1) may be written as the four equations
(G=1,2,3)

(myo+1,+2i2,,I17)p=0, (Ada)

(my ;+11; = 202,11 - 242, TT*)y =0 . (A4b)
In our conventions,

Y%,=1,

y'y;=1 (no sum),

Y°Zoj = =307, »

¥'Zo; = 3ty (NO sum) ,
and

y'Z,; = 3y, (no sum, and k+#j) .

Then 7° times (A4a) becomes
(m +y Mo +y,; )y =0,

or
('y“Hu +m)y=0,

while each of Eqs. (A4b) multiplied by the corre-
sponding 3’ yields (no sum on j)

(m +yIL, +y,l1% + Z 'y,JI") ¥=0,
R #j
or again
G, +my=0. (A5)

Therefore each of Eqs. (A1) may be written as
(A5), so that the known interacting Dirac (positron)
solutions are the solutions of (Al). [The more
familiar electron equation may be obtained in-
stead with the opposite choice of sign for the last
two terms of 7,. For convenience below, we shall
retain the unusual normalizations and the signs of
(A2).]

We may push the analogy further, since V, = ;—y“
and T ,, from Eq. (A3) also obey the algebra of
S0(3, 2), Eq. (13), and define a (nonunitary, re-
ducible) representation of the Lorentz group with
F=3%, G=-%iy, D=1, and x =} as in Egs. (12),
(15), and (28). Proceeding exactly as in Sec. III,
we would obtain (27), while (40), with now x=-3%
for this representation, yields the expected result

W2p=—3m? . (AB)

Continuing as in Sec. IV, we obtain from (57) the
expected, solitary condition

(M —m® - ez, F*")p=0 . (A

Viewed in this fashion, Majorana’s equation is
the natural generalization of Dirac’s equation
(A5) to a unitary representation, while (21) is a
similar generalization of the same theory written
as (A1),
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We study several field theories in one space and one time dimension. Among them are a neutral
vector meson with and without mass coupled to fermions and a massive self-coupled Yang-Mills field.
For the former we discuss methods of solving the field theory and for the latter we attempt to

establish its nonrenormalizability.

I. INTRODUCTION

This paper contains a collection of results from
studies of vector-meson field theories in a space
of one time and one space dimension. These in-
vestigations were motivated by the hope of ob-
taining additional insight into results obtained and
conjectured for more realistic models. We had
in mind the asymptotic freedom of gauge theories
investigated in four-dimensional space-time by
Gross, Wilczek, and Politzer,® and the possible
complete screening of the quantum numbers of
the gauge group, which has been widely conjectured
and investigated in the Schwinger model,? or 2-
dimensional massless quantum electrodynamics,
by Casher, Kogut, and Susskind.® Both effects
are suspected of being related to the severe infra-
red divergence of the theories. In addition to their
kinematic simplicity, gauge theories in two dimen-
sions have charges with the dimensions of mass
and we hoped to investigate how the presence of
a mass scale in the theory (even when the bare
particles may have zero mass) affects the prop-
erties mentioned above.

In the following section we discuss the field
theory of a massless charged fermion field coupled
to a neutral vector meson. This model has been
solved and discussed in a number of papers dating

back to the original work of Schwinger over ten
years ago.?* We are accordingly brief and em-
phasize the points where our approach is some-
what different from previous ones. In particular
our method of solution solves both the cases of
nonvanishing bare mass of the vector meson and
two-dimensional quantum electrodynamics (QED)
and immediately enables us to study the Green’s
functions for states produced by a scalar source
in both cases. The complete suppression of fer-
mion-antifermion pairs discussed for two-dimen-
sional QED by Casher, Kogut, and Susskind® does
not occur if the vector meson has a bare mass.

The gauge-field generalization of this model
does not yield to solution by the same techniques
because of the non-Abelian nature of the couplings.
The pure Yang-Mills model in two dimensions is
trivial because one can choose a gauge where the
space components of the gauge field are zero, and
there is no nonlinear coupling of the meson field.®
If we add spin-3 fermions to such a theory, there
are only non-Abelian Coulomb forces between the
fermions in lowest order. In this gauge the lowest
second-order self-energy of the mesons comes
entirely from the creation and annihilation of a
fermion-antifermion pair just as in the Abelian
case, and the charged vector mesons get masses
in the same way. We have not pursued these



