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Upper and lower bounds for weighted integrals of 2v, = o;„, (w p) + 0„,(7t p) at pion laboratory
energies ~ & 60 GeV are derived in terms of available experimental data and assumed bounds
on the phase of 2; ((' '), the + crossing-symmetric forward scattering amplitude above 20 GeV.
The bounded integrale are of the fortu JP o, (c ')K(& )dc with 60 Gev ~hft &M, and K(cu)- c

(1 &y &1.72) as (' . Our analysis also gives an upper bound on 6&, the minimum of the
phase of T, (~ &60 GeV).

In anticipation of future experiments at NAL,
there has been renewed interest in finding and

testing bounds on high-energy cross sections which
follow from axiomatic field theory or, more spe-
cifically, from forward dispersion relations.

Pham and Truong"' (PT) have recently given up-
per bounds on the sum of o„,(v'P) and a„,(v P)
[=—2o,(to)] for pion laboratory energies to greater
than 60 QeV. Their bounds are of the form

dtoo, (to)K(to) & II, (1}
Ng

where M&M„and [M„M] is any energy interval
above 60 GeV. The equality in (1) holds for M,
=60 QeV, M-~. R is calculated from total m'P

cross-section data up to 60 QeV' and data' on
ReT, (to), the real part of the forward crossing-
symmetric mP amplitude, in the range 8-20 QeV.
The function K(to) is positive and has the expansion

K(to) =(A/(o'}[I+(to/to)'+. ], (2)

where A & 0, and co is less than or equal to v„' the
highest energy (20 GeV) at which ReT,(co) data are
available. If cr, (to} satisfies the high-energy Frois-
sart-Martin bound, ' ' cr,(to) & const x In'(to/too), the
integral in (1) remains well defined if K(to)- to ~

(y») times a logarithmic factor. The work of PT
then naturally prompts one to investigate the possi-
bility of finding bounds similar to (1) with K func-
tions which fall off more slowly than I/&o' with in-
creasing ~. In this note, we use elementary ma-
nipulations of forward dispersion relations to show
that such bounds can indeed be found, provided one

specifies bounds on the phase of T, for x& e, =20
Qe V.

Although we will only derive a particular family
of bounds, it will be evident that the techniques
involved may be used to derive a variety of other
bounds for mP and other scattering amplitudes
(provided one assumes the validity of forward dis-
pe rsion relations).

We normalize T,(v) so that the optical theorem
has the form

ImT, (~) = ((o' —p') "'o,(to),

T(to) = T,(to) —2(u, 'f '/((u, ' —to2), (4)

with to, = p, '/2M (M =nucleon mass) and f'/4v
= 0.077 ~ 0.003."

Now consider the amplitude"

(~+) )'[T(~) T() ) -f—(~' —) ')"'o(( )1
f(to) =

where 0& P& 1 and (u+ p) is a real analytic func-
tion with a branch cut extending along the real
axis from ~ =-p to (d =-~. With the Froissart-
Martin bound on T(co),"t(to- ~) =0. Thus, t(u)
satisfies an unsubtracted dispersion relation. For
x real and less than —p, , the dispersion relation
may be easily cast into the form

where p, is the pion mass. In order to simplify the
appearance of the ensuing analysis, we will work
with the pole-free amplitude

(to+tt) [ReT(u) —T()j}] 1P "d, ImT(&o'} —(to" —)t')"'cr(p) (to'+)t) (cu' —p)
CtP —JL( m (d

1 . " to'(&u' —p, )a ReT(u&'} —T(g}
(d + Ca)

After letting to- -p, [in which case the left-hand side of (6) vanishes] and using the conventional dispersion
relation
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ReT((u) —T(p) = ((u' —)(,')(2/v) p
)
" (u'd(u' ImT((u')

(7)
(d —p (d —4P

to evaluate ReT((u) in the interval l(, & (u«u„we may write (8) as

K((u, (u„P) + d(u» sin[5((u) —vP]~ T((u) ~

("d(uimT((u) "
((u —p)8 '

JN 4P —P. (d

d(u» u, K((u, (u„p)+ d(u» [cosvp((u —g ) o(p) —sinvpT(p)]
o(~) " (~ —~)' '

2 2 1/2

Id' (~ ~)8-1
+ d(u» sinvp[ReT((u) —T(l(, ) J

4P —p

d(u, »(2 [K((u, (u„P) + 8((u, —(u) cosvP((u —((() '],[o((u) —o( p. )] B-z (8)
((um ~2)l/2

K((u, (u„P) = ((u + l(, )
~ '

2{8 ld y ((u) l()8 1

+—sinFP P

8(x&0) =1, e(x&0) =0,

(S)

(10)

and 5((u} is the phase of T((u). Since ImT((u) &0,
we may consider 5((u) to be the interval (0, v) ra-
dians. It is assumed that experimental data on

ReT((u) are available in the interval ((u„(u, } and
that total cross-section data are available for
cu&N, with N& e„N» co,.

In deriving bounds, it is important that K((u& N,
(u„p)&0. By neglecting l(, in (S) and setting
K(N, (u„P) &0, we obtain the approximate condi-
tion for this to be true,

P v, '
P ~v' sinmP ~v

where

(()))=J & ((( &, )))/( ' —w')"*

ft is the right-hand side of (8) multiplied by I '(P),
and P is a value of P in the interval (5,/v, 5,/w).
For cr,((u&N) =const =o, the left-hand sides of (12)
would have the value o. The first bound in (12) ob-
viously remains valid if the integration interval
(N, ~} is replaced by the finite one (M„M) with

M&M, & N.

A(P} is plotted in Fig. 1. In calculating R(P), we
have used the total cross-section data of Ref. 3
and data on ReT, (8«u& 20 QeV} (obtained from

80—

For N=60 GeV, ru, =8 GeV, and rv2 =20 GeV, we

find K(N, (u„P)&0 for P&0.28.
We now assume that the phase 5((u& (u, } is in the

interval (5„5,}, with 5,«5, . On the left-hand side
of (8}, the integrand of the first integral is posi-
tive for P&0.28, and that of the second is positive
for P& 5,/v and negative for P& 5,/v. The second
integral must therefore vanish for at least one val-
ue of P in the interval (5,/v, 5,/v). Thus we have
the following bounds and equality:

I '()l) I dw(((, „))lo,( )I( ' —IP)'" )(,

0.28& P& 5,/v;
(12)
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FIG. 1. Numerical evaluation of R(P) [=—right-hand
side of Eq. (8)&I ~(p), where I(p) is defined hy Eq. (13)],
with N =60 GeV, ~, =8 GeV, and ~, =20 GeV.



B. CRA VER AND A. TUBIS

the Coulomb interference measurements of Foley
et al. ' combined with total cross-section data).
The estimated uncertainty in I)!(P}is about 4/o 1f
we assume, as do PT, that the errors in ReT, (u))

are purely statistical. In preparing the plot of
R(P) we have used rational-number values for i},
in which case K(u), u)„ P) can be expressed ana-
lytically. "

Since E(&u, u)„P) fails off as u)8 ' for large u),

the bounded integrals in (12) are more sensitive
to the very-high-energy cross sections than are
those of PT. However, the PT bounds are tighter
than ours since they become equalities as My
M- ~.

The essential structure of our bounds is easily
seen if we use the approximations (u)' —p, ')"'= u)

and

8-

mP
(14)

which are very good for e& N =60 QeV and e, =8
GeV. The first bound of (12) then becomes effec-
tively

sin% p ~(d

The result (17) shows explicitly that one cannot
generally make assumptions about 0, and 6 inde-
pendently. If, for example, we follow Jackson~
and assume (for u)&N) that a,(F) =a+&)+c$', then,
neglecting T(-~), we have from (17)

ReT(u))
ImT(u))

= cot5(u))

b+2cE
2 a+A(+c$''

p becomes positive and hence 5(u)}& v/2 beyond a
certain energy, in agreement with the general the-
orem of Khuri and Kinoshita. " Thus, if the above
form for a, (u)& N) were used in (12), 5, would have
to be &v/2.

One strategy for applying (12) is to assume a
form for o, with parameters constrained to give,
according to (17), a given value of 5,. If this is
done with o,($) =a+b$+c$-', we find

cot5, = vc(4ac —b') "' .

sinmP

gP N
x 1 —2(l —P) ~ &A(P}.

(15)

For comparison purposes, we note that the loose
version of the PT bound (Eq. (9) of Ref. 1] corre-
sponds to setting the square brackets in (15) equal
to unity and A(P) =22.2+1.2 mb.

Unfortunately, the practical application of the
bounds in (12}is complicated by the strong correla-
tion between 5(u» u), ) and a,(a) & ~,). A simple der-
ivation of an approximate formal connection be-
tween these quantities has recently been given. "
We write the ordinary dispersion relation (7) in
terms of q =(u)' —p')'" and make the substitutions

q/q, =e', q'/q, =e~'", T(q=e') =T(E}, etc. and

find

However, if we set qo =(X2 —p )
/ Ã=60 GeV

and a =v(60 GeV) =23.7s0.4 mb, the exact form
of the PT bound gives a unique value for b. For
the cases we have investigated, 0& cot6, & 0.2,
these values of b are all within the bounds implied
by the first inequality of (12). For more general
forms of a, (u) & 60 GeV}, (12} should give con-
straints beyond those implied by the PT bounds.

%hen experimental data on v, (~& 60 GeV) be-
come available, we may use the analysis leading
to (12}to obtain an upper bound on 5,. Let P,
(&0.28) be such that

(16)

'I d
=tan ——a (().2dg

(17)

Since a,($) is limited by the Froissart-Martin
bound, 0,& const~ 8', for large F„ the integral in
(16) converges rapidly and we may make a Taylor
expansion of a,((+r}) about q =0. Thus

Re(T($}—T(-~)} 1 ~ "
dq q" d

qoe' v ~ „sinhq n! d$"
n(odd }

md 1 md
+ + ~ ~ 0 g ($)

2dk, 3 2dg

Then 5, cannot be greater than mP, . As a simple
illustration of this bound, suppose that o,(u)»)
=22 mb and hence exactly satisfies the PT bound. '
Then, from Fig. 1, we see that 5,&0.525v. [A di-
rect evaluation of the dispersion relation (7) for
this case gives 5(u)& N) monotonically decreasing
to v/2 as u)- ~.]

In this paper, we have derived bounds on the
weighted integrals of 2o, =o„,(v'P)+a„, (v P) at
pion laboratory energies cu & 60 QeV. These bounds
are more sensitive to the very-high-energy cross-
section behavior than are previously derived
bounds. " Along with these other bounds they may
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be used directly to test the consistency of m'P data
with forward dispersion relations and to constrain
the parameters in theoretical models of high-ener-
gy scattering amplitudes.
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the subject matter of this paper with Professor
L. A. P. Balkzs and Professor M. Sugawara.
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The large-co behavior of deep-inelastic structure functions, e.g. , F,(co, q'), is studied in the framework

of asymptotically free field theories, On the basis of certain uniformity assumptions we predict an

unbounded growth with eo: slower than any power of co but faster than any power of loge.

The discovery that non-Abelian gauge theories
are asymptotically free' has attracted a great deal
of interest, especially in connection with the
search for a field-theoretic explanation of Bjorken
scaling. In fact, theories of this class do not quite
scale, but they come close in a sense that we shall
presently recall. Further development of the sub-
ject hinges on the observation of departures from
scaling. Does scaling break down in the ways that
are characteristic of asymptotically free theories'
%hat is most sharply characteristic of these theo-
ries is the large-q' behavior of the moments of

deep-inelastic structure functions. But it is also
natural to consider the implications for the struc-
ture functions themselves. Discussion along these
lines has been initiated in several recent publica-
tions, which deal especially with the threshold re-
gion, id ~ 1.' Here we want to focus on the behav-
ior in the limit of large co.'

For definiteness, let us start with the structure
function F,(~, q') of deep-inelastic electron scat-
tering, where q' is minus the invariant momen-
turn transfer squared and «& =2m@/q' is the Bjorken
scaling variable. The moments of the structure


