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The scalar, electromagnetic, and gravitational geodesic synchrotron radiation (GSR) spectra are
determined for the case of a test particle moving on a highly relativistic circular orbit about a rotating

{Kerr) black hole. One finds that the spectral shape depends only weakly on the angular momentum

parameter a/M of the black hole, but the total radiated power drops unexpectedly for a/M p 0.95
and vanishes for a/M ~1. A spin-dependent factor (involving the inner product of the polarization of
a radiated quantum with the source) is isolated to explain the dependence of the spectral shape upon
the spin of the radiated 6eld. Although the scalar wave equation is solved by separation of variables,
this procedure is avoided for the vector and tensor cases by postulating there a sum-over-states
expansion for the Green's function similar to that found to hold in the scalar case. The terms in this

sum, significant for GSR, can then be evaluated in the geometric optics approximation without requiring
the use of vector or tensor spherical harmonics.

I. INTRODUCTION

Gravitational synchrotron radiation (GSR) ema-
nating from the center of the galaxy has been pro-
posed' as an explanation of the high intensity of
gravity waves detected by Weber. ' The existence
of GSR under astrophysically unrealistic conditions
has been demonstrated in the Schwarzschild geom-
etry" by showing that radiation from particles in
highly relativistic orbits is beamed strongly into
the equatorial plane in high harmonics of the funda-
mental (orbital) frequency (&u,) of the particle mo-
tion. A portion of the gravitational' and virtually
all of the scalar' and electromagnetic radiation
occurs in these narrowly beamed high harmonic
modes.

GSR from particles in a circular orbit about a
Schwarzschild black hole at the center of the gal-
axy is an unsatisfactory astrophysical model for
two major reasons. First, the only circular orbits
emitting GSR are the physically unrealistic orbits
near r =3M; such an orbit represents a highly en-
ergetic and carefully aimed particle scattered
through an angle Ay»2n. Second, as pointed out
by Bardeen, ' a rotating black hole is a much better
model of the galactic center. In fact, the accretion
pf matter after the initial collapse will tend tp in-
crease the angular momentum of the black hole
almost up to the causal limit u'= M'. In a more
detailed model, Thorne' finds a limit a &0.9982M.

For this second reason, it is important to study
GSR in the Kerr geometry since it is the expected
final state of collapse of any rotating body. How-
ever, the only particle orbits which might occur
naturally that this paper considers are bound stable
circular orbits. As had been anticipated by Bar-

deeng and Goebel io these orbit& which are not
highly relativistic, radiate primarily quadrupole
radiation and are not sources of GSR. Further
details of the radiation from these orbits are given
by Bardeen, Press, and Teukolsky. " The sources
of GSR considered in this paper are relativistic,
unstable, unbound, circular geodesics. Although
these orbits are unphysical, they allow the study
of the influence of the black hole's angular momen-
tum on the radiation process. These calculations
have served as useful preliminaries to further
computations involving noncircular motion which
will be reported later, but which failed to find
more interesting sources of QSR.

Scalar radiation from a point particle of mass
p. «M in a circular orbit is examined by solving
the scalar wave equation in a Kerr background.
Scalar radiation is easy to study since the scalar
wave equation,

-e'" „=4vfT. , (l. I)
separates' with well-knpwn angular functipns. '
T is the trace of the stress-energy tensor of the
source and f is a coupling constant. In Sec. II, the
Green's function for this equation is written in the
form

where the 4,~ are solutions of the homogeneous
scalar w'ave equations satisfying certain specified
boundary conditions, and r(x) &r(y), where r is the
Boyer-Lindquist coordinate. [A similar form with
different boundary conditions on the 4, holds for
r(x)(r(y) ]The states .4, have completeness
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x)

=g ~ I&A '(&~),~&l', (1.3b)

and orthonormal properties in terms of the indefi-
nite Klein-Gordon inner product On future null in-
finity 8'. This expansion of the Green's function
as a sum of factors then leads to the following ex-
pression for the energy radiated by a source fT(y):

dt's(o)
Q &u ~&C;"',fT&('. (1.3a)

~ 0

The inner product of C,'"~ and the source term
which appears here is an integration over all
spacetime outside the horizon. Analogously, we
expect the electromagnetic and gravitational en-
ergy spectra to take the form

Schwarzschild geometry when M(d =Mmes» 1.
Similarly, the various homogeneous Kerr pertur-
bation equations agree in the high-frequency 1imit,
as can be seen by inspecting Teukolsky's separated
wave equations" in the Kerr background. Hence,
using the methods described below, we are able to
reduce high-frequency electromagnetic and gravi-
tational radiation problems in the Kerr geometry
to scalar calculations (with a modified source
term).

Following the Isaacson" analysis of high-fre-
quency radiation, one may use the %KB approxi-
mation to find the desired homogeneous solutions
to the vector and tensor wave equations. It can be
shown that in a suitable gauge

)

(d ACfg A. {A&, T (1.3c)

+out + C, out
CX R

Out out
h~e =e~g4

(1.4)

(1.5)

In the above equations, the sum is to be taken
over a complete set of orthonormal eigenstates
labeled by X and the superscript on the left-hand
side of the equation denotes the spin of the field
being considered. A~"' and h~~ respectively are
the solutions of the homogeneous electromagnetic
and gravitational wave equations obeying boundary
conditions similar to 4'"',

We do not prove that Eqs. (1.3) are correct, but
merely derive them from a conjecture that the
Green's functions for the vector and tensor equa-
tions can be written, at least asymptotically for
r(x)-~, in a factorized form similar to Eq. (1.2)
[see Eqs. (3.19) and (3.38)]. That such factorized
Green's functions exist is apparent when the wave
equations for the potentials can be solved by sep-
aration of variables as is the case for test fields
in the Schwarzschild geometry. " In more general
spacetimes where the wave equations are not known
to separate, the above energy spectra formulas are
somewhat speculative in that they depend on the ex-
istence of Green's functions which can be written
in the factorized form at least in asymptotic re-
gions. We conjecture only asymptotic validity as
x lends the spatial infinity for general stationary
metrics, as we see no other obvious analog for
the conditions r(x) &r(y) defining the range of
validity of Eq. (1.2) in the Kerr metric.

For the purpose of studying the radiation emis-
sion by a highly relativistic test particle, Eqs.
(1.3) for the energy spectra are ideally suited. An

energetic particle typically radiates at high fre-
quencies Mco» 1, thereby allowing one to study
scalar, vector, and tensor radiation in a unified
fashion. Misner et a/. ' previously pointed out that
the homogeneous scalar, electromagnetic, and
gravitational radial equations are identical in the

at frequencies Mco» 1. 4 '"' is the aforementioned
solution of the homogeneous scalar wave equation,
and e„(e 8) is a polarization vector (tensor) orthog-
onal to the direction of propagation of radiation.
With the aid of (1.4) and (1.5), (1.3) reduce to

dW"'
d„=Q ~ I&@;"',fT&I', (l.6a)

s}
= Q &u ~&e;"'„,e„z"&~', (1.6b)

)
= Q (u

~

&e;"',e ST '& ~'.
), m

(1.6c)

By comparing energy formulas (1.6), one finds
major differences amongst the scalar, electro-
magnetic, and gravitational high-frequency energy
spectra. Since the radiation of a particle in a
highly relativistic circular orbit is beamed into a
narrow cone centered about the particle's direction
of motion, the polarization vector (tensor) of the
radiation is nearly orthogonal to the particle cur-
rent. At high frequencies e 4 (and e 8T ) is
much smaller in magnitude than T by a factor
g' (P') involving the angular width g of the radiated
beam. Since P~&u '", Eqs. (1.6) imply that scalar
energy is radiated more efficiently at high fre-
quencies than either electromagnetic or gravita-
tional energy.

Certain features of the GSR spectra, however,
are independent of spin. For an unbound circular
geodesic orbit with large energy-at-infinity per
unit mass, y, the radiation spectra have an expo-
nential cutoff exp(-2&v!~,„,). The critical frequen-
cy is a high harmonic cv„,t= m, „.t~, of the funda-
mental coo, with
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2' (r~+Shf
) ~

Throughout the paper r& will denote the radius of
the prograde null circular orbit, which, for arbi-
trary a, is given by

2 6
rz = 2M 1+cos 3 arccos ~

I

(For retrograde orbits let a- -a.) As in the case
of Schmarzschild GSR, equatorial beaming occurs
although the half-width h3 of the beam widens
slowly as u increases. Specifically

&8= lml '"(1-&2&2) "'

where b, =r'-2Mr+cP and p' =r'+a' cos'8 so
(-g)'" = p' sin8. When the source of the scalar
waves is a point particle of mass p. «M on world
line z(7),

v'-g T = p dr u" u,b'(» -»(v)) . (2.3)

Brill et ajt. "have shown that the solution to the
wave equation (2.1) is

eo 1 00

@(r,t) =g g XI (&)Zl (8, V')e ' 'd~,
l ¹ 0 hatt=-&

(2 4)

with

(d =M"'(r 2"+M'"a) ' (1.10) Z", (8, y) = S,(-a2aP, cos8)e'2l+1 (t —m)i '"
4' L+ m

is the frequency of the prograde geodesic circular
orbit at radius r, (see Appendix A). For y» 1 one
mill have r, =rz.

A detailed analysis of the scalar radiation spec-
trum is presented in the next section. In Sec. III,
conjectured analogs of the Green's function "fac-
torization" (1.2) are formulated for vector and
tensor wave equations, and their application in
the high-frequency limit is outlined. The specific
application of this formalism to radiation from en-
ergetic circular Kerr orbits is given in Sec. IV,
leading to approximate analytic power formulas
for high-frequency electromagnetic and gravita-
tional radiation. These approximate pow'er spec-
tra, in the limit a-0, are in excellent agreement
mith previously derived exact Schmarzschild for-
mulas. " Conclusions are drawn in Sec. V.

(2.5)

S,(-a'co2, cos8) is an oblate spheroidal angular
function chosen so that ZP(Q) satisfies the normal-
ization convention J i Z, i2dQ = 1. The angular equa-
tion,

sin8 +cos 8 . 2 -a u S,=QS, ,
m'

Sln8 (f8 $8 sin 8

(2 8)

is studied in some detail in Appendix B.
The radial factor X, (r) is the solution of the

differential equation

&Xilt + [h(Q+ m +a'&u2) -a m'+4Ma&ur
dr 6fr

—(r'+a2)2&u2] X, =4vfb, (p2T),

II. SCALAR RADIATION
where

(2.7)

To learn the details of the scalar power spec-
trum, one must solve the relativistic wave equa-
tion

8 agv'-g g" 2 = —4sfd gT. -
ax Bx

(2.1)

ds' = ——,(dt -a sin28dy)2
p

+
'" [( 2a2)+de2gdt]'-

Here f is the coupling constant and g 2 are the
components of the Kerr metric tensor in the Boyer-
Lindquistx8 coordinate system mjth line element

(Tp2), ~ =— e' 'ZP*(Q)(p'T) dQ dt, (2.8)

and Q is given by (Bll). Introduce a new radial
coordinate and a new radial function:

+8 cd Ng~ r
Xlm (&2++2)1/2

r&

Then the radial equation (2.V) becomes a one-
dimensional Schrodinger -type equation:

d'u, , 4vft2
dr*

—d, 2 +~ F(2)ui =; ~ 2;2i2 (p T)i. ~(~+0 )

(2.10)
2

+—lr +p d8 (2.2) The effective potential V(r) is given by

V(r)= —I+(r'+a2) 2[4Mab2 a'b'+t2(Q+b-2+a2)]+(2'+a2) 2~ ' a(32'2-4Mr+a2) —,3s'r'
r~+a2 (2.11)
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with b -=m/(&) and Q =Q/(&P.
To calculate the scalar power radiated to infinity

one uses

(2.12a)

r-~ and the reality condition (u, Z) )"=u, „Z,
have been used.

The solution of the Schrodinger-type radial equa-
tion (2.10) can be given in the Green's function
form:

T)))f- ( &I): ))&»:" &g)&))@ 4):)()
4m

(2.12b)

. ( ) JG=(~', ~:) „.... (o')'h..4sft

(2. 15)

From E&ls. (2.4}, (2.9), and the above relations, it
follows that the total scalar energy radiated is

The Green's function, as in Ref. 4, is formed by
matching solutions of the homogeneous equation
-u" + ~'Vu =0 with a discontinuity prescribed by
the source 6 function in —G" + &()'VG = 5(r" —r,*).
The result is

= lim d~ g g ~'lu. ..l'. (2.13)

(2.14)

This allows one to define the energy spectrum

o)
„'"'=limp g ~'lu, ,l'.

"r=o ~=-~

i u) L, (r,*}B(r*), r* & r,*
G(r*, r,*)= — x

f, (r*)R(r,*), r*(r,*

(2.16)

To derive these energy formulas, the asymptotic
form du, „/dr i&du, f-or outgoing waves when

Here 8 and I are scattering solutions of the homo-
geneous equation. They incorporate the boundary
conditions2o implicit in the asymptotic forms

lk, l

' f2[ex p(-i kr*) +Sexp(i kr+)], r& -+~
l» l-'f'vexp(-ik r ),

(2.17a)

and

A(r*)- l k, l

'"exp(i k.r*), r+ -+~

lk l
"'[K 'exp(ik r*) —( 8/7)*e x(p-i kr*)j

tk l Ik,'I
(2.17b)

where k, = &d, k = (L) —ma(r, '+ a') ', and r,
= M+ (M' —a')'f'. The scattering and transmission
amplitudes are denoted by 8 and f', respectively.

Define free wave states (solutions of the homo-
geneous wave e(Iuation) as follows:

(2.19)

when r)r, . Here the "inner product" is defined by

4)("(' . =B(r*)(r'+a') &f'Z((e, y)e ' ' (2.18a)

4)('"' -L&(r*}(r +a ) " Z, (8, &p)e
' '. (2.18b)

&Of'f) = J d * ( ((i", I (* )f')'.&*-). *'. .(2.20)

Thus 4," is the scattering solution whose initial
state (t- -~) is a, wave coming "up" from the
horizon, and 4,'~, formed from the complex con-
jugate of L,(r*}, denotes the solution which has an
outgoing state (t-+~) consisting of a single wave
approaching r* =+ ~ (no "down the black hole"
component). See Fig. 1. These two solutions are
related to each other by the condition that they
asymptotically coincide (in both amplitude and

phase) at future null infinity O'. In terms of these
two free wave states, the solution to wave equa-
tion (2.15) is

d+0)'"'=Q Q ~l(c'"' f»fl'.
r om-~

(2.21)

This form shows that each state of the emitted
wave is generated by the inner product of the
source current with an associated wave state, and
suggests an immediate generalization, which will
be described in Sec. III, to the cases of the cor-
responding vector and tensor wave equations.

Using E&I. (2.14) and asymptotic forms (2.17),
one finds that the spectrum of energy radiated out
to ~ =+~ is given by
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In the case of circular particle motion, (2.3)
becomes

5(0) = T/w, (2.24b)

dgo -1
w

v -g T = -p, 5(r - rc}5 8 - — 5(y —rect),d7 2

(2.22)

so that

2wf'p'm&a,
) L(r,*))') ZP(w/2, 0) ]

'
(dz'/dr)' r '+ a'

l=o m=o 0

where orbital frequency &u, =dip/df is related to
the radius of the orbit r, by (A9). By evaluating
the inner product, (2.21) simplifies to

dW!„I
dtd ~ ~ (dz'/dT)' r '+ 0'

x [5(ms), —&u) j', (2.23a)

Thus, the total scalar energy radiated is

(,) ~ ~ 4w'f'p'(o
( L(r,')(')ZP(w/2, 0})'

(dz /d7') r +&
1 =0 fft=o o

(2.23b}

with ~ =m~o. The scalar power formula follows
from Eq. (2.23} by assuming that the particle
radiates in the interval -T ~ t ~ T where T»M.
Then,

(2.25)

The barrier penetration factor 8(rg) is
lt

8(r,') = «dr*,
0

where rf~, defined by V(r&}=0, is the classical
turning point at the outer edge of the potential
barrier and

(2.26b)

«(rg) = [V(rg) j'~'. (2.26c)

is the scalar power radiated by a point particle
in a circular orbit.

Introduced as being the solution of -u" + ~'Vu
=0 which represents a wave incident from r* =~
scattered by the potential V(r}, L(rf) can be found
by using the WEB approximation. In particular,

L(rg) =e '"~'[~«(r~~)j ' 'e "o'. (2.26a)

gr(o) /(o) dg 2Tyl(o) (2.24a) From (2.25} it is easy to see that a necessary
condition for GSR, ~here a large amount of power
is radiated at high frequencies M~ » 1, is that

down out

FIG. 1. The boundary conditions deQ~&Fi~ 4", ~, 4, ~, 4,~~", and @&"' are Qlustrated by sketching wave packets
built from them, e.g., 4 = fd~f~(~}e,~~, on penrose conforms& diagrams of the Kerr geometry. The scattering
states 4 "& and 4 are characterized by the behavior of the incident wave packet: 4"& is a wave initially co~i~g "up"
from the horizon and 4 consists of incident "ingoing" radiation. The labels "down" and "out" refer to the character-
istic feature of the outgoiag state; the entire wave packet is going "down" the black hole in the former case and "out"
to inQnity in the latter.
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8(r,) «M in Eq. (2.26). Clearly this condition
can only be satisfied if V(r,) «1, and, using Eqs.
(2.11) and (AQ), one sees that high-frequency
radiation is exponentially damped unless r0 =r&.

In Appendix A it is noted that the radius of the
last stable orbit r„approaches r„only vrhen
a-M, so that a2~M2 is the only possible candi-
date for GSH among stable circular orbits.
Specifically, when a= (1 —e')M with a' «1

r„=[1+(2a')"']M,

while the edge of the barrier is given by

r~ —-[1+—3(2a')"']M .

(2.27)

(2.28)

By approximating the potential by a parabola in
the region under the barrier, one can show that"

m(a, M v 3 "'[(x--,')(n-x)]"'
(d 8 r(~)

1 x dx

~0.122%4)0M . (2.29)

Thus, there is a negligible amount of radiation in
high-frequency modes from particles in stable
orbits even when a' =M'.

In accordance arith the necessary condition
r, =r~, G88 does exist for the case

r, =rz(1+5), 5«(r„/M) —1, (2.30)

where, from (A12), the energy per unit rest mass
satisfies

ry -M
2 )' » 1 (2.31)

%hen e' «1 these relations take the form r~
=[I+(2/v 3)a]M, 5«(2/WS)a, and y'~3 31'(o./5)
» 1 ~

Since the barrier penetration factor must obey
&u8(r,) ~ 1 at high frequencies to allow GSH, it
must be demonstrated that the validity criterion

d&un/dr* d~'V/dr*
~2n2 !~2V! sg2

is satisfied before the %KB approximation can be
used. At high frequencies the last bvo terms in
Eq. (2.11) are negligible so that, by using (A9),
the potential can be shown to be

(2.32)

b(g+r 'M ') —(r2 —ar +'M "')'
(r'+ a')

mhere the radius of the circular orbit is given
by Eq. (2.31). With this expression for the poten-
tial, the circular orbit relations in Appendix A,
and some lengthy algebra, one finds

0/ 2+ 229
0

(2.34a)

(2.34b)

when r, =rz. In (2.34), W is defined by

&3 Ly
1 2y

4 m
(2.35a)

arith 4 =r '-2Mr +a', 0-=E-m, and

2~3 r„+3M
crtt

( M)1/2 (2.3R)

The above can be substituted into inequality (2.32)
to find that the %KB approximation is valid when-
ever

1 [ (r' —a')(r —M)'(r + 3 M) I (4/n)m/m
m "' )8(3M')"'(r'+ a') AP'(r"'+ aM"*)"' )„=, [1+Rk +(4/n)m/m ~,]"'

0

(2.36)

Since the factor in curly brackets has values in
the range 0 ~( }„~3'" when evaluated at
r =r, =r„ for any I s/M I

- I, it can immedia«iy
be seen that%EH methods are val. id at all fre-
quencies (for all m and h, that is) when m ., » 1.
Thus, to find L(rg), one simply must calculate
the penetration factor (2.26b). In the region near
the peak of the potential, V(r) is approximately a
parabola:

r,p
= ry [1+(gW)'~']

to r, yields

m 4 m m~
&u8(r, ) = — I+2k+—0 mes„,, 4 '

so that

(2.38)

(2.39)

into (2.26b), integration from the classical turning
point

1 d'V(r„)
V(r) = V(r), ) +

2 d „," (r' —r„)'dr*'
r 2+a2

! 0 I l ~1/2 1/231/4~1/2 ~1/2
0

(2.40)

2 2

When this parabolic form for V(r) is substituted

To obtain Eq. (2.40), (2.34a) has been employed to
find n(r, ).

With the aid of Eqs. (2.40) and (815), power
formula (2.25) becomes
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Bf'i(,'(SMrr)'~'(rr —M} „, m ki

(2.41)

I(0I=Q g P(DI(k, m),
m=o A=O

( even)

and a power spectrum can be defined via

(2.42)

where e, r r r and m „,, are given by (2.39), (A6),
and (2.35b), respectively. The total power
radiated is

r

vector and tensor equations can be written with all
the normalization factors correct. Then the high-
frequency terms in this expansion, which alone
are of interest for GSR, can be approximated in a
geometrical optics limit.

Consider two solutions of the scalar wave equa-
tion,

d&(" ((u) 1 )(k m =(u/(u )oil t y p
o a=o

(even)

(2.43)
0P = -4)rS) C3$ = 4rr T,-

and form from them the vector

(3.1)

with cop +v Ole frequency interval between modes
m and m+1, so that by definition 4@i

whose divergence is

(3.2)

(3.3)

(2.44)

The power spectrum series converges very rapidly
with the k =0 mode accounting for over 99.9% of
the power radiated. Hence,

d&,„', Sf'p'(3 M}"'(r„—M)e ~ ' m' d(u rr"'r "'(r +SM)'~"' m crit

(2.45)

with

4 m
c =1+-

17 m crit

The important features of the scalar power
spectrum mill be discussed after the vector and
tensor spectra have been found.

III. ASYMPTOTICALLY FACTORIZED GREEN'S
FUNCTIONS AT HIGH FREQUENCIES

In order to generalize Eq. (2.11) to the vector
(electromagnetic radiation) and tensor (gravita-
tional radiation) cases, some new techniques are
required. We seek methods that exploit the simple
relations between scalar, vector, and tensor wave
equations that are known to exist in the geometri-
cal optics limit. This avoids the difficulties that
still remain in the separation of variables" for
vector and tensor wave equations in the Kerr ge-
ometry. It also, by being more direct, adds physi-
cal insight to the high-frequency solutions even in
the Schwarzschild geometry where complete solu-
tions by separation of variables have been given. '
The first step will be to formalize some properties
of the Green's function solution of the scalar wave
equation given in Eq. (2.19), so the corresponding

Upon integrating this divergence over a 4-volume
V with boundary BV=Z, one finds

Q, G(x, y) =-4rr5(x, y), (3.5)

where the 6 function" satisfies (5(x, y), (t)(y))„
=(t)(x), and M is the entire spacetime volume. Let
G'(x, y} [respectively G (x, y)] be the Green's func-
tion" which vanishes unless x is in the causal fu-
ture [past] of y, and in Eq. (3.4) choose

y(y) =G (y, x) =[G'(x, y)]*.
The result is

(3.6)

+(*)-JG'(*,) ))'( v)(-u'*d'*

=&6( y, «), @(y)&» —r & G ( y, «), @(y)) a» .

(3.7)

The first equality here is just the usual definition
of the retarded solution of the wave equation with
source T. For the second equality one assumed

r(&q„r)„-&S,4),) = q "d'Z„=-&y, y),„.
i)V

(3 4)

On the left of this equation occur 4-dimensional
inner products (, )„as defined in Eq. (2.20). On
the right occurs a 3-dimensional Klein-Gordon
inner product. This equation will lead to a relation
between the volume integrations in the Green's
function equation (2.19}and the 3-dimensional in-
tegrals characterizing the normalization and com-
pleteness of the functions in which that Green's
function was factored. A Green's function G(x, y)
of the scalar wave equation will satisfy
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C(x...)=-f&G (y, x.„,), C(y))av (3.8)

that T vanished except within the volume V, so
this integral over M could be identified with

(G ( y, x), T(y})» to which Eq. (3.4} was applied with
the result shown.

Refer now to Fig. 2 to see that the surface inte-
gral (, )qv in Eq. (3.V} will vanish when x is in V,
so the second equality verifies the first. But when

x lies outside V, the 5 function vanishes through-
out V so (5( y, x,„,), 4 ( y))„=0, and only the surface
integral contributes. For consistency one must
then have aA"=--A" " +8" A" =4m'"

and Green's functions wi11 satisfy

(3.14}

The principal result of the foregoing discussion
for our present purposes is the link between the
Kirchhoff formula (3.V) and the normalization
(3.12) required for a factorization (3.9). By writing
the corresponding vector and tensor Kirchhoff
formulas, then, we can determine the normaliza-
tions required for similar factorizations of the
vector and tensor Green's functions.

In the vector case, the wave equation in the Lo-
rentz gauge is

Next introduce the "factorization" of the Green's
function shown in Eq. (2.19), which holds only when

x = x, is farther out than y spatially:

~„G".(x, x ) =-G"„.:".„+Z"„G"„.
=4vg." 5(x,x), (3.15)

G'(x„y) = [G ( y, x,)] *

(3.9)

where the bitensor notation follows De%'itt and
Brehme, "except that our 5(x, x') includes the fac-
tors required to make it a biscalar. The 3-di-
mensional inner product will be defined by

(3.16a)

This form of G may be used in Eq. (3.8) with the
result

4(x,) = d(u 4P (x,)(4;"',4) ~„.
(3.10)

In the inner product (4'"', 4) q„, I vanishes on
the parts of BV near the past horizon and near past
null infinity 8 (see Fig. 2), while 4'"' vanishes
on the part near the future horizon, so the integral
can be restricted to the boundary near future null
infinity 8'. But near 8+, both 4"~ and 4'"' have
been defined in Eqs. (2.17) and (2.18) to have a
common asymptotic form,

' ~~e&~"r 'g ~(g y}g

(3.11)

and Eq. (3.10) is a completeness requirement on
the wave functions near 8'.

The normalization conditions on 4, „can be seen
by choosing 4 =4, . ~ ~ in Eq. (3.10). One evidently
must have

where

and the choice

future horizon

( t}lock

post

horizon

X
out

A.
J

(3.16b)

(3.12)

This condition is readily verified from Eq. (3.11),
provided one orients 8' correctly as the limit of a
part of 8V:

(g, Q)v+ = Iim . df dAr (p~e, p —pe„g~) .
r ~ 4'

(3.13)

FIG. 2. A retarded solution 4 (x) generated by a bound-
ed source T(y) by application of the Kirchhoff forroula
(3.7) over a, bound region K If x=x is inside V, the
6-function integral (h(y, x), 4(y) ) z gives 4(x~), but it
vanishes for x,«. The surface integral (6 (y, x),
4(y) )z has contributions only froxn the past cone of x,
and vanishes for x = x~ since 4(y) vanishes on the part
of the boundary in this cone. But when x = x,„t lies out-
side abut at large r, the boundary approaching f ' (null
future infinity) gives a nonmero contribution (although
the other three components of the boundary do not), and
Eq. (3.8) holds.
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y„.(»') =G.—.,(»', x) =[~;..(», x)] * (3.17)

A„(x) = G'„„J (-g')'i'd'x' &&[A "l (x', lm~P')] +,

=(g„6(x,x'},A. (x')), -f(G.—„,A )&, ,

(3.is)

in complete analogy to Eq. (3.7). We therefore
presume that there exists (at least asymptotically)
a factorization analogous to Eq. (3.9},

(3.19)

in which P is a polarization state label, and g ~

is a metric (more below) for asymptotic polariza-
tion states. The normalization requirement, from
Eq. (3.18) with x near 8', is

A"„' - A'„"' - A„(x, lm (oP) -e„(P)~ (u ~

'~'e' "r 'ZP(e, y) e ' ', (3.20)

with

e„(P)*e"(P') =g»,
so that

(A„(lm (uP), A" (l'm' (a'P'})g+

(3.2i)

=g»i 6g(i5~~~6(4I —(a1 ) ~ (3.22)~~ leva

0 "V =(t)"
V

—a~"V(Ie)' ~~ (3.2V)

Sciama, Waylen, and Gilman" write the Einstein
equations in the form

gg p V ]e~g k( p TV ) (3.28)

This form has the interesting property that it is
preserved under small variations of T"„sothat
when

The metric g» (reciprocal g ) appears in Eq.
(3.21) since four independent polarization states
can only be found if these indefinite (Minkowski)
normalizations are allowed.

One computes the power radiated in electromag-
netic waves from Eq. (2.12a}, now using the Max-
well stress-energy tensor

r~„- v t'„+or~,

one finds to first order that

~I ~' = ieger
"& ~OZ "&„

(3.29)

TP ll (PPcIPII Lg P IIP P (xs)

The leading terms for r- ~ are given by

T' - (4v) '(A '"A +A '"A )

(3.23)

(3.24) ~gP V F6~~@V (3.30)

provided a gauge with h„.s =0 is used. We restrict
attention to the case where g „„is a vacuum space-
time metric. Then the perturbation equation for
the h"" generated by a small perturbation 1'"" is

Because this is so precisely analogous to the sca-
lar formula T', = (4 )'x4'4, , one sees that the
formula for the spectrum, analogous to Eq. (2.21)
will be [here tu& 0 and W,„,= J (dW,„,/de}d&u]

dW» g e)(A'„"'(lm&uP), Z") ('. (3.25)
l+='2' m= -l

Here the polarization sum is only ( P= & ) over
transverse polarizations (unit vectors in the 8 and

q directions) e„(&)=6„and e„((()=5„"since the
other polarizations do not contribute in Eq. (3.24).
For these transverse waves g». =6»., so the
polarization metric does not appear explicitly in

Eq. (3.25}.
After defining a tensor wave operator

and, since B„„=O, & coincides also with the
Lichnerowicz-deRham wave operator. '4 In this
vacuum background metric case with 8'„,= 0, &
has the following properties:

g„,(~4"")= n(g„.4""),

~(4g"")=g""(~e),

(&0"");.=&(0"";.)

(3.31a)

(3.3 lb)

(3.31c)

The wave operators on the right-hand sides are as
appropriate, the vector or scalar wave operator,
e.g., d Q -=P",„Thu-s any . solution of Eq. (3.30)
will equivalently satisfy

(3.32)

gyPV yP V;P MP V F07
;P 0

and an algebraic operation

(3.26) and, as a consequence,

h(h"".„)=0 (3.33)



1710 p. I„. CHRZANO%SKI AND C. W. MISNER 10

since T"".„=0. In particular, any purely retarded
solution of Eqs. (3.30) or (3.32}will satisfy the
required gauge condition

=4;g "'g "'((J*.~ "0- —e.,&'(j)„*.), (8 85)
1 jfa VT

and find

(3.34)

since Eq. (3.33) has no nonvanishing purely retard-
ed solutions. Note, however, that h"" cannot be
expected to then satisfy k =0 even asymptotically
for x-8' since M =-16eT &0. To achieve k =0
near 8' would require a gauge transformation, &„„
-h&„+2)&„.„~ with &g" =0, which would not leave
h"" =0 in the asymptotic past.

Note that & is self-adjoint, i.e.,

g„„(x)=f Gx„,x, 4g ' '( —g')" 4'x'

=(g „gw 6(x', «), k„8 (x')}r
—i(G s(g. ))„kx) () r

Assume a factorization

G'„„,, 4,(x„x')=iJ 4 Q dx„(x„(mxg}g
JAP P

(S.SV)

((j"",5 (j)„.}«=(&0",4„.&« x [(j}'".'8, (x', l m («P') ] 4

holds for tensor fields (j)"",Q"" with compact sup-
port. Therefore the Green's functions~4 will have
symmetries as in the scalar case (8.1V). They
satisfy

and deduce the normalization requirements

(P„„(lm&aP), P""(I'm'(«'P ')w+

(3.38}

0)}4 ( 4) 4 g((4g}(I 6(

Define (y"", (j}„,) g
-=J j "d'Z with

(3.35) g»46„6 6((d - &u'), (3.39)

which are satisfied by

(jm(4)P)-e»(P)((d)( ' 2e'~gr 'Z,"(8,y)e (3.40)

provided that

e„„(P)*e""(P')=g». . (3.41)

(This tensor polarization metric will have a V+,
3- signature. )

An Isaacson effective stress-energy tensor for
gravitational wave perturbations in the 0"".„=0
gauge is given byes

T„„=(32w} '( ~k()„K 8 „).. .

In obtaining the formula

(3.42)

,'(«~(P'„"„((lm—(4)P},4T"') (' (3.43)
PIP= TT Nt=

a few minor factors differ from those in the anal-
ogous equation (3.25). The (82w) ' in Eq. (3.42)
replaces (4w) ' in (8.24), and the "4"'s, inherited
from Eq. (S.SV), came from 18w in Eq. (8.32) ver
sus 4w in (3.14); but by choosing g». =25» for
the physical (TT) modes, one finds a factor g
= 26». in Eq. (3.43}which makes all numerics
cancel.

Let us consider gauge questions and the "bar"
operation in (3.42) more explicitly, however. In
Eq. (3.38) the sum over polarization states would

have to include ten independent states P to give
the full Green's function satisfying (3.85). We
know, however, that the conserved source, T"".„
=0 in (3.32) leads via 6' to a field k"" satisfying
h"",„=0. Thus four states I' inconsistent with

this may be omitted from the sum

K„„(x,)=iJ dtx g d„„(x„)mtxg} g

e„.(+) =[e„(&)e.(&) -e„(ll)e.(ll)],

e „„(x)= [e„(&}e„(l[)+ e „O))e„{&)],
(8.45)

which satisfy g"u=0 andg», =2~»,, so
a e„„(P)e""(P'}=5»., and then no "bars" need

x((j}'"4'8.(lm(4)P') 4T ))

(3.44)

without changing the solution k»(x). Then when
the radiated energy flux is computed from (3.42),
each term in the resulting sum contains a factor
e""(P)*e»(P'). One finds from k„e""(P)=0 that

e""(P)'e„„(gauge)=0

for each of the four "gauge modes" for which, in
Eq. (3.40), one sets

e„„(gauge}=k(„C„)—~g„„k C".
Here k=e5+e-„ is the radial null vector (at 8') and
C is an arbitrary vector. Omitting these gauge
modes from the sum in (3.44) then changes k„„(w),
but not the power radiated. Thus only the remain-
ing two "transverse traceless" polarization states
need be retained in obtaining Eq. (3.43). These
two states can be chosen on 8' as
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finally appear in Eq. (3.43) where the polariza-
tion sum is restricted to the two physical com-
ponents wave modes. Of course the polarizations
(3.45) are not well defined (and not continuous)
near the poles of the Hy coordinate system. More
refined analysis (tensor spherical harmonics" ")
mould be required in place of the boundary condi-
tions (3.40) were it desired to separate out two
physical modes that were convenient near the
poles. In the GSR problem of this paper, where
radiation well off the equator is negligible, the
states defined by Eq. (3.45) are entirely adequate.

The factorized Green's functions such as (3.$8}
purport to be exact as indeed was shown for the
scalar case (3.9). For the Schwarzschild geome-
try, exact vector and tensor Green's function of
the prescribed form do exist and can be found';
it is apparent (but not proved here) that such is
the case whenever the wave equations for the elec-
tromagnetic and gravitational potentials separate.
Less obvious is the supposition that (3.19) and
(3.38) are exact in the Kerr geometry, where sep-
arated wave equations have been found" for only
certain scalars formed from linear combinations
of electromagnetic field components and compo-
nents of the Riemann tensor. Separable equations
for the potential. s may well exist at least at high
frequencies, for in that limit inspection of Max-
well's equations reveals that the decoupled equa-
tion for p, (as well as the equations «r f, and Q, )
may be solved by separation of variables. Hence,
for our present goal of studying high-frequency
radiation emission near a Kerr black hole, the
postulated vector and tensor Green's functions
are highly plausible.

In more general spacetimes with wave equations
that cannot be expected to be separable, we still
conjecture that the factorized Green's functions
exist and are exact at least asymptotically, where
the condition x, -~ can replace the r(x, ) &r(x')
domain condition on the factorization in the Kerr
scalar example. (Note that asymptotic validity of
the Green's function is sufficient to derive the en-
ergy formulas. } A rigorous examination of this
conjecture is not attempted here; we know of only
limited work in this direction by Clarke and
Sclama.

For high frequencies M~»1, consideration of
the geometrical optics limit will now allow an ap-
proximate construction of the vector and tensor
Green's functions from the scalar factors 4,
It is essential in a geometrical optics solution
that wave fronts be curved only on scales much
larger than a wavelength, a condition not normally
satisfied for solutions in the neighborhood of a
source, and certainly not for point sources as in
the problem at hand. The Green's function factor-

izations, however, allow us to treat free-field
states 4, whose structure is not determined by
the source, and for which the approximation is
valid. In particular, to compute the power at high
frequencies only the states 4,'~t for those frequen-
cies are required.

Geometrical optics for gravitational waves is
discussed by Isaacson" (see also MTW, SO Chap.
35). To summarize briefly, take the electromag-
netic example where M. u =0=A".„are solved by
setting

A" =e"8e'~, (3.46)

and assume that 0u =- g „ is large while all other
derivatives are small. The resulting conditions
are

&;u&'"=0

eu.84 ~ =0,
(gQh8) 0

(3.4Va)

(3.47b)

(3.47c)

ae".
Then the corresponding tensor would be

(3.48)

(3.4Vd)

From Eq. (3.4Va) one shows that the rays dx"/N.
=0"(x) are null geodesics, along which by Eq.
(3.47b) the polarization is parallel propagated,
maintaining the normalization condition e „e"= 1
and gauge condition (3.4Vd). Intensities are con-
trolled jointly by the red shifts in Au along geo-
desics, and the "conservation of photons" law
($.4VC}. The scalar and tensor cases are identical.
except for the replacement of the polarization vec-
tor e„by 1 or e„„, respectively. Thus if 4=ac'~
is a scalar solution, corresponding vector and ten-
sor waves may be formed as Au=e„8e'~ and |gal)u„

= e „„e'~by supplying unit polarization tensors e „
or e„„which are parallel propagated along ku

-=g „.
In general, carrying out the above outline to con-

struct p„'"„'(x, 1m ~P) and A~«gx, imcoP) from If "'

when M~»1 presents two difficulties. One is that
not all high-frequency waves have the %KB form
($.46); the second is to integrate the equation of
parallel propagation.

The first of these problems is not realized in
the GSR case, for the free fields 4, "t were found
in Sec. II to be %KB solutions; the angular and
time dependence is precisely of the form Ce'~
and the WKB approximation is valid in the radial
direction. However, the methods employed here
work for the more general case where the free
fields are a linear combination of such %KB solu-
tions:
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(3.49)

y "'(1m') =e (P)gee"

yt"„'(ImteP) = Q e„„(P,y}ee'~,

with the polarizations chosen to satisfy e""g „=0
appropriate1y in each term. We will find it pos-
sible to write this in the form

Aout e(P)
~

ttt
~

/t 2e terr-lcm (8 y)e-ttdt (4.2)

near 8', and the sum over P just includes the two
linearly independent transverse polarization
states.

When the source of the electromagnetic radiation
is a particle with charge q moving on a relativistic
geodesic circular orbit at radius r, = r~ given by
Eq. (AQ), the current is

=e„„(P)tttt'"' (3.50) (-g)"'Z = q(u ') 'u5(r - r, )5(e - w/2)5(y - to,t},
(and similarly in the vector case} by treating
e „„(P)here as a (differential) operator which re-
constructs (3.49) from (8.50} to leading order in
co ', as will be seen in the detailed treatment in
the next section.

The second problem, integrating Eq. (8.4Vb), is
simplified by the fact that we treat only point-par-
ticle sources, so the spacetime integral

(3.51)

g e„.(P)g"'e""(P')* (3.52)

over polarization states which appears in Eq.
(8.43) (multiplying 2+Et'"7 "8 ) is invariant under
changes in the polarization basis. (This absolute
orientation would be required to compute the po-
larization of the radiation instead of merely the
total power. See Hughes and Misner, ' who find
no significant rotation of the polarization axes, no
"gravitational Faraday rotations" for radiation
near the equatorial plane of the Kerr metric. )

IV. ESTIMATED ELECTROMAGNETIC

AND GRAVITATIONAL SPECTRA

In Sec. III, it was shown that the electromagnetic
energy spectrum emitted by a source J in the
neighborhood of a black hole can be written as

= g g ~ ~&A:"'(Im~P), Z ) ~', (4.1)
P L, e

where A'"' is normalized to give

is seen reduced to an integral over the world line
of the source particle. Different points on this
world line, a, circular orbit, differ only by a time
translation and a y rotation. Both the Kerr metric
and the boundary condition on the polarization
(8.45) are invariant under these motions, so the
polarization states (for congruent rays k") at dif-
ferent points of the world line are also related by
these simple translations. The absolute orienta-
tion of say e „„(+),parallel transported from 8'
back to one point on the world line, is also not re-
quired since the sum

(4 8)

with u the 4-velocity of the particle. With the aid
of the above, evaluation of the inner product in
Eq. (4.1}yields that

P0".t = Q Q 2ttq'mt', d— ~u ~ A'" t( fm(o P) ~'

P

(4 4)

is the total power radiated to infinity in the form
of electromagnetic waves.

For the high-frequency (&o = m&a, » M ') modes
excited by a relativistic circling particle, the vec-
tor potential takes the Isaacson form

A'"t (Im ~P) = e(P)C '"'(Im )te (4.5}

where 4 is the scalar wave equation solution dis-
cussed in Sec. II and e(P) is a polarization vector
normalized to unity. It follows that

so the problem of estimating the electromagnetic
spectrum reduces to finding tt ~ e(P) at the source
of the radiation.

We choose

(4.7a)

(4.Vb)

as the two polarization vectors that describe the
physical components of the electromagnetic field
at the source. In Eq. (4.7), k is the radiation mo-
mentum 4-vector, the carets denote components
as measured in an orthonormal frame erected by a
locally nonrotating (Bardeen} observer, "and "par-
allel" and "perpendicular" label (at the source) the
orientation of the polarization states with respect
to the orbital plane. At the point of emission, the
high-frequency components of the radiation field
are strongly beamed k-„-ke «k~. Hence, second-
order terms (k-„/kp)', (k4/k-„}' are negligible and
one can verify that to first order the polarization
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vectors in Eq. (4.7) are both transverse (e ~ k =0)
and orthonormal [e(P) e(P') =62,2, ] and satisfy a
further simplifying gauge condition e(P) e", =0.

The choice (4.7) for the basis vectors will be
correct to first order in the beaming angle. The
requirements are that these vectors be the result
of parallel transporting, from 9' back to the
source, the vectors specified following Eqs. (3.25).
For perfect beaming (k-„=0 =ke) this parallel
transport occurs within the equatorial plane and

Eqs. (4.7) are correct from elementary symmetry
considerations T.hat no ee term occurs in (4.7a),
nor any e-„ in (4.7b), is a consequence of the lack
of any (gravitational Faraday) chiral rotations oc-
curring in the parallel transport process —a result
Hughes and Misner" find valid to first order in the
beaming angle on the basis of more refined sym-
metry considerations. The gauge and orthonormal-
ity conditions then fix the remaining terms unique-
ly.

The inner products in Eq. (4.6) are

u e(ll)c I, , = k;@

for the high-frequency modes considered here,
and note that asymptotically k; is the eigenvalue
of ie-;, where e"; are the basis vectors (consid-
ered as differential operators} describing the
Bardeen frame:

(4.9a}

g 1/2

p Br'

1 8
A
e

(4.9b)

(4.9c}

p 1 a
8'" sin8 8

(4.9d)

(4.10a)

with g = (r '+a2}' —a2n sin28 and ee =2Mar/B. The
"energy" eigenvalue k, in Eq. (4.8), for example,
is given by

~&~ ~~/~ ec
p Br

0

(4.8a) mk-= —— (~ —~ ),g g 8 0
0

(4.10b)

u~
u 'e(&)4 I„=, = —ke4

so the useful expression

g~ —k- (4.11)

(4.8b)
-iu~ 1 a4

k", p 88„
In the above, we recall that 4 takes a %KB form

follows with the aid of the geodesic equations.
Combining Eqs. (4.6), (4.8), and (4.11) with some

of the relations from Appendix A, we obtain

mr*(Mr)"'(r+3M} dr* ' mr'(mr }"*(r+3M)(r'+a') de (4.12)

with terms smaller by a factor (Mrs) ' «1 ne-
glected. (Notice that the parallel [perpendicular]
polarization is the source of electric (-)' [magnet-
ic (-)"']parity terms in the sum. ) To simplify
this expression, note that in the %KB approxima-
tion the radial function satisfies

(4.13a)

or, by Eq. (2.34),

If ( ) I'
(r 2 +a2)2 0 (4.13b)

with e =1+2k+(4/w)(m/mcus. „)and II(ro)l given by
Eq. (2.40). Furthermore, from Appendix H we
have

dZ (w 20) = 2mk(1-a2(u ')'" Ig""(w/2 0) I'
do 0 l

(4.14)
and

&/2
2 2 f/g k m

I
& ( /2, o) I'= ' [(k/2)!]'2' '

L-m=-k, odd,

so power formula (4.12) becomes

(4.15)
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'( +3 }I, [(k/2)!]2',~ ([(!!,—1)/2]!P2' '

the scalar case, only the leading term in
each sum over k contributes significantly to the
total power since higher order terms are smaller
by the factor e ~". In addition, the leading term in
the electric parity expansion (k = even) dominates
the magnetic mode leading term by -e" so the ra-
diation is -95% plane polarized (electric parity) at
the source. To determine the polarization mea-
sured at a distant point, generally one xnust inte-
grate the equations describing the paraQel propa-
gation of the polarization vectors along nuQ geo-
desics. In the synchrotron case, however, the
narrow latitudinal beaming of radiation allowed us,
following Egs. (4.7}, to argue that this had been
done adequately, so we conclude that electromag-
netic GSH is about -9+ plane polarized at infinity.
An assessment as to the polarization of electro-
magnetic GSR as a. function of angle in the
Schwarzschild limit has been made by Breuer and
Vishveshwara, who find that the degree of linear
polarization is greater than 90% at all latitudes
within the half-width of the radiation beam.

As an independent cheek of the accuracy of this
approach to doing vector radiation calculations,
consider the Schwarsschild limit of Eg. (4.12)
where the first-order perturbation calculations

I

have been done in detail. '"'" In this limit, r,
= 3M and Eg. (4.12) reduces to

(s)
3"'M

1, m&0 m r
dpst Q

'27M*I'I* de

(4.17}

which is identical to the leading terms in the r,
= 3M limit of the exact formula (see Hef. 17, Ta-
ble 1).

Analysis of gravitational radiation emission dif-
fers little from the electromagnetic case just con-
sidered. Use the gravitational formula from Sec.

I

d
'"' = Q Q (v I(p'"q(L m(o P), T ~) I',

P l, m

(4.18)

together with the stress-energy tensor of an orbit-
ing particle

(-g)"'T = p(u') 'u8 u5(r-r, )5(e-v/2)6((p -(u, t)

to obtain

J' ', = Q Q 2wlpm~, (
—

) (u'u'y,",'(r„mwp'll'
P l, m&o

dg
2v p'm (o, d I u8 u: e(P)4'"'(r~ lm cuP) I'.

P l, e&o

(4.20a, )

(4.20b)

e(P):e(P') = e„,(P)e"(P') = 25» (4.21)

Out of the previously introduced polarization vec-
tors (4.7), one can construct these two tensors:

Now one must evaluate the inner product u
8 u: e(P), where e(P) are the two orthogonal trans-
verse traceless polarization tensors normalized to

sor relations. The above satisfy

(u~)'
u 8 u: e(+)=, (k -!te'),

t

(u "}'
u8u:e(x)= ~ 2k;ke,

t

or, in operator form,

(4.23a)

(4.23b)

e(+) =[a(ll) e(ll) -e(L)8e(&)],

e(x}=[e(II) e(L)+e(~)e(ll)],

(4.22a)

(4.22b)

(u "}' a 8'C 1 a'4
uu:e(+)4 I„,=, ——, , + —,

A't p Br p 8 g

(4.24a)
with "plus" and "cross" describing the relative
orientation of the orbital plane and the polarization
states at the source. This choice follows from Eq.
(3.45) since parallel transport preserves such ten-

(uP )8 a 1/2 s2@
u8u:e(x}4I, , =

2 2"o Qt p pre 9
0

Accordingly, Eq. (4.20) becomes

(4.24b)

() 2m''m(u dt 'b, ' f (r'+a')' d'I. 1 d'&P ' (r' )'+adL ' dZ,
r'+a~ d7 m' ( p'S dr~ ' p' de - p'a dr* de x =x0

(4.25)
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where Eq. (4.11)has been used for simplification.
Notice that, analogous to the vector case, the
"plus" ("cross") polarization is the source of
electric (magnetic) parity terms.

Further reduction of the power formula occurs
by using

d'Zi (v/2, 0) '

= m'(1-a'u), '}e'~Z, ~',

(4.27}

and

= [~'V(r,)]'I &(r.) I'
dr*' (4.26)

which follows from the computations done in Ap-
pendix B. Kith the above relations and the rela-
tivistic circular orbit equations, a lengthy calcu-
lation yields

(s) 2v' g (r) —Af)(SMry)' ~ ~ „s m

r„'(r„+2M)s ~,~„m [(k/2)!]'2'

+ ~ 2k&us msrit (k —1)!
{[(k-~)/2]!}*2'-" (4.28)

Again, we have k = f -m, e =1+2k+(4/v)m/m„;, , and r„=r, the radius of the null orbit. As in the vector
case, the radiation is predominantly (-96%) electric parity, so, using the vector polarization arguments,
we conclude that -96% of the observed high-frequency gravitational radiation has "plus" polarization.

V. DISCUSSION

Equations (2.41), (4.16), and (4.28) can be combined to obtain the master formula for the power radiated
by a particle in a highly relativistic orbit about a Kerr black hole:

(s) fs I 4m ' ',(Js.„, = A(r„)Q (s.)' ~ e
[(k/2)! ],2, e

m=0 0 men
C1™clit

{[(k—1)/2]!}*2'-" (5.1)

A(o)

2.0

2.0xIO

ls5

I.Ox IO

I.O

s8

FIG. 3. Shown as a function of the Kerr parameter a/M are the cutoff frequency and an amplitude factor [see Eqs.
(5.2) and (5 3)] which characterize the GSR spectra. Notice that the amplitude, proportional to [1—(a/M) ] as a
dies off rapidly for a &0.95M.
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where f, = (f, q/p, , 1), e = 1+20 +(4/w)m/m~, . The
most important quantities in these formulas are

2(»„-M)(3M~„)'"M'
r (r +3M)

fixed distant observer at the time

t, =(t „~)~ +(t ~„)~,
and the last of the pulse is seen at

t, = (t „e)p„, + (t s „)„~.

(5.6)

(5.9)
443 y'

(u„,, (r„)=(u, m„,,(r„)=
Fry

(5.3) Hence, the total time interval that an observer
measures radiation is

which are plotted in Fig. 3. When one neglects all
but the first term in the k = even series, which ac-
counts for 9+ of the total power, Eq. (5.1) re-
duces to

p'.„, =~, o (")'~t.„)

~('..'-, )
'"

X
- &/Q -2m/m crit

Crit

Hence the power spectra are

ds ':„,',&(y. q)'„- (, 4m
)

-'~'

X

d~
~

~
~

~ ~~
~

~

~~
~t

- ~/&-&~/~8 crit
~~ crit

(5.4)

(5.5)

with the high- and low-frequency limits

dP ' 4m„'"' =(st)'X(r„} 1+ e '", (o«ru~,~crit

(5.6a}
dg( ) 4 1/8'"' =(slP7l(r ) e "" '"'"~~~ u»&u)

dR mm crit '
crit:

(5.6b)

Here, one has defined

+3M

One of the important features that characterire
these power spectra is the exponential cutoff at
frequencies higher than ~~~& -M 'y', a result
qualitatively similar to the ~„«-r, 'y' cutoff that
occurs in flat-space electromagnetic synchrotron
radiation. The y' dependence of the cutoff fre-
quency for the flat-space case can be understood
with the aid of Fig. 4 which illustrates the syn-
chrotron emission from an accelerated particle to
a distant observer on the orbital plane. Since ra-
diation from a relativistic particle is beamed into
a narrow forward cone of half-width y ', our dis-
tant observer detects only the radiation emitted
while the particle is in the smaO arc of the orbit
6y» - y '. (Conversely, the radiation emitted at
any point along the orbit, i.e., a flash of radiation,
is seen only by equatorial observers within an an-
gular spread Ay - y '.) As shown in Fig. 4, the
first of the synchrotron radiation arrives at a

bt =t, —t, -r, by(v ' —1)--',r,y
' (5.10)

since 4y -y '. By the properties of Fourier trans-
forms, it follows that the only frequencies at which
there is a significant amount of radiation are

(ht) Ko j' (5.11)

in agreement with the known cutoff frequency.
When combined with e«it —M 'y', the above

analysis can be turned around to provide us with a
qualitative picture of GSH. From the cutoff fre-
quency and the Fourier transform argument, we
find that radiation is received in bursts of duration

t-Vc, it '-My (5.12)

Now consider Fig. 5. The first of the observed ra-
diation is emitted when the particle is at point 0
because radiation emitted into the inner half of the
forward cone is captured, by the black hole. The
time it takes the waves from point 0 to reach the
observer is

t i = (t o~) a + (t s.}~ . (5.13)

('As) po.t
™f d$

V

FIG. 4. Radiation from an accelerated particle.
Shown is a small axc of the particle's circular orbit and
the emitted radiation, vrhich is beamed into a narrow
foreword cone with half-width y ~. Choose the particular
observer at &~@~&ty that is in the direction tangent to
the orbit at point 0. Ovring to the beaming of radiation,
this observer only sees radiation that is emitted bebveen
pointsA, and B, where AQ~ ——dQ-y

The last of the radiation to reach the observer is
sent at the angle Ay (point B}and arrives at

t, =(t„} +(t,„)~. (5.14)

By using the preceding three equations, one finds

bt-My -Mby(v ' —1}-Mbyy (5.15)
or

(5.16)
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Equation (5.16) has an important consequence:
The radiation is not azimuthally beamed in the
sense that a single Gash of radiation is sprayed
out over an angle d, cp -1. (By comparison, only
observers within the angle Ay - y ' of the forward
direction detect a flash from an accelerated par-
ticle. ) Yet, the GSH received by each observer
arrives in periodic (T = I/2wru, ) pulses of short
duration At -M y ', each pulse consisting of radi-
ation emanating from a finite arc of the circular
orbit. This is analogous to the accelerated orbit
"rotating searchlight" effect in which energy
pulses lasting At-r, y ' axe observed at periodic
intervals.

The above conclusions as to the observed azi-
muthal distribution of QSH are in quantitative dis-
agreement with the work of Hughes. " In this ear-
lier beaming calculation, the value of Ay is found
by determining the difference in arc length nl of
null goedesics from points 0 and 8 (see Fig. 5) to
a fixed distant radius. The quantity Al can be ex-
pressed as a A'fference between two elliptic inte-
grals, which, when evaluated by Hughes, gave
Ay -y and, consequently, At-My '. In addition
to finding a pulse length longer than that in Eg.
(5.12), Hughes concludes from the d, y -y result
that a large number (-y) of images of a single
event are seen by a distant observer. The angular
spreading Ay -1 found in the preceding discussion,
on the other hand, does not lead to strong multiple
images. In view of these discrepancies, either the
evaluation of the elliptical integral difference is in
error or the Fourier transform argument given
above is invalid.

The second possibility, that At -(d„;, ' is not
true, can be ruled out by explicitly carrying out
the indicated sums in Eel. (2.19) to find the ob-
served scalar field amplitude. It is a straightfor-
ward exercise to verify that (in the Schwarzschiid
limit)

&km'

(3 )'"r
near infinity. Here we have defined g =y
—u&, (f —r~). By approximating el™1 and convert-
ing the sum on m to an integral, one finds

2f gati'(.')s ""' „, -(8~ i)
~3wyr ' (I+&'m ')"' '

(5.18)
so the half-width g„, is given by

08 rod o
Observer

I

'o &&

V

FIG. S. Radiation emitted by a geodesic particle. The
radiation emitted at point 0 follows a null geodesic of
the background geometry and reaches a particular ob-
server at infinity. Photons emitted into the inner half
of the forward cone before the particle is at point 0
cannot reach this observer, for they are captured by the
black hole. Let B be the point on the orbit where photons
on the outer edge of the forward cone reach the given
observer. Then, by construction, only radiation emitted
between points 0 and B is seen by the observer. In the
text, the properties of Fourier transforms and the cut-
off frequency ~„,, - cuog are used to argue that &Its- l.

p4) 2 sP (5.21)

than the synchrotron emission in flat space:

(5.22)

Since Fig. 5 qualitatively differs little from a
schematic diagram of radiation from a relativistic
particle on a radial geodesic (linear acceleration),
one might speculate that P,„,- y'(f, tt/M)s is a gen-
eral feature of relativistic test-particle motion
about a black hole. However, analyses3'" of
gravitational brehmsstrahlung from a relativistic
particle reveal

able distance while emitting radiation to the same
distant observer. In this respect, QBB is more
analogous to linear acceleration than circular mo-
tion in flat-space electromagnetic theory. Indeed,
the power radiated by a linearly accelerated charge
is

(5.20)

which is more like the GSH result

-j./2
1I2 ™crit (5.19) (5.23a)

Hence, for an observer at constant ~ and y, Eq.
(5.12) and the subsequent discussion follow.

It is clear by comparing Figs. 4 and 5 that a rel-
ativistic particle on a geodesic travels a consider-

Compare this with the energy
2

~GSR &Out 0 (5.23b)



1718 P. I . CHRZANOWSKI AND C. W. MISNER

radiated in one revolution of a synchrotron orbit
with ro r& «5 and impact parameter bos„~ N'SM

(for a =0). One sees, surprisingly, that when

y& (b/M)' more energy is predicted from the dis-
tant encounter b/M» 1 than for a close encounter
b/M tu' bosit/M 3—&3 ~

A second critical feature of the GSR power for-
mulas is the spin dependence of the spectra. "
Chitre and Price" have attributed the dependence
to a breakdown of a geometrical optics analysis of
the radial wave equation. In fact, we have shown
the %KB approximation to be valid in the radial
direction, and have used a geometrical optics ap-
proach to derive the power spectra. Rather, the
spin dependence of the spectra is a property of
the coupling of a transverse radiation field to a
relativistic particle. A comparison of Eqs. (4.6)
and (4.20b) with (2.25) gives

(j.) {o)dpu, t
l
„.e pdp. ut

d(d cf(d
(5.24a)

and

~a(2) dp(o)
uut

l utgt .e lu
out (5.24b)

As can be seen from Eqs. (4.8) and (4.23), the
above inner products are

lu el'-(u')'
kg

(5.25a)

a
l u tgt u: e l'- (us)' (5.25b}

where kr denotes the radiation momentum (mea-
sured by a Bardeen observer} in directions trans-
verse to the particle motion. %e have u -y-m„;t'"
from the geodesic equations and kr/kf- sing, with

P the angle between the direction of motion of the
particle and a typical emitted photon. For GSR,
the half-width of the radiation beam is ns- lml '~'

below the cutoff frequency, so

B
vtt =

u v„(1 btdtt)-ph (5.30)

where b is the impact parameter of the radiation.
For radiation in a null circular orbit, which rough-
ly describes the photons emitted by a relativistic
circling particle, b is given by Eq. (A5) with

r, =r„. Substituting this value of b into Eq. (5.27),
one finds

M (1 btds)- (5.31)

so that vs/v„remains finite even as a- M. Other
possible explanations for the rz —M factor are
being sought.

APPENDIX A: GEODESIC CIRCULAR ORSITS

below the cutoff frequency.
It is interesting to note that the spin dependence

of the radiation spectra from relativistic, circling
accelerated body follows from similar considera-
tions. For the accelerated case, one has m„;, - y'
and as- lml '" at frequencies ttt«u, , so
lul -m~«"' and kr/lk l- lml "'. Hence, below the
cutoff the power spectra are

~(s) m -2a/s dP(o)

d(d m ~ dc'
(5.29)

which is in agreement with other computations. ""
A final feature of importance in Eq. (5.1) is the

vanishing of the power radiated, proportional to
r& —M, as the Kerr parameter a approaches M.
A similar factor appears in formulas" describing
scalar radiation from particles on stable orbits in
the extreme Kerr geometry, so the vanishing of
the radiated power may be a general feature of
test-particle motion near the horizon of an ex-
treme Kerr black hole. Gravitational red shifts
do not explain the r& —M factor and seem to be un-
important even when a = M. The frequency of
radiation measured by a Bardeen observer at the
source is related to the frequency measured at
infinity by

—- sing- y- lml "'.
Consequently, Eqs. (5.22) become

lu „critm
m

and

lutgtu: el'-

and the power spectra are related by

dP(s) m -~ dP(o)
out OQt

d(d m0~t d(aP

(5.26}

(5.27a)

(5.27b)

(5.28}
+Wr =0, (Ala)

Geodesic motion in the Kerr geometry has been
studied by a number of authors" ""since Carter
first reduced the problem to first-order equations
with four constants of motion. Here we confine
our analysis to circular orbits on the equator and,
following Bardeen, Press, and Teukolsky, "we
derive analytic formulas describing these orbits.
Finally, the circular orbit relations are special-
ized to the cases of interest for the GSR calcula-
tions.

%hen the particle motion is restricted to the 8
= tt/2 plane, the geodesic equations take the form
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r' ~ =aP& '-(aE-I, ), (A lb)
Important for the study of GSR are particle orbits

close to the null circular orbit radius, i.e.,

r' —= (r'+a')P A '-a(aE-L, ),2 dt
(A lc) r, = (1+5)r„, (A 11)

where

P =E(r'+ a')-a l.,
and

(A2)

with 5«1. From Eqs. (Alc) and (AV), we find for
prograde energetic (y» 1) orbits that

(A12)

W(r) = -r-'(P'-A[q'r'+(as-I„)'j} (A3)

E r,"2-2Mr "2+a0
(A&}

The upper (lower) sign holds for prograde (retro-
grade) orbits. Inserting these equations for the
constants of motion into Eqs. (A lb) and (Alc}, one
obtains

is the radial potential. In the above, E =y p = -p&
is the conserved energy at infinity, I,=P„ is the
conserved angular momentum, p, is the particle
rest mass, and v = p, X is the test particle's proper
time.

For circular motion at radius r„one has W(r, )
= d W(r, )/dr =0. Applying these two conditions to
the definition of W(r), the conserved energy and
angular momentum can be found as functions of
M, a, andr, :

0 0Z ' (r'~'-2Mr "2~aM'12)2
(A4)r "'(r,"'-3Mr,"'+ 2aM"')0

(
dt ' (my+ 3M}'
dr &rz(r„-M)5 (A13)

r&=M 1+ I
—a+0(a') (A 14)

r, =M[1+(2~ ) ~ + O(~ ~ )] (A15)

With the aid of equations (A4) and (A15), y can be
shorn to remain small for all stable oibits even
as a-M. For the last stable orbit, for example,
y'-3, so particles executing stable circular mo-
tion are never highly energetic.

so energetic orbits require 5«rz/M-l, a stronger
condition than just 5«1. In the extreme Kerr
(a =M) limit, Eqs. (A9) and (A10) indicate that even
stable orbits satisfy 5«1, for when a=—I, r„
=r&=M. To clarify the a =M situation, define o.'
= I-(a/M}' and consider the a«1 limit. The
horizon r, is exactly at r, M(1+a), while

=Mr -'~'(r'~'-3Mr ~ 2M' 'a)-'(
d

0 0 0

(
2

= (r '~'+ aM'~')'r -"'
dv 0

x (r;"-3Mr,+ 2M"'a)-',

which together yield the orbital frequency

dip aM+
dt r' 'a aM' '

0

(A&)

(A 7)

(A&)

APPENDIX 8: SPHEROIDAL HARMONICS

Upon separating the scalar wave equation in the
Kerr background, one obtains the angular differ-
ential equation

1 d . d8~,sin8
8

+cos 8 . 2 aco ~ml
m'

~ 2

sin8 d8 d 8 sin'8

=QS, . (B1)

The above relations describe in the y ~ limit
circular photon geodesics at a radius ro=-rz sat-
isfying

r 3~2 3~r I/2 g 2~ &~2 a —0 (AQ)

In addition, the last stable orbit r, =r„ for a given.
value of a can be found by imposing the additional
condition d'W(r„}/dr' = 0. The formula

Q is the separation constant introduced in Sec. II
and S„,(-a'&o', cose), satisfying (Bl), is an oblate
spheroidal angular function. When the Meixner-
Schafke~' normalization

J 2 (l+ m)![S,(-a a), q)] dq —
( ),

is used, it is convenient to define the spheroidal
harmonic s

j./2
3a=~r "2M"' 4- -" -2

M
(A10)

ZP(&, p) = S,(-a ru, coss)e'2l+1 (I-m)!
4m 1+m ~

first obtained by Bardeen, ' then followers. All orbits
at radii r, &r„satisfy d'W(r, )/dr'& 0, so by Eq.
(Ala) they are stable with respect to radial per-
turbations,

for the Z, 's form an orthonormal basis for the
angular functions:
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For radiation in high-frequency modes M~» 1
with impact parameter b -=222/re =e/, '-M, analytic
expressions for Q, Zp(s/2, 0), and dZ1 (2/2, 0)/dg
are obtainable since the integers l and m both
must be large. It is useful to define a latitudinal
angle g = 8-v/2 and a new angular function

so (BV) can be written as

d'T„1 Q
d 62

'

(1 2b 2)l/2 5 211 (89)

We see, from (85), that the angular function T,
vanishes as g a v/2 or f, a-~. The solution to
(89) with these boundary conditions is the har-
monic oscillator function

s (e)='-"'.
cos3

With these definitions, (81}becomes

(a6)
T., =C ff, (g)e-"/ ,

2

where A=i-m and

Q=m(1-a'b ')1/2(2k+1)+ O(m')

(alo)

(811)

2221/2 (1 s2b 2)1/4g (86)

d T m2--'
", ' + sin'g, ' -a2(o2 T, =(Q+ ,')T, , -(86)d3' cos23

which may be solved as an effective potential prob-
lem for the m» 1 case considered here. The clas-
sical turning points are at g~ =+O(222 '/'), and,
since T, is exponentially damped beyond 8&, the
trigonometric functions in (86) can be expanded
about 3=0 to give

~ml +m2(1-a2b ')g'T, =[/+ 0(m')] T, .

(av)
Now define a new angular coordinate

are the eigenvalues. H, (f, ) is the Hermite poly-
nomial of order 0, and C~ is the normalization
constant

2222"'(1-a'b ')'"(2m+k) t

2 (b &)'v'/'(2m+ 2b+1) (812}

To obtain this value for the constant, one used the
orthogonality properties of the Hermite functions
and demanded that the normalization in (82) be
satisf ied.

With the constant coefficient determined, (810)
can be evaluated at f = 0 to find the value of the
spheroidal function on the plane. Specifically, we
obtain

, ,/2 (-)2 ' 2"'m'"(2222+@)!1/2
S (g 0) (b/2)l2 /vv (22n+ 2b 4. 1)

. 0, @=odd.

(813)

Since the only dependence on the Kerr parameter
a is in the first term of the b =even equation, (813)
becomes

d&m~ A d&ms

d8 e-„y2 d8 dE ' go
(816)

S, (g=0)=(1-a'b ')'/'P, (g=O), (814)
and then use the properties of Hermite functions
to obtain

for the spheroidal functions satisfy S, (q) =P1 (q)
when a = 0. As a check of the accuracy of this re-
sult, one can compare the bracketed quantity in
(813) to the actual value of P", (g =0) and find that
they agree to terms of order m '.

From (83) and (814), it follows that the spher-
oidal harmonics, evaluated on the 8 = v/2 plane,
are

de

(1 /2 b ) C
212&2 1(0)C

m+12k -l

= 22/2'/2b(1 g'b ')'/4 ~ T 1 1 (8 = v/2).
C +,.a

[ Z, (v/2, 0) [' = (1-a'b ')'/4[ Y'1 (v/2, 0) I', b = even

= (1-t2'b ')'"
~/2)(b/2) )222 1 (815)

where Stirling's approximation has been used to
evaluate (

Y'1 (' at the large values of f, m con-
sidered here.

An analogous approach ean be taken to find
dZ1 (2/2, 0)/dg. First, note that

Finally, we evaluate the ratio of the coefficients
and take advantage of (83) to rewrite the above
equation in terms of spheroidal harmonies:

=22sb(1- 'b 2)'"(Z1 '"(v/2, 0) ('

(816)

The form of this result could have been anticipated
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g = Q =m(l @2' 2)~&2(2$+ l) (Ble)

by looking at (87). There we see that the "energy"
of the Z, mode is

However, because of the symmetry of Z, about
the 8=m/2 plane, either the spheroidal harmonic
or its first derivative vanishes on the equator.
Rather, (820) takes the form

on the equatorial plane. For large values of m,
%KB techniques could have been employed to find 1 @1/2 gm+1

d6 (82l)

gy/2 gm
d8

(820) which is the same as (818).
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