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Using dimensional regularization we renormalize the Lee model in arbitrary space-time dimension D.
We compute P(g) and y(g), the coefficient functions of the Callan-Symanzik equation, in closed form

and show that the model is asymptotically free when D & 4. In addition, we demonstrate a strict
correlation between the sign of P(g) and the presence of a ghost state: There is no ghost when

P(g) & 0. Finally, we study an extended Lee model with two coupling constants and study the

behavior of the efFective coupling constants in the deep-Euclidean region.

I. INTRODUCTION

The Lee model' was originally formulated be-
cause it is a field theory in which mass, wave-
function, and charge renormalizations can be
easily carried out in closed form. It is therefore
reasonable to use the Lee model again to illustrate
the more contemporary aspects of renormalization
theory such as the renormalization group, the
Callan-Symanzik equation, ' and asympt;otic free-
dom. '

Accordingly, in our treatment of the Lee model
we have replaced the conventional use of a momen-
tum cutoff by the more modern technique of dimen-
sional regularization' to ensure that the renormal-
ized quantities can be expressed as finite inte-
grals. By renormalizing in D dimensions where
D is arbitrary, we obtain a continuum of theories.
The physical nature of these theories depends
crucially on the choice of D. For example, when
D & 4, the Lee model is asymptotically free.

%e have organized this paper as follows. In
Sec. II we write down the Feynman rules for the
Lee model in D dimensions and then use these
rules to renormalize the model. In Sec. III we
compute in closed form the two coefficient func-
tions P(g) and y(g) of the Callan-Symanzik equa-
tion. We find that p(g) is a two-term polynomial:
P(g) =ag+bg'. This form for P(g) is reminiscent
of that discovered by Crewther, Shei, and Yan'
for P(e) in Schwinger's model of two-dimensional
quantum electrodynamics. ' For comparison, the
expressions are

p(e) = -e+e'/w

for electrodynamics in two dimensions, and

p(g) = -g —(2+2')g'

for the Lee model in two dimensions.

For some values of D, P(g) has a zero for g) 0.
The nontrivial zero of P occurs when the unrenor-
malized coupling constant is infinite, as predicted
by Wilson. ' Furthermore, for a suitable choice of
D, P(g) can be made either positive or negative
between its zeros. %hen 3& D&4 the latter case
obtains.

It is well known that in four dimensions the Lee
model develops a ghost state (a state of negative
norm) as the momentum cutoff is removed. In
Sec. IV we show that in D dimensions there is a
strict correlation between the sign of P(g) and the
presence of a ghost: There is a ghost when and
only when P(g))0. This means that there is no

ghost when the theory is asymptotically free. This
result supports a recent conjecture of Salam and
Strathdee. '

In Sec. V we extend the Lee model by introducing
a new particle N, which behaves like the ¹ The
model now has two coupling constants. %e graph
the trajectories that are traced out in the effective
coupling constant plane as the model approaches
the deep-Euclidean region.

II. RENORMALIZATION IN D DIMENSIONS

The Lee model is a field theory of three ficti-
tious particles N, V, and 6, which interact accord-
ing to

This model is soluble because the crossed reaction
V+ 8—N is forbidden by a superselection rule.

A suitable Hamiltonian describing such a model
in four dimensions, where the fields associated
with these particles are spinless, is given in
Schweber' as

10
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0 =00+0, ,

((, =
m, d pv'i(p)v(p)+m, f d'i to (p) tv(p )+f d'2 (k)si(k)d(k),

H 2=X,(2v} ' 2

~ d p[V (p)N(p-k)8(k) +i(it(p-k)8t(k) V(p)]. (4)

In the above equation (d(k) = (k + p )"'; p is the
bare mass of the 8 particle; f(k ) is a momentum
cutoff which tends to zero as k -~; m„, and m„,
are the bare masses of the V and N particles;
and 8(k), fi(p), and V(p) together with their ad-
joints obey commutation and anticommutation re-
lations as given by Schweber. '

It is easy to derive the Feynman rules for this
Hamiltonian and to generalize them to D dimen-
sions. A complete set of rules is

[(dp —(d(k }+is] ' for a 8 propagator,

[(d —m(v, +is] ' for an N propagator,

[ (d —mv, + i&]
' for a, V propagator,

&,[2&v(k }] ' for each vertex,

—i(2 ) f d d 'k for ssok loop 'otsdrstioo.

It is not necessary to use a cutoff in D dimensions,
but to include it one must multiply by an additional
factor of f (k~} at each vertex

B. Mass renormalization

The renormalized mass of the V particle is the
pole in Gv(E) If w. e choose for simplicity to make

m, the renormalized mass of the V particle, equal
to that of the N particle, then we have

=m„, —2,'(2 )' f d 'k[2 '(k)i

This integral may be evaluated using the formula

J x.dx(I+")-~="""}'(f'-"-) (7)2I'(P)

and the expression

S 1—
I'(l)I'(lD —l)'

where S(D) is the surface area of a sphere in D

dimensions. This gives

3-D
m=m, , -g'p, ~ 'j[w r (2') D.

A. The V propagator

The diagrams contributing to the V propagator
are a string of N8 loops connected by V lines. We
evaluate the Ne loop A using the Feynman rules
and obtain

A = —it '(2 j f d d 'k[2 (k)1

X(E-(2)-rn~ +is) '[ -(2)(k(d))+if] '

Performing the ~ integration by closing the con-
tour gives

d . (2 )- f=d . . (k[)2--2[

x [E —~(k }—mN +ie]

In the above expressions E is the energy that
passes through the loop.

The V propagator G„(E) is obtained by summing
the N loops as a geometric series. The result is

Gr '(E) =E- mr +i&

k,*(2.) fd k[2 (2)[

X[E—(2)(k) —m„+is] '. (6)

The masses of the 8 and the N particle undergo no
renormalization. Hence in the above expression p,

is the mass of the physical as well as the bare 8

particle.

C. Wave-function renormalization

The wave-function renormalization constant Z
for the V field is the residue of the V-particle
pole in Gv(E). Z is thus given by

Z '=1 ~ 2 '(22)' f d 'k[2 '(k)]-'.

This integral may be evaluated using Eqs. (7} and

(8}with the result that

Z-'=1+2m, ' ~-'I' (2' -D
2

D. Coupling -constant renormalization

The renormalized coupling constant is conven-
tionally defined by requiring that the exact N8
scattering amplitude at threshhold (E= m„+ g) be
equal to the Born approximation to the scattering
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amplitude in which the unrenormalized coupling
constant A., and mass m~, are replaced by their re-
normalized counterparts A. and m~. In the Lee
model the NV scattering amplitude is merely the
V propagator G„(E) multiplied by Xo'. We thus ob-

tain the equa. tion

2

I+X,'(2v)' nf dn '%[2(u'(k)] '[ cu(k) —g] ' '

which reduces to

2
A,o

1+2&,'q' '(D--3)-'[r(-', (4-D))+I'(-,'(6-D)) Wm](2&m)

when the integral is evaluated using Eqs. (7) and

(6).
The three results in Eqs. (9)-(11)agree with the

conventional expressions for the renormalized
quantities when D =4.'

III. THE CALLAN-SYMANZIK EQUATION

It is most convenient to use a dimensionless
coupling constant in the context of the renormal-
ization group; to wit, we define g by

g~(D-4) j2(2 ~v)- D/2 (12)

In terms of g, the two coefficient functions P(g)
and y(g) of the Callan-Symanzik equation are de-
fined by'

p(g)
Bg

Bp

r(g) =-'u —I~.
Bp

Using the results of Sec. II, specifically Eqs.
(9)-(ll), we obtain

D-4 D-4 4-D 5 —D
p(g)= g- r + Wvr g',

I

(13)

21 (-.'(6-D))g'
1 —[2/(D —3)][I'(—,'(6 -D)) xV+21"(—,'(6 -D))]g'

(14)

In terms of these coefficients the Callan-Syman-
zik equation for the Lee model may be written as

8 9 9
p,
—+2m —+ p(g) —n„y(g)-
8p. BtPl Bg

xi'(y ~ y p p q q ) =pi

where I' is the connected, one-particle irreducible
Green's function with n&, n„, and n~ external
lines for the 0, N, and V fields, respectively.
AI" is the Green's function F with a mass inser-
tion for each internal line. It is presumed in the
above formula that the Green's function I" does
not violate the superselection rules that n„+n~
and n~+ne remain constant in any scattering pro-
cess. Otherwise, I'=0.

A. Zeros of P(g)

Apart from the trivial zero of P at g=0, P may
have one other zero for g&0 as long as

8 -=3 I' Wm +I' &0.

This can never happen for D & 3; it is true for
3 &D & 4, a.nd it is true for an infinite number of
finite intervals when D &4. The boundaries of
these regions are obtained by solving the equation

r W~+ I" =0.

This equation has an infinite number of solutions,
the smallest of which is D=4.425. Thus, B&0
when 4 &D = 4.425 and B& 0 when 5 &D~ 4.425. The
remaining regions are determined in a similar
manner.

At the nontrivial zero the expression for the
anomalous dimension y(g) in Eq. (14) simplifies
considerably:

4-D
~(g) = (16)

= —(2w)' D d~ 4[2(o(k)] '[E —(u(k ) —m+ic]

Observe that the V-particle pole disappears leav-
ing the contribution from the NO cut. This means

This result supports the contention of Callan and
Gross" that y cannot vanish at a zero of P unless
the zero occurs at g=0. Of course, when D =4,
y(g) in Eq. (16) does vanish, but for this special
value of D P(g) has only one zero at g=0. The
three distinct zeros of P merge as D approaches
4

As g approaches the nontrivial fixed point, the
unrenormalized coupling constant A., diverges, as
can be seen by examining Eq. (11)." This result
was conjectured by Wilson' and observed to take
place in two-dimensional quantum electrodynam-
ics. ' But as Ao diverges the product A G„(EO) sim-
plifies:

lim [Z,'Gv(E)]



CARL M. BENDER AND CHARLES NASH 10

that difficult calculations in the Lee model that
have been performed in the past, such as the de-
termination of the Ve scattering amplitude" and
the NV bound state, "become somewhat simpler to
perform.

8. Asymptotic freedom

%hen P passes through the origin with a negative
slope, the theory is said to be asymptotically free.
%e give detailed plots of P in the next section, but
a glance at Eg. (18) indicates that the theory is
asymptotically free when D & 4.

IV. GHOSTS AND ASYMPTOTK FREEQOM

It is well known that the conventional Lee model
in four dimensions exhibits a ghost state as the
cutoff is removed. The ghost state appears as a
pole in the V-particle propagator. The state is
called a ghost because the residue of this pole is

negative. The presence of a pole implies that the
8 matrix is nonunitary and that the renormalized
Hamiltonian is not Hermitian.

A simple way to detect the presence of a ghost
is to look for a violation of conservation of proba-
bility in the renormalization constant Z. Since Z
is the probability of finding a bare V state in a
physical V state, it must lie between 0 and 1. A

ghost is present if and only if Z& 0 or Z & i.
Vfe have observed a direct correlation between

the sign of p and the presence of a ghost, namely,
that when P is negative Z lies between 0 and j. and
when JB is positive either Z&0 or Z&1. %e illus-
trate this property of the theory by plotting in Fig.
1 graphs of Z and P as functions of g for various
values of D.

%'e observe that there is no ghost having the
quantum numbers of a V particle when the theory
is asymptotically free. This result supports the
conjecture in a recent paper by Salam and Strath-
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FIG. 1. A schematic graph showing the dependence of the functions P{g) in Eq. (13) and &{g) in Eq. {10) upon the
dimensionless renormalized coupling constant g. The graphs are drawn for six distinct regions of D: (a) D & 3, {b) 3
&D &4, (c) D=4, (d) 4&D&4.425, (e) D=4.425, and (f) 4.425&D&5. Observe that when P~O, Z is interpretable as a
physical prohabilig because 0 ~& ~ 1. %'e have omitted D = 3 because for that value of D, p{g) =.
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dee' that field theories which are asymptotically
free have no Bogoliubov-Redmond" ghosts. (The
V-particle ghost is a Bogoliubov-Redmond ghost. )

One can carry this point still further by consid-
ering the differential equation for the effective

coupling constant g(f ):

=P(g(f)), g(0)=g.

The solution to this initial-value problem is

(18)

g 2(0)e (8-4s
g' f)= 1+g (0)[2/(D —8)j[1'(s(4 D))+-vw I'(s(5 -D))j(e'n ~" —1)

'

The physical behavior of the Lee model in the
deep-Euclidean region is obtained by allo@ring
t-~ in this equation. But if g' is negative as I,

approaches ~, then g(f) is imaginary. We inter-
pret this to mean that the effective Ham. 'ltonian is
non-Hermitian in this limit. In such a situation

one would not be surprised to find a ghost. Indeed,
the condition that lim, g'(f) &0 is precisely the
condition that there be no ghosts in the model,
i.e. , that P &0. %e illustrate this point by plotting
in Fig. 2 g'(t) versus t for various values of D

q (I)

—GHOST (B 0 )

q

D=4

---GHOST (JS &0)

.NO GHOST (P~ 0)

p!—

I -2t= —q (o)4
!

{a) I (b)
!

(c)

q (t) q (t) qg(t)
I

qg(o) sxp (,425t)
-GHOST (P 0)

0

!

FIG. 2. A schematic graph showing the dependence of g (t), the square of the effective coupling constant in Eq. (18),
upon t. The graphs are drawn for the same six regions of D as in Fig. 1. The deep-Euclidean region is attained as
t ~. Observe that when P &0, g (t) approaches g (~} along positive values, but that when P & 0, g (t} approaches g {~}
along negative values. When g2(t} is negative, g(t} is imaginary and the model has a ghost.
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V. LEE MODEL VfITH TWO COUPLING CONSTANTS

To illustrate the kind of behavior one might ex-
pect of a theory with more than one coupling con-
stant we construct an extended Lee model. We
introduce a new particle N, with nearly the same
properties as the ¹ The extended model now has
two fundamental interactions:

V—%+8 (bare coupling A.,),
V—N, + 8 (bare coupling v,).

The Hamiltonian for the extended model in four
dimensions is the same as that for the ordinary
model with several additional terms. Specifically,
H, in Eq. (3) is augmented by the term

mx d PNx p~N& p

and Hl in Eq. (4) by the term

+N, (p —k)8 (k)V(p)].

(22)

For simplicity we have chosen the same masses
for the N and N, particles.

The Feynman rules for the extended model in D
dimensions are obvious generalizations of the rules
for the ordinary Lee model. From these we de-
duce the amplitude 8 for an N, 8 loop. 8 has the
same form as A in Eq. (5) with X,

' replaced with
The full V-particle propagator in terms of

A and B is simply

Gv '(E) =E —mv +is-A . -B.
0

We perform mass, wave-function, and coupling-
constant renormalization as in Sec. H. The equa-
tion for the renormalized coupling constants is

2 2
(p2 I) (~o I~A

I+2(X,'+~,')y, o '(D —3) '[I'(-,'(4-D)) +I"(-,'(5-D)) Ws](2&a) n '

which is the generalization of Eq. (ll).
Finally, we define a pair of dimensionless cou-

pling constants by

(g, h) =(A, s) p,
'o '"'(2&m) o"

and compute the functions P and P, :
(24)

D-4 D-4 4D 5D

x g(g'+ h'),

D-4 D-4 4 —D ~ 5-D

x h(g'+h').

The simultaneous zeros of these functions are the
point located at g=h = 0 and the circle satisfying
the equation

(26)

for those values of dimension D for which the
right-hand side of Eq. (26) is positive, namely
3&D&4 and 4&D~ 4.425. The locations of these

FIG. 3. A schematic graph showing the dependence of
g(t) and h(t) in Eq. (27) upon the variable t. As t in-
creases, the point (g{t},h{t})moves along the radial
lines in the direction indicated by the arrows. The heavy
black dots indicate fixed points [points where g(t) and

h(t) are independent of t] in the coupling-constant plane.
The origin is a fixed point for all D; the indicated circle
is a continuous line of fixed points when 3 & D &4 and
when 4 &D &4.425.
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"critical" points are indicated in Fig. 3.
Corresponding to Eq. (18), the equations for the

effective coupling constants g(t) and h(t ) are

g(t) = P(g, h),

h(t ) = P,(g, h),
(27)

whose solutions are straight lines in the coupling-
constant plane in Fig. 3. Observe that depending

on the dimension D the point (g(t), h(t)) traces out
a trajectory as t- ~ which may approach the ori-
gin when the model is asymptotically free, the
point at ~, or the circle. '
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