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Electron, muon, proton, and strong gravity
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Regarding the strong interaction as a manifestation of a strong gravity, the electron and
the proton are identified as black holes in the strong gravitational field. The mass and class-
ical rahu of ths electron ars predicted to bs $& m„=0 51 Msv and r, =e~/~ c2 = 0.74
& 10 ~~ cm, respectively. It is shmvn that the electron can be strongly interacting at energies
above 240 GeV. The strong gravitational constant is predicted to be 3.9x 10 ~ dyn cm g
The neutron-proton mass difference is partly explained. A neutral-pion-electron system
bound by strong gravity is interpreted as the muon, and the muon-electron mass ratio is
predicted to be m&/m~=f{l/a) +{2/n)m /m„=206. 6. It ie suggested that the weak interaction
might also be a manifestation of strong gravity and the intermediate-boson mass is of order
240 GeV.

I. INTRODUCTION

The finite electron self-energy is a puzzling
problem in both quantum theory and classical the-
ory. Quantum electrodynamics, with its remark-
able predictive power, fails to explain the origin
of the finite electron mass, and none of the pro-
posed regularization schemes have succeeded in
predicting the observed mass. An electron of fi-
nite radius first proposed by Abraham and Lorentz
makes the electrostatic energy of the electron fi-
nite. ' Nevertheless, it is well know'n that an ex-
tended charge distribution interacting with itself
cannot hold together and nonelectromagnetic forces
are needed to prevent the electron from exploding.
Recently, Isham, Salam, and Strathdee'proposed
a theory in which gravitation was supposed to reg-
ularize lepton electrodynamics, whereas a strong
gravity plays the same role in hadron dynamics.
Motivated by their work, we have constructed a
classical gravitational theory of the electron, the
muon, and the proton. However, according to our
theory the existence of the electron, the muon,
and the proton depends on a strong interaction re-
garded as a form of strong gravity; even in the
immediate neighborhood of the electron the space-
time structure is determined by strong gravity.
The electron and the proton are identified as black
holes in the strong gravitational field. Our theory
predicts the electron mass and classical radius as
0.51 Me7 and 0.V4 x 10 "em, respectively. The
constant of strong gravitation comes out as a by-
product of the theory; its m@mitude is 3.9 x 103'

dyncm'g '. The theory also partly accounts for
the neutron-px"oton mass difference. It is shown
that the electron ean be strongly interacting at en-
ergies above 240 GeV. A system of the electron
and the neutral pion bound by strong gravity is

interpreted as the muon. The muon-electron mass
ratio is predicted to be 206.6. It is suggested that
the weak interaction might also be a manifestation
of strong gravity, and that the mass of the inter-
mediate boson is of order 240 GeV.

II. SINGULARITIES IN THE STRONG
GRAVITATIONAL FIELD

Black holes, which are singularities in the grav-
itational field, being characterized by a few ob-
servable parameters such as mass, angular mo-
mentum, and charge, resemble elementary parti-
cles more than composite objects. However, be-
cause of the extreme weakness of the gravitational
coupling constant, the singularities in the gravita-
tional field of a charged particle will have mass-
to-charge ratios far greater than those for any of
the known elementary particles. The Nordstrdm-
Heissner solution of the Einstein equation for a
particle of mass m and charge e is given by the
metric'

ds'= y'dr' r'-d8'-r-'sin'Hdp'+ydt', (I)
where

1
2Gm G e'
cx cV

with G„ the Newtonian gravitational constant.
When e = 0, we obtain the usual Schwarzschild
form of the metric, which has a singularity at r
=26„m/c'. The metric (I) will have two singular-
ities if the quadratic equation

2G„m G„ey+ "4 =0
C C

has real roots, the condition for which is
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&1 or sc (4)

2Gsm~
Sc (5)

(Since we are interested in the strong gravitational
field in the immediate neighborhood of hadronic
matter, any exponential factors of the form e ""
occurring in y due to the finite range of the strong
gravity can be neglected. ) Now we examine the
singularities in the strong gravitational field of the
charged nucleon given by the metric (1) with

where a is the fine-structure constant. For the
proton G„m~'/h'c™10 ~'. Hence the gravitational
field of the proton (or any other known elementary
particle) will not have singularities corresponding
to y=0.

However, if we assume that the structure of
space-time in the immediate neighborhood of had-
ronic matter is determined by strong gravity, then
the constant G„ in (2) should be replaced by the
strong gravitational constant G, . The dimension-
less strong gravitational constant should have the
same order of magnitude as the dimensionless
strong-interaction coupling constant, i.e.,

2G, m2
c r2

From (8) and (12) we get

e2
2

(12)

(13)

When e = 0 in (13), m, = m„, we interpret m, as
the proton mass. The most reasonable quantity
that corresponds to the classical radius of the pro-
ton is the Compton wavelength of the pion; there-
fore, we set

r2=
m~c

the condition (10) can hold only for those values of
r which can be taken as the classical radii of the
particles. We take r, and r, (roots of y, =0) as
these allowed values of r. ~Vhen r =r, or r, the
right-hand side of Eq. (10) becomes unity. Thus
if m, and m, are the effective masses of the sin-
gularities in the strong gravitational field of the
charged nucleon, we have

2Gsmz = 1,c rg

2G~m„Gs e2ry =1- ' "+
s C2r C4r2 j (6)

where m „=pion mass.

where m„ is the uncharged nucleon (neutron) mass.
Since G, m„'/e'»1, the equation y, =0 has two

real roots:

G,m„G,m„1 e
1 C2 C2 G m 2

III. ELECTRON MASS

Equations (7), (8), (11), (12), and (14) are suffi-
cient for us to determine m, and G, . From (11)
and (12)

2

2m„c

m, /m, =r, /r2.

Using (7) and (14) in the above we get

(15)

C2 C

2G,m„e
c 2m c (8)

2Gs meff

c r (9)

for r ~ radius of the particle. Equating (6) and (8)
we get

2G, m ff 2G,m„G, e
c2r cr cr (10)

But the quantity which we call the radius of the
particle can also be taken as the range of strong
interaction associated with the particle. Hence

If m, ff is the effective mass' of the charged nucle-
on, then one should also be able to write the met-
ric describing the strong gravitational field of the
charged nucleon as (1) with

m, =2(e'/Sc)
n

= —,'(e'/hc)m, = 0.51 Mev. (16)

The mass m, is almost exactly the same as that
of the electron. We identify the singularity corre-
sponding to r =r, as the electron. In the following
it will be shown that this singularity can have
properties of the electron.

The masses m „m, and radii r„r, of the two sin-
gularities in the strong gravitational field of the
charged nucleon, which we have interpreted as the
electron and the proton, are connected by the same
relations [Eqs. (11)and (12)] as those of the mass
and radius of a black hole, suggesting that they
are black holes in the strong gravitational field.
The classical radius of the proton, which we have
interpreted as the Schwarzschild radius of the sin-
gularity corresponding to the proton, is r, =1.4
x 10 "cm. The range of the proton's strong in-
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G, = e'/4m, m „=3.87 x 10" dyn cm' g ',
where m, = m„or

G, m „'/ifc = 3.42.

(17}

teraction, r„determines the mass of the strong-
interacting quanta, that is, the pions associated
with it. In the same way, since the classical radi-
us of the electron according to our theory is r,
=e'/2m„c'=0. 74x 10 "cm, the strong-interact-
ing quanta associated with it should have a mass
of approximately 240 QeV. Present experiments
do not rule out such a possibility. For the same
reason any deviations of electron interaction from
quantum electrodynamics can be expected to occur
at energies above 240 QeV. %e have not taken
electron spin into account in the above treatment.
It is well known that a charged black hole with an-
gular mornenturn has a g factor of 2, the same val-
ue as for the electron. ' This might be another jus-
tification for our i¹ntification of the electron as a
black hole.

The strong gravitational constant comes out as a
by-product of the theory From. (7) and (11) we

have

could form a bound system with the electron if its
mass were concentrated near the electron surface.
%e assume that the muon is such a system. The
electron-neutral-pion system in the 8 state will
have spin —,

' and the total energy of the bound sys-
tem is given by

m~ =m, +m„+V+7, (20)

therefore, (20) becomes

G, m~m „
m~ =m„+m~- 2r c

and substitution for r, from (11)yields

where V is the strong gravitational potential ener-
gy of the system,

G, m~m„
re&

T is the kinetic energy of the bound particl. es.
From the virial theorem for the inverse-square
law

IV. NEUTRON -PROTON MASS DIFFERENCE
Hence from (16) and (21), taking m, to be the neu-
tral-pion mass, we get

With our identification of m~ as the proton mass,
it follows from (13) and (1?) that

m „/m, = ~(1/a)+(2/n)m, /m, = 206.6, (22}

mft mp m ff ~

The above value is smaller than the observed neu-
tron-proton mass difference, roughly by a factor
of 2. However, the result is encouraging because
the quantities that we have denoted by m~ (= m, )
and m„are not exactly the physical masses of the
proton and the neutron. The proton and the neutron
also have electromagnetic self-energies associated
with their magnetic moments which are not in-
cluded in (18).

V. MUON MASS

If the muon mass and its classical radius also
satisfy a relation of the form (11)or (12), that is,
if

then the muon radius r„ turns out to be approxi-
rnately 1.4x 10 ' cm. According toour theorythis
would imply that the muon is strongly interacting
at energies above 1.4 GeV, which is ruled out by
experiment. Thus the black-hole interpretation is
not possible for the muon. However, since the
electron is strongly interacting at distances com-
parable to its classical radius r„a neutral pion

where o. is the fine-structure constant. The above
expression does not depend on G„and the predict-
ed value for m „/m, is remarkably close to the ob-
served value m „/m, = 206.765. The theory also
implies that the muon classical radius is of the
same order as the electron classical radius. The
mutual electrostatic repulsion prevents the forma-
tion of an electron-negative-pion bound system.
Similarly, an electron-positive-pion system is
impossible because the electrostatic binding ener-
gy of the system, -e'/r, =-2m„, makes the total
energy of the system negative. Thus doubly
charged or neutral muons cannot exist. The fact
that the electron and the muon have classical radii
of the same order would account for the validity of
electron-muon universality to a high degree of ac-
curacy. However, as expected, the above classi-
cal theory has not explained why the electron and
the muon carry different quantum numbers.

If the electron forms bound states with other rne-
sons, it will give rise to heavy leptons. An inter-
esting possibility is an g-e system bound by
strong gravity. Such a system will have a mass of
4m „+m, ~ 412 MeV. Ramm' has reported evi-
dence for a heavy charged lepton with a mass be-
tween 422 and 437 MeV, which is very close to the
above value.
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Since the radius of the electron is 0.'74x 10-"
cm, we have argued that strongly interacting
quanta associated with it should have a mass of
order 240 GeV. It is possible that these quanta
are the same as the intermediate bosons mhich are
supposed to mediate the weak interaction, and the
weak interaction might also be a manifestation of
the strong interaction (strong gravity). In such a
case the dimensionless weak-interaction coupling
constant g'/gc should have the same order of magni-
tude as the dimensionless strong gravitational cou-
pling constant given by (17). This in fact seems to
be realized; for m~=240 GeV and g'=G, m~' the
Fermi coupling constant G~ =g'2"'/m ~ turns out
to be of order 10 'm~ 2, which is just the ob-
served order of magnitude of the Fermi constant.
Even in the absence of an intermediate boson one
mould expect any nonlocality of the 4-fermion in-
teraction to be exhibited at distances comparable
to the electron radius; the unitarity requirement
on the 5-wave neutrino-electron scattering cross
section' sets the above limit to be less than ap-
proximately 0.74x 10 "cm, which again is of the

same order of magnitude as the classical radius of
the electron predicted by us.

VII. CONCLUSION

A possible objection to our theory is that we have
applied classical ideas to a highly relativistic
quantum-mechanical problem. However, a more
careful consideration reveals that the above argu-
ment is unjustified. The self-energy contribution
to the electron mass deduced from quantum elec-
trodynamics is of the order

When the electron classical radius r, = 0.74 x 10 "
cm the cutoff A takes the value 240 GeV, giving
5m, -0.01 MeV. Thus a large percentage of the
observed mass of the electron is its bare mass,
and what the present theory has predicted is most-
ly this mass. Quantum electrodynamics holds up
to distances comparable to r, . The exact dynam-
ics holding at distances less than r„approximate-
ly reducing to classical general relativity and even
to Newtonian equations on a further approximation,
cannot be ruled out.
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