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lication by Robinson" has proved the following
theorem: Rationary, axially symmetric, charged
black holes form discrete, continuous families,
each depending on at most four parameters, of
which only one —the Kerr-Newman family —con-
tains members with zero angular momentum. Thus
the theorem proved in the present payer is a sye-

cial case of the formally more general result due
to Robinson.
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We present a new "double-ring" source Inass distribution which produces a gravitational field
which varies by less tb» one part in one hundred billion foe a 0.025$ change in the position
of the test point. Such a source mass distribution removes a major obstacle to making ultra-
high-precision measurements of the gravitational Geld in the laboratory: the formidable
problem of precisely locating the test mass. The double-ring source mass would allow the
gravitational inverse square law to be tested in the laboratory using current position-mea-
suring techniques to an accuracy one thousand times better than the limits now given by
perihelion data.

Over the years there has been relatively little
interest in the Cavendish-type experiment for in-
vestigating the gravitational interaction. There
are two major reasons for this circumstance.
Measuring the gravitational force to better than a
few parts per ten thousand in the laboratory is
very difficult; but even if one succeeds in this task,
the problem of relating the measurement to theory
to better than a few parts in ten thousand has gen-
erally been regarded as hopeless because of the
difficulty in measuring the position of the test
mass. In any sort of Cavendish experiment the
test mass must be very delicately suspended, and
avaHable optical techniques can only determine its
position to about 0.01 mm. If, as has generally

been the case, ' spherical or cylindrical source
masses are used, then the typical mass separation
of 10 cm gives an error of two parts per ten thou-
sand. It is evident that the problem of accurately
determining the test-mass position must be cir-
cumvented before it is worthwhile to attempt to
measure gravitational forces to any greater pre-
cision. In all likelihood this problem has greatly
retarded the development of gravitational-force
measuring techniques.

Faller and Koldearyn' have taken an ingenious
ayproach to this problem by employing a ring for
the attracting mass. At the "Helmholtm" point on
the axis of the ring the gravitational field reaches
a maximum, and hence there is a point in the field
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where the first derivative is zero and the field is
uniform to a certain extent.

We have attempted to improve the uniformity
and spatial extent of the uniform region by using
a two-ring geometry. We have met with impres-
sive success, and find that it is possible to flatten
the gravitational field to such an extent that lab-
oratory examination of the gravitational inverse
square law may become competitive in sensitivity
with the perihelion data.

The magnitude of the gravitational force at a
point z on the axis of the thin rings is given by
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where EI is the force due to the large ring and
F~ that due to the small ring and the other symbols
are defined by Fig. 1. We are interested in the
total gravitational force field, E~:

Ez =E~+E~ .

The following definitions allow the problem to be
approached in a convenient manner:

FIG. i. The two thin rings are perpendicuLar to the z
axis (coming out of the paper). The center of the large
ring is at the origin z =0. The center of the small ring
is at z'. Ms and ML are the ring masses.

We have a sufficient number of free parameters
to require that
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We may now work with the dimensionless total
force fr, where

fr=fz+f s
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This requirement clearly leaves
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We use the Taylor expansion about the point &0

to systematically reduce the dependence of fr(5)
on~:
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as the leading &-dependent term, which, of course,
is very small for

i
5 —5, («1.

Using Eq. (2) in Eqs. (3), (4), and (5), we can use
the equality resulting from Eq. (3) in those result-
ing from Eqs. (4) and (5) to eliminate $ and to find
the foBowing simultaneous equations for ~„A.,
and 'g:
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We have proceeded to find the solution to these
equations by first assuming a particular value for
5, and then numerically plotting g, (5o, X, r/) in the
X, rl plane using curves of "iso-g,(5„X,q)." The

same was done for g,(5o, X, g). The approximate
root curves (g, = 0, g, = 0) in the a, r/ plane for g,
and g, can be obtained in this manner and the ap-
proximate region of intersection found. The re-
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gion of intersection of the root curves is then nu-
merically explored in detail to find the simultaneous
solutions to Eqs. (6).

In this manner we have obtained one solution to
the problem':

&0 = 0.4014,

q =0.19000,
X =0.072717,

=0.0204454 .

(7)

-2+ qh

then data from the perihelion of Mercury yield
the limit'

ft) & 3.7 x 10 ' .

(8)

(9)

A most direct procedure for examining the inverse
quare law in the laboratory is to measure the
force due to a small, close double-ring source
mass and compare it to that due to a larger double-
ring source mass much farther away. Character-
izing the distance from the test mass to the small
double-ring source mass as r„and that to the
large double-rmg mass as r» we can show from
Eq. (8) that the fractional discrepancy in the com-
parison of the measured and calculated forces,
b,E/E, produced by an inverse-square-law failure
is given by

4E
+I

Now reasonable values for the relative sizes of
the masses suggest that r, /r, = 6 and hence

The force field, fr, obtained using these values for
the parameters is displayed in Fig. 2, where it is
compared to the fields due to a single ring' and
fields due to a sphere e both taken to be centered
at the center of the large ring. It is clear from
Fig. 2 that the double-ring configuration produces
a substantially more uniform field than the single
ring.

Vfe have also numerically investigated the field
off of the axis due to the double-ring configuration.
It turns out that the fieM uniformity going off of
the axis is very nearly the same as the uniformity
along the axis.

It is interesting to examine the limit to which
the inverse square law may be tested which is
imposed by the test-mass location problem using
the above double-ring configuration. If we con-
sider the historic inverse-square-law failure of
the form'
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FIG. 2. The gravitational-field magnitudes are plotted
for a sphere, a single ring, and a double-ring config-
uration with the parameters as specified in Eq. (7}.

Now the force discrepancy hE/E is determined
by a comparison of the measured and calculated
forces, and the accuracy of the calculated forces
is determined by the accuracy of the measured
position of the test mass. Current laboratory
techniques allow the position of the test mass to
be determined to an accuracy of 0.01 mm, and if
the mass separation (for the small double-ring
mass) is about 5 cm, then the fractional accuracy
of the test-mass position is 2x 10 4. If we take a
closer look at f~ near the peak we find

6 =0.4012, fr =0.443 628309979,

6 = 0.4013, fr = 0.443 628 309 984,
6 =0.4014, fr =0.443628309987,

5 =0.4015, fz =0.443 628309985,

6 =0.4016, fr =0.44362630997& .

(12)

Hence we find, for the above error in position, an
error in the calculated force of

~f =0.ex 10 " .fr (13)

Clearly, the limit in the accuracy of n.E/E which
is imposed by the test-mass position measurement
when a double-ring source mass is used is just
Sfr/f r, and thus P could be determined to

y=3.3x 10 " (14)

which is about 10' times smaller than the limits
given in Eq. (9) from perihelion data.

Up to this point we have used mathematically
thin rings. It is clear, however, that a finite mass
distribution can be built up out of pairs of such
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rings such that each pair yields a peak at the same
point as the other pairs. %e have not investigated
the difficulty of manufacturing a double-ring mass.
It is our observation„however, that the mathe-
matical situation producing the flat peak is not
especially fragile [indeed we used a rather crude
technique in finding Eq. (9)] and that ultrahigh-
precision machining is probably not required.
More importantly, the mass distribution would
have to be verified using, say, y-ray absorption.

It is clear that the problem of measuring grav-
itational forces to the precision suggested here
has not been solved. One of us (D.R.L.) has been
struggling with the problem at the part-per-thou-
sand level for several years. On the other hand,

there has never been a thorough study of the phys-
ical processes which might set an ultimate limit
to the accuracy of a gravitational-force measure-
ment. The gas-thermal-noise problem„as well
as the vibration problem, could probably be readily
reduced by several orders of magnitude in this
labor ator y.

Perhaps the progress presented here on the
mass separation problem will allow a more vig-
orous attack on the gravitational-force measure-
ment problem.
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There are, of course, infinitely many solutions. Cur-
sory inspection suggests that there are probabLy no
solutions for 6() & 0.65.

The center of the single ring is taken at (5 =0, and its
radius chosen to give the peak at 6 =0.4000. Its mass
was chosen to give the same field magnitude as the

double rings.
The center of the sphere is taken at 5 =0, and the mass
chosen to give the same field magnitude as the double
rll1gs.
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than we discuss in the text.
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Using the fact that a KiHing vector in a vacuum spacetime serves as a vector potential for a
Maxwell test field, we derive the solution for the electromagnetic field occurring when a
stationary, axisymmetric black hole is placed in an originally uniform magnetic field aligned
along the symmetry axis of the black hole. It is shown that a black hole in a magnetic field
will selectively accrete charges untQ its charge becomes Q =28 0 J, where B 0 is the strength
of the magnetic field and J is the angular momentum of the black hole. As a by-product of
the analysis given here, we prove that the gyromagnetic ratio of a slightly charged, station-
ary, axisymmetric black hole (not assumed to be Kerr) must have the value g =2.

I. INTRODUCTION

From the results on black-hole uniqueness which
have been proved during the last several years
(particularly the theorems of Israel, ' Carter, 2

Hawking, ' and Robinson' ), it is now well estab-
lished that an isolated black hole cannot have an

electromagnetic field unless it is endowed with a
net electric charge. Thus, an isolated black hole
can participate in electromagnetic effects only if
there is a mechanism for charging it up. However,
if the bl.ack hole is not isolated, electromagnetic
fields produced by external sources (e.g. , plasma
accreting onto the black hole) may be present.


