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be used directly to test the consistency of m'P data
with forward dispersion relations and to constrain
the parameters in theoretical models of high-ener-
gy scattering amplitudes.

We wish to acknowledge useful conversations on
the subject matter of this paper with Professor
L. A. P. Balkzs and Professor M. Sugawara.

*%'ork supported in part by the U. S. Atomic Energy
Commis sion.

~T.
¹ Pham and T. N. Truong, Phys. Rev. Lett. 31, 330

(1973).
2T. N. Pham and T. N. Ty'uong, Phys. Rev. D 8, 3980

(1973).
38ources of cross-sectf. on data are listed by Pham and

Truong (Ref. 1 above) in their Ref. 5. See also A. A.
Carter and J. R. Carter, Cavendish Laboratory report,
1973 (unpublished); and J. V. Allaby et a/. , Phys. Lett.
30B, 500 (1969).

&K. J. Foley, R. S. Jones, S. J. Lindenbaum, W A.
Love, S. Ozak, E. D. Palmer, C. A. Quarles, and
E. H. Willen, Phys. Rev. Lett. 19, 193 (1967}.

5~ approaches ~2 as the PT weight function A{&) [as
defined in the discussion preceding Eq. (42} in Ref. 1]
becomes progressively peaked at ~ = ~2.

~M. Froissart, Phys. Rev. 123, 1053 (1961).
A. Martin, Nuovo Cimento 42, 930; 44, 1219 (1966).

8J. Hamilton, Phys. Lett. 20, 687 (1966).

ST. N. Pham and T. N. Truong, Phys. Rev. Lett. 30, 406
(1973}.

ioNote that t(&) is not crossing symmetric because of the
factor (~+ p)8.

~ In determining E(~, ~&, P) for rational values of P, we
have found it convenient to use formulas 2.146 1 and

2.146 3, of I. S. Gradshteyn and I. M. Ryzhik, Tables
of Integrals, Series and Products, fourth edition
(Academic, New York, 1965), pp. 64 —65.

i2J D. Jackson, LBL Report No LBL-2079 1973 (un

published). %'e have applied the analysis of Jackson to
T, (~) in deriving the result (17). Jackson also gives
an equivalent derivation of the local connection between
the real and imaginary parts of forward scattering am-
plitudes by using an analytic-continuation technique
attributed to Bronzan. See also J. B. Bronzan, G. L.
Kane, and U. P. Sukhatme, Phys. Lett. 49B, 272
(1974),

i3N. N. Khuri and T. Kinoshita, Phys. Rev. 140, B706
(1965).

PHYSI CAL REVIE%' D VOLUME 10, NUMBER 5 1 SEPTEMBER 1974

Possible non-Regge behavior of electroproduction structure functions*

A. De Rujula, S. L. Glashow, and H. D. Politzer
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

S. B. Treiman, F. %'ilczek, and A. Zee~

Joseph Henry Laboratories, Princeton University, Princeton, %erat Jersey 08540
(Received 15 April 1974)

The large-co behavior of deep-inelastic structure functions, e.g. , F,(co, q'), is studied in the framework

of asymptotically free field theories, On the basis of certain uniformity assumptions we predict an

unbounded growth with eo: slower than any power of co but faster than any power of loge.

The discovery that non-Abelian gauge theories
are asymptotically free' has attracted a great deal
of interest, especially in connection with the
search for a field-theoretic explanation of Bjorken
scaling. In fact, theories of this class do not quite
scale, but they come close in a sense that we shall
presently recall. Further development of the sub-
ject hinges on the observation of departures from
scaling. Does scaling break down in the ways that
are characteristic of asymptotically free theories'
%hat is most sharply characteristic of these theo-
ries is the large-q' behavior of the moments of

deep-inelastic structure functions. But it is also
natural to consider the implications for the struc-
ture functions themselves. Discussion along these
lines has been initiated in several recent publica-
tions, which deal especially with the threshold re-
gion, id ~ 1.' Here we want to focus on the behav-
ior in the limit of large co.'

For definiteness, let us start with the structure
function F,(~, q') of deep-inelastic electron scat-
tering, where q' is minus the invariant momen-
turn transfer squared and «& =2m@/q' is the Bjorken
scaling variable. The moments of the structure
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functions are defined by

where

ln (q'/y, ')
~(q') =~( 2/„2)

(2)

The scale parameter p, and the coefficients c„are
unspecified. The parameter q,'» p.

' is introduced
for later convenience as an arbitrary choice of
reference momentum transfer. The exponents a„
in Eq. (3}are related to the anomalous dimensions
of the dominant operators of spin n+2 in the Wil-
son expansion of a product of currents. They de-
pend on the gauge group and the quark content of
the theory and can be explicitly calculated from
this information. There are three operators of a
given spin that contribute to the leading term in

Eq. (2), each with its own exponent a„; in quark-
gluon models with a global SU(3), there are two

singlets and one octet. For each moment the term
with the smallest exponent a„will eventually domi-
nate for large q'.

Suppose that the structure function F,(ao, q') were
known empirically in its dependence on e at some
q' =q,' which is sufficiently large that the "sub-
dominant terms with coefficients e„can be ne-
glected We wou. ld then know the F,"(q,'), and hence
the coefficients c„ in Eq. (2). We could then deter-
mine F,"(q'} for larger q' and reconstruct the whole
structure function F2(a&, q ). This procedure re-
lies on the assumption that, for q'» p,', the sub-
dominant terms are negligible for all n —a delica-
cy that we set aside till later. A convenient tech-
nique for effecting this reconstruction has been dis-
cussed by Gross. ' In practice, a full analysis
along these lines mould require detailed starting
data at some (large enough) qo', and some rather
complicated reconstruction mathematics. Here
we want to see what kinds of qualitative things can
be said in advance, without resort to the full ma-
chinery.

Since the integral of Eq. (1) converges for n= 0,

F."(q') = —,~ "F,(~, q').
1

Exact scaling is the statement that F,(a&, q'} ap-
proaches a finite nonvanishing limit as q'- ~ for
fixed co. Hence the moments, F"„would approach
finite limits as q -~. In asymptotically free theo-
ries, deviations from scaling take the form of a
logarithmic decrease of the moments:

2 -1
F",(q') = c„[X(q'}]~ 1+ a„'" ln —,

tf 2 ~op

+o. ln — + .~
2

this equation serves to define I"
2 as a function of

complex n, analytic for Re n &0.~ If the continued
function has no singularities to the right of the
line Re n = n-o then it follows that F,(&u, q') is
bounded for large &u by F, & B&u' ""' (z arbitrari-
ly small). The SLAC-MIT experiments' suggest
that the proton and neutron structure functions
approach constant limits as ~- ~, although a slow
growth (or falloff} cannot be excluded in the re-
gion of q' relevant for these experiments, Taking
q,' to be a representative momentum transfer in
this region, we may then conjecture that c„has no
singularities to the right of Ren= -1,

The behavior of F, (~, q') for &u- ~ is governed
by the singularities of +„as well as c„. Recall
that several operators contribute to the moments—two singlets and a nonsinglet. The key observa-
tion is now this: The rightmost singularity comes
from one of the singlet terms, which has a simple
pole in a„at n= -1 with negative residue. For
n- -1 we have

Qa„-— + 5,n+1

and therefore

pn ga/(n +y) -b2- Cn

This represents an essential singularity in I ", at
n= -1. Except perhaps for a unique choice of the
parameter q,', we must expect that c„also has
this same singularity. %'e therefore write

c„=M(n+1}X'~'" ",
where K is a constant bigger than unity. ' From the
SLAC-MIT results we have inferred that the func-
tion M(s+ 1) is regular for Res& -1. With the con-
stant E suitably chosen M is also supposed to be
free of essential singularities at n= -1. The re-
maining properties of this function will not much
matter for what follows: For large enough q', the
behavior of I"2 as ~- will be governed chiefly by
the essential singularities in Eqs. (5) and (6), To
determine the large-~ behavior we approximate
F", using Eqs. (5) and (6), so that

g -b Coo
zI"2 = — . dnM(n+1)exp (n+1) ln++

~ ~lgl ~~ COO n+1

where z = a in(KX). The asymptotic behavior for
large e can be determined by the method of steep-
est descent. We find

g-&M[(z/in~}l/2] (z/ln&~}1l4e2(s In~)'.-:2r~

For large u we need to know the function M only
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in the region where its argument goes to zero.
Thus if

M(n+ 1)—A(N+ 1)

we have M[(s/in&a)'~]-A(z/in'&} ~~ in Eq. (8}. The
&u dependence in Eq. (8) is chiefly governed by the
exponential factor. Vfe are led to the prediction
that E, must grow with ~, contrary to the usual ex-
pectations based on analogy with Regge behavior.
The rate of growth increases with increasing q'.
It is always weaker than a power 1am in ~ but more
rapid than any power of loge. For fixed q', this
implies that E, grows faster than any power of
log v, a gromth which is more rapid than is allowed
by the Froissart theorem for purely hadronic cross
sections. So far as me know, this is not a contra-
diction. The Froissart theorem makes essential
use of unitarity, whereas me are considering an
absorptive amplitude in lowest electromagnetic
order.

Nevertheless the growth implied by Eq. (8) is un-
doubtedly surprising. However, it must perhaps
be taken curn grano salis. %e have assumed that
analytic properties can be inferred from the lead-
ing terms of the perturbation expression of the
moments. Homever, subdominant terms in
[ln(q'/g')] ' are not necessarily negligible in de-
termining the singularities in n of E~. It is con-
ceivable that these, along with the l.eading terms,
are also singular at n = -1, and that the effects
combine to produce a totally different singularity
structure, e.g. , a moving singularity which ap-
proaches n = -1 from the left as q'- ~. It is cer-
tainly not difficult to construct functions whose
moments agree with Eq. (2) as q'- ~ but which
have finite limits as cu-~ for any q'; e.g. , if we
replace v in Eq. (8) by &oq'(ep'+q'} ' the new func-
tion has no essential singularity at n =-1.

For the remainder of the discussion we return
to the leading effects exclusively, ignoring the sub-
dominant contributions. The analysis carried out
for E, can be repeated nom for the longitudinal
structure function El, . The moments of El. differ
from those of E, by a factor which is proportional
to [»(e'/~')] ':

En 2
= constx(n+3) '

P

operators, which contribute equally to the proton
and neutron structure functions. These are each,
separately, described by Eq. (8) in the large-e
limit —their ratio approaches unity in this limit.
On the other hand, the difference 4E, = F~(proton)
—F,(neutron) is of course governed by the non-
singlet operators. ' The situation can again be
represented as in Eq. (2), with new coefficients
c„' and a„', where the primes denote nonsinglet. The
important result here is that a„' is regular at n= -1;
its rightmost singularity is a simple pole at n= -2.
If c„' is similarly free of singularities to the right
of Re n= -2, we mould then expect that hE, should
fall off as ~ ', modified by an exponential factor
of the sort appearing in Eq. (8). Standard Regge
lore mould suggest that 4E, falls off roughly like

At present this would be attributed to a sin-
gularity in c„' at n~ -&, something for which me
have no natural explanation here. If this pole is
present, we can predict the q' dependence of bE, .
&E, is controlled by the value of the nonsinglet +„'

continued to n= -&. It turns out that a„', which is
positive for positive integer n, becomes negative
for n = -&. Hence the coefficient of ~ ' grows
with a power of log(q'/p'):

&&,(tu, q')- constant&«o '~' ln —, , c&0.

The parameters a and b in Eq. (8) and c in Eq. (11}
are determined by the behavior of a„and a„'. If the
strong gauge group is taken to be SU(3) with three
quark triplets, ' one finds

Moments of the weak structure functions E,"''
are determined by the same operators occurring
in the discussion of electroproduction. Therefore,
the leading q' dependence of a given moment is the
same for analogous structure functions. Further-
more, each moment is proportional to the same
hadronic matrix element of the dominant spin-
{n+3) operator. Since scattering off a given target
includes singlet contributions, we predict that the
large-u behavior, also in its q' dependence, is
identical for all such processes. For any target t,
me find, as co-~,

The n-dependent factor is regular at n = -1, so for
large q' and for e- ~, the tmo structure functions
have the same cu behavior:

E~ ((u, q~) lnq
const x

E3(+p q ) a

As we have noted several times, the leading be-
havior at large &u is governed by the SU(3) singlet

A similar result is conventionally said to follow
from the assumption of Pomeron dominance of the
structure functions. '
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Recently it has been reported in a photoproduction experiment that the ratio of @+in is high in the
target fragmentation region, yielding a value of 10 near x = —1. The presence of this backward peak
has been confirmed in mp and pp experiments. We explain this result by applying the triple-Regge
formalism for n+ and m production.

Single-particle inclusive distributions have been
extensively studied with different beam and target
particles. Recently, a study has been published
on m inclusive production in a photoproduction ex-
periment on deuterium. ' From a comparison with
the results of the SLAC-Berkeley-Tufts collabora-
tion, ' the ratio of s'/v inclusive production was
calculated as a function of the Feynman variable
z (as described in Ref. I). It is experimentally ob-
served that this ratio is high in the target-frag-
mentation region, reaching a value of 10 for -1.0
&x& -0.8; it drops off sharply at x= -0.5, reach-
ing a value of unity in the pionization region (x-0).
The data available for w'p (Ref. 3) and pp (Ref. 4)
experiments seem to support the presence of this

backward peak.
In this note we show that the observed high s'/s

ratio in the target-fragmentation region can be
understood within the framework of the triple-
Regge formalism. Consider the reactions

yP - m' + anything.

For the fragmentation of the targets we can de-
scribe these reactions according to the triple-
Regge diagrams shown in Figs. 1(a), 1(b), where
P stands for Pomeron and the e(t) are the ex-
changed Regge trajectories. For m production we
can exchange either the neutron (Ã) or the n, tra-
jectory. For m production only the &" trajec-
tory is allowed.


