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We study the behavior of current commutators in the vacuum within the quark-gluon theory of strong
interactions. Especially, the problem of SU; X SU, symmetry breaking is considered. We derive
spectral-function sum rules involving the bare quark masses. Applications to vector-meson dominance,

K | decay, and e *e ~ annihilation are discussed.

I. INTRODUCTION

The indication from inelastic electron and neu-
trino scattering experiments that scaling may be
exactly valid has motivated the extension of cur-
rent algebra to the light cone in the form of light-
cone current algebra.! From a relativistic quark-
gluon field-theory model one abstracts algebraic
results, postulating their exact validity for the
real world of hadrons. The abstraction of light-
cone commutators differs from that for equal-
time commutators in not being true in renormal-
ized perturbation theory. It would be true only if
there were an effective cutoff in transverse mo-
mentum.

One may envisage a situation in nature where
the interaction is soft at high frequencies—where
in particular transverse momenta are cut off —
and the light-cone algebra of physical currents is
isomorphic to the corresponding algebra in free
quark theory. At the same time the interaction
should be sufficiently strong at low frequencies
(long distances) to give permanent binding of
quarks and gluons.

As has become apparent in the last few years,
the pattern of SU,x SU, symmetry breaking in na-
ture looks as in quark-vector-gluon theory, where
the symmetry is broken by a bare quark mass
term 9.2 The current divergences in particular
look like (pseudo) scalar quark densities, multi-
plied by the bare quark masses.

Hence it seems natural to generalize the light-
cone algebra of currents to scalar, pseudoscalar,
and tensor densities. The absolute magnitude of
the bare-quark masses then enters as a finite
measurable entity within the algebraic framework.
It appears, for example, as a coefficient in the
leading singularity of a commutator involving two
current divergences.!

It is expected that the bare quark masses are
rather small (between ten and a few hundred MeV).3
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Of course, these masses are merely algebraic
entities and have nothing to do with the masses of
eventually existing real quarks.

It should be noted that the generalization of light-
cone current algebra to current divergences is a
very strong assumption. As one can easily see,
it amounts to specific assumptions about nonlead-
ing singularities in current commutators (the lead-
ing light-cone singularity is always conserved).

In this paper we concentrate on current products
(commutators) in the hadronic vacuum; in other
words, we study properties of the c-number part
of the current commutator. The high-energy be-
havior of the latter is not fixed by current or light-
cone algebra (connected part). However, there is
an indication from the magnitude of the 7°—2y
decay that the leading singularity of the c-number
part has the same form and the same magnitude
as in free quark theory.*:s

We assume that one can generalize the abstrac-
tions from the quark-gluon model to disconnected
parts of commutators involving current diver-
gences. Furthermore, we conjecture that not only
the leading singularity of a current commutator
in the vacuum is given by free quark theory, but
also the next to leading singularity, in which the
bare quark masses appear as coefficients.

This assumption is definitely wrong in pertur-
bation theory, where it is spoiled by logarithmic
corrections. However, it can be proved to be
correct if we neglect the gluon propagation and
treat the gluon in the tree approximation. We
postulate that this assumption is also true in na-
ture, where the interaction is supposed to be soft
at high frequencies and where the transverse mo-
menta are bounded.®

Using those assumptions we can determine the
detailed high-energy behavior of the current spec-
tral functions. In particular it is shown that the
e*e~-annihilation cross section approaches its
asymptotic behavior const/s faster than const/s?.
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Specific sum rules for the spectral functions are
obtained. Especially, we show that both Weinberg
sum rules must be modified. However, one re-
covers Weinberg’s original results if one assumes
that the modified sum rules can be saturated by
the lowest states.

We derive superconvergence relations for cur-
rent spectral functions which involve, besides the
physical spectral functions, the spectral functions
as given by free quark theory. It is suggested
that those relations can also be saturated by the
lowest states—this amounts to a generalization of
duality following the line suggested recently.”:®
In particular it is shown that the saturation of the
sum rule for the isovector spectral function with
the p state alone leads to a consistent picture. In-
teresting consequences for the scalar spectral
function of the axial-vector current are discussed.

We show further how the squares of the bare
quark masses determine a sum rule for the e*e~-
annihilation cross section. The sum rule puts
strong restrictions on the high-energy behavior of
the latter, since m2 must be positive.

Saturation of a corresponding superconvergence
relation by the lowest-lying states suggests that
the asymptotic region for e*e~ annihilation is
reached at about Vs ~1.3 GeV:

g(e*e~—hadrons) _
GRS ~2(Vs >1.3 GeV), (1.1)

provided the electromagnetic current is a pure
SU, octet.

According to the present experimental data, R(s)
seems to rise to rather large values.®'® Qur anal-
ysis suggests that this is not due to a late onset
of the asymptotic region. Within our model the
rise of R can be explained only by the introduction
of new hadronic degrees of freedom (charm, color
excitation, etc.), or by the presence of new direct
quark-lepton interactions without an intermediate
photon.*!

I
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In this expression, z stands for x —y, 2%=2% - i€z’
and

chﬂ =ao¢ BB "'aBBct"' ig[Bou BB] ’
, (2.3)

1
E(x,y)=T, exp {- ig f drz®B, [(1 -\ x+ )\y]} .
[}
(T means the ordering of the exponential.) The

terms neglected in (2.2) are of order In(z%) and
zMzv/2%.

g

I1. LIGHT -CONE SINGULARITIES OF CURRENT
PRODUCTS IN THE HADRONIC VACUUM

We abstract the singularity structure of current
commutators from a relativistic quark-gluon mod-
el with quark statistics.?*’* The quarks come in
three “colors” and transform like (3, 3) under SU,
X SUSPT, We assume that the interaction is medi-
ated by a color octet Yang-Mills vector gluon
which is neutral with respect to SU,. The equation
of motion for the quark field is written as

-iyHo, - igB,(x)]q(x)+ Mq(x) =0, (2.1)
where

Bl‘(x) = A'i(:olor Blu(x)

is the gluon field matrix and 9 represents the
quark mass matrix:

SU, is broken only by the quark mass difference
m, —ms, whereas color symmetry is supposed to
be exactly conserved. Piysical states, currents,
and S-matrix elements are taken to be color sin-
glets such that neither quarks nor gluons have phys-
ical particles in their channels.

We postulate that the gluon field is sufficiently
smooth at high frequencies in order not to disturb
the free-quark light-cone singularities. More
precisely, we assume that loops involving virtual
gluons are strongly suppressed by the transverse
momentum cutoff in such a way that these loops
have no effect on the leading singularities of com-
mutators of currents or their divergences. This
amounts to treating the gluons as external fields
for which the short-distance singularity of the
quark two-point function is easily worked out:

y“nyﬁcae>+---} E(x,p)++2+ . (2.2)

—

In the expansion (2.2) the bare quark masses
my, (g ~u, d, s, respectively) are finite, real param-
eters. We assume that there is no u, term in the
strong Hamiltonian, which amounts to m, = m, (this
equality is, of course, spoiled after including
weak and electromagnetic interactions). SU, and
SU, X SU, breaking are described by the parameter
f =ms/m,. Exact SU,; requires f =1. In reality f
is either approximately 1 (“weak PCAC”) or very
large (~25, strong PCAC).
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Using the assumptions outlined above we find for
current products in the vacuum

(O1F, ) Fol0)10) = =3,0, (544 24 1)

8A C
o (S )

X
and (2.4)
5 Ay By
<0IF “(X)F u(o)]())‘_a a x4+x2 +°
84 C,
cen (B0 G
where
— 1
Ay =Ay= g3 0y,
- 3 A A - =
BU_Blj_lewtitr(EL 2 _21'*’(11])) )

Analogously, one obtains for the current diver-
gences

¥ Fiu(x)— i q(x) [ 3 AZ ]q(x)"’

*F3,(x)=“iq(x) fm '( q(x)”,

the expansions

(012" Fy,(3) 0V, (01 0=~ 8 Sig Bz ..

and (2.7

(1o F1,(0) 0 F3,0)10=-8 S4t4 Dt

where

3 A A
D‘j=—4ﬂ—4tr<[?',|: _21,3“]] 3Tl3> N

pue- el ) ).
Obviously, the coefficients D;; must by symme-
tric in the indices ¢,j. This symmetry is not
manifest in (2.8), but may easily be checked by
direct inspection.

We would like to emphasize that relations (2.6)-
(2.8) are not supposed to work for the divergence of
the axial-vector baryon current ¢,j =0). The latter
receives an additional anomalous contribution in-

volving the square of the gluon field strength which
would spoil the ansatz (2.7).1

We note that all our results can be generalized
to the case where charm degrees of freedom are
present; e.g., one may add a fourth quark «’ of
charge %. Here one starts with the group SU,

X SUgelr - and SU, is broken strongly so that the
charmed partners of the known hadrons are shift-
ed to higher energy and are not identified yet.

We also could allow a generalization to the case,
where SUj gets excited by strong, weak, and elec-
tromagnetic interactions, as, for example, in the
Han-Nambu model.'* There the electromagnetic
current has a colored piece:

1

. 1
]uzFﬁ;.l),‘_ 7?3_. F(“&m)+ F(ul'a)+7§' F(ul'm'

(2.9)

Of course, in the latter case one has to give up
the singlet restriction for physical states; color
gets excited as a physical degree of freedom.

We emphasize that all these generalizations do
not change, but only enlarge relations (2.4)—-(2.8).
They give the same singularity structure as the
usual quark model for products of SU,XSU, cur-
rents.

III. CONSEQUENCES FOR CURRENT
SPECTRAL FUNCTIONS

We define the spectral functions for vector and
axial-vector currents as follows:

-2% Jaxet* (0l F 4 (x) Fy,(0)10)
=0(9,) [, 9y =8 4u$)Pis(8) +4,4,0%,(s)],
o Jax el ol Py

=0(@)(9,9, -8, Pi;(8)+ q,a,0%(s)],
s=q%, (3.1)

F3,(0)10)

where

describes the spin-1 intermediate states,

o
L

'OI

po
/ describes the spin-0 intermediate states.
50

(Note: p°=0 for conserved currents.) The expan-
sions (2.4) imply the following properties of the
spectral functions:

(a) As s = one finds
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Pfj""z(Au‘gs‘u"“ ) ,

(3.2)
and analogously for the spectral functions associ-
ated with the axial-vector currents. Note that the
combination p°+p! has no 1/s term as s —« [such
a term would correspond to a noncanonical light-
cone singularity not present in the ansatz (2.4)].

(b) The coefficients B;; and B,; are not related
to the asymptotic behavior of the spectral func-
tions. Instead they determine the integrals

f ds (p};+ pi;—m2Ay)=-412B,,,
0 (3.3)

[ ds (B3, Bl -2 A ) = —412B,,
0

which are convergent on account of (3.2).

(c) A further piece of information may be
squeezed out of our soft gluon model. It is clear
that the difference

A, =01 F;,(x) F;,(0)|0) = (0| F3,(x) F35,(0)|0)
(3.4)

is smoother at the origin than the individual
terms. The corresponding expansion looks qual-
itatively as follows:
2 4 2 2!
A)~2 e GY | oy, (3.5)

x x
In fact, also the term involving (G? drops out,
since for m =0 the terms proportional to 1/x2 in
the vector and axial-vector two-point functions
coincide exactly. Furthermore, the free quark
model (g =0) shows that the terms involving m?
and m* are proportional to g,,. Therefore

Auu(x) Nguu(% + ':':_2) +0(1). (3.6)

This not only implies that the combination p° + p*
—p°-p! vanishes for s =« faster than 1/s2, but
in addition demands that the two sum rules

Sas(o3, + o3, -5, -4, =0, (3.

deS(P?j'*P%j—i_)?j'ljﬁj):O (3.8)

be satisfied. (The first integral is the coefficient
of a singularity in 4, proportional to x,,x,,/xs;
the second corresponds to x ux,,/x“.) Note that
the first sum rule already follows from (3.3). Fin
ally, since the leading singularities up to and in-
cluding x~2 of the term proportional to g uv are the
same as for free quarks, we have the sum rule

[as sty -p, -0l a3 =0, (3.9)

where o}; and Gi; denote the spectral functions of
the free quark model which are explicitly deter-
mined by the bare quark masses m, and m; .

IV. SATURATION OF THE SUM RULES

The two sum rules (3.7) and (3.8) derived in the
last section on the basis of the soft gluon model
are generalizations of Weinberg’s sum rules.'®
We focus on the isovector currents for which iso-
spin symmetry implies

pi;=0, B%;=8;;p%s),

pilj = 5ijp(3); 5&1 =0;; py(s),

and the sum rules (3.7) and (3.8) therefore become

fds(p,—ﬁo—ﬁ,>=o, (4.1)

J'ds s(py =B, = B,) =0. (4.2)

In the SU, xSU, limit (m,~ 0), conservation of the
axial-vector current requires!’®
Dols) — 6(s)F,? (4.3)
m,~>0

and we therefore get in the SU, XSU, limit

jds(pl -6)=F.*, f dss(p,=p,)=0, (4.4)

which is the form originally proposed by Weinberg
within the framework of field algebra. In the
framework of our assumptions the difference p,
-P,, however, behaves like m,?/s as s~ and
these sum rules therefore diverge. The tail is ab-
sent only in the SU, xSU, limit m,=0. [Note also
that the sum rule (3.9) reduces to (4.4) in the limit
my,~ 0.17]

Clearly the interchange of the integrals with the
limit m ,—~ 0 is not legitimate and we therefore pre-
fer to work with the generalized forms (4.1) and
(4.2). In our scheme the quantity p, - p, - p, tends
to zero more rapidly than s~ If we assume, in
addition, that the sum rules (4.1) and (4.2) are
saturated by the lowest-lying states p,, 7, and A,
we get the relations

F,*-F,* —FAlzzo,

4.5
mpanz-m,,zF,,"’-mAleAIZ'xO. (4.5)

If we follow Weinberg and use the “experimental”
result
F,2~2F., (4.6)

we obtain the familiar relation
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mu=V2m,. (4.7)

Thus the assumption that the sum rules (4.1) and
(4.2) are saturated by the lowest-lying states al-
lows us to recover Weinberg’s original results.
Note, however, thatthe existence of the A, is ques-
tionable. Thus the result (4.7) cannot be inter-
preted as a strong justification that our saturation
assumption works. Nevertheless, it seems to
work to a good approximation, provided the A,
resonance exists.

Our scheme allows some more specific conclu-
sions. From the previous section one can easily
derive the following set of sum rules for the iso-
vector spectral functions:

fds(p,—01)=0, (4.8)
fds(50+51-50-a,)=0, (4.9)
fds s(p, -7,) =0, (4.10)
fdss(pl—ﬁl—cl+c71)=0, (4.11)

where ¢,,0,, 7, are the spectral functions of the
free-quark model with mass m,:

3

T,=0(s) S" , (4.12)

0, :o(s)< 1+ 2my

where

4m °

1 1/2 2
o(s)=é?§<1- ) (s —4m,*). (4.13)
(Note p,=0,=0, 0,=0,+0,.) The quantities p,, p,
+p,, s(p,-p,), and sp, therefore not only have to
behave asymptotically like the corresponding spec-
tral functions of the free quark model, but more-
over have to balance these quantities even in the
low-energy region in such a way that the integrals
(4.8)-(4.11) vanish.

It is interesting to see what happens if these
sum rules saturate not only asymptotically, but
already after the lowest-lying contributions. Con-
sider, e.g., the first sum rule which receives a
prominent contribution from the p. Suppose that
there is a mass M,, above which the spectral func-
tion p, practically coincides with the quark-model
function and below which the p provides for the

dominant contribution. In this case we get

. (4 1 .

Fp‘=f dso,(s)= o M?, (4.14)
(o]

where we have assumed that m, is much smaller

than M. This leads to M; ~1.3 GeV which appears

to be very reasonable. (Note that one obtains in

the Fermi-Dirac quark model M, ~2.3 GeV, which

is unacceptably high.)

The second sum rule will of course be saturated
at the same value of s if the previous discussion
of the difference between the two sum rules is
right. Saturating the third sum rule with the pion
we get

(4.15)

If, as is suggested by considerations concerning
the connected part® of the current commutator,
the mass m, is of order 20 MeV or less (strdong
PCAC) we get M,>2.3 GeV. Such a large value
seems at first sight to be absurd—to assume that
the pion is the only state with the quantum num-
bers of (3" F}) which contributes significantly to
the spectral function py(s) between 0 and M,>2.3
GeV certainly amounts to a very bold assumption.
The reason for this large value of the cutoff can
be understood as follows. If the mass m, is in-
deed as small as say 5 MeV, then the spectral
function o, of the free quark model is exceedingly
small. On the other hand, in the limit m, -0,
the spectral function p ,(s) must vanish except for
the contribution of the 7 at s =0. In the free quark
model the function s-0,(s) is essentially flat above
s=>10m,? but is tiny. In the real world, there is
instead a large peak at a small value of s, at
s=m,%. In order to balance this peak in the sum
rule we have to integrate the tiny quantity o,(s)
out to a very large value of s. In the formal limit
m, - 0 considerations involving the connected part
of current commutators suggest that the ratio

m 2

—I— =M, (M, some specific mass)

(4.16)
mu

has to be kept fixed in order to get a simple, con-
sistent picture.> The cutoff is therefore inversely
proportional to m,: M,~(27/¥3) F M,/m,. In the
limit m, - O the pion dominates the spectral func-
tion py(s) out to larger and larger values of s—only
at very high energies does the asymptotic tail
po(s)~m,?/s show up.

The same analysis can of course he applied to
the spectral functions associated with other SU,
quantum numbers. For example, the sum rule
analogous to (4.10) for the spectral function with
the quantum numbers of the n leads to
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mnzFﬂzu%’z—-Mszm,z, (4.17)
provided we can ngglect the strange quark mass
in calculating f°”3 dso,(s) which is justified only
for m2<<M,®.'8

Taking F,=~F, and combining (4.15) and (4.17)
one finds in the case of strong PCAC (m <<m,,
mi~Mym,, 2miE~Mym,, 2m*~4Mm,)

f=Bs

1
Ma ~ W_ 2 m,
Hence the cutoff mass M, is expected.to be smaller
than M, .
Applying the sum rule (4.10) to the spectral
functions with the quantum numbers of the k(0*)
and the K(07), we get

which implies the upper bound
m 2F2<m2F.?, (4.18)

where the equality sign is valid in the SU,XSU,
limit.

It is interesting to compare this result with the
estimates on m *F ,? derived from K,; decay.
These estimates are carried out in the framework
of the assumption that the integral

A(0) = fds sp(s) (4.19)

converges. One can obtain information on A(0)
from the assumed SU,XSU, transformation prop-
erties of this quantity.'® In our framework A(0)

is infinite; we nevertheless expect the contribution
of the Kr intermediate states to A(0) to converge—
this contribution may be expressed in terms of
the scalar K;; form factor which we expect to tend
to zero as ¢t —-=.® In the spirit of the above sat-
uration scheme we assume that the K7 interme-
diate states provide the dominant contribution to
the integral A(0) below the cutoff s =M,>. What

we denoted by m °F 2 above should therefore be
identified with

m,fF,f:_/o. ds spg.(s).

The recent work'® on bounds for the K,, form fac-
tors can therefore be interpreted as follows. If
one demands that

(4.20)

m 2F 2 <(myFyg-m,F ) (4.21)

then the K,; data are constrained very strongly to
essentially a straight line between #=0 and the
Callan-Treiman point ¢=m,2. Our bound (4.18) is
slightly more generous than (4.21), but the fact
that the new K,; data seem to lie essentially on a

straight line through the Callan-Treiman point
suggests that the relation (4.18) is indeed in agree-
ment with experiment.2°

V. APPLICATIONS TO e'e” ANNIHILATION

The total cross section for e¢* e~ annihilation into
hadrons is given to lowest order in electromagne-
tism by

16732
Oete~— hadrons = —S—pea(s)) (51)

where p,, is the spectral function for the electro-
magnetic current. For comparison we introduce
the cross section for the production of a massless
lepton pair of charge one

4na?
Ogte=—1+1-~ 3s (52)

and define the ratio

R(S):‘lelﬁ.:.hﬂm' (5.3)

Ooto=—syt1~

If the electromagnetic current is a pure SU, octet

. 1
]u:F3u+ﬁFsu’ Pee =P33 +5Psgs (5.4)

one finds from (2.5) and (3.2)
R—2. (5.5)

s
In the case of charm the asymptotic value of R is
4; in the case of the Han-Nambu model it is 4.

According to (3.2) the asymptotic value is ap-
proached faster than const/s:

s[R(s)-2] —0. (5.6)
§ —> o

Furthermore, one finds from (3.3) an interesting
sum rule in which the bare quark masses enter:

4]

=2(1+%>ms2. (5.7)

The most striking consequence of this sum rule
comes from the fact that the right-hand side must
be positive. This implies in particular that R(s)
cannot rise to large values like 5 or 6 and then
settle down slowly to its asymptotic value 2 from
above.

According to the present experimental data®:!°
R(s) seems to rise to rather large values. Our
analysis [in particular the sum rule (5.7)] suggests
that this is not due to a late onset of the asymptot-
ic region. Within our model the rise of R can be
explained only by the introduction of new hadronic
degrees of freedom or by the presence of new lep-
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ton-quark interactions, i.e., the e*e” pair can
produce virtual quark-antiquark pairs directly
without an intermediate photon, for example, by
the exchange of a new boson carrying both leptonic
and hadronic quantum numbers.!!

Both for strong and weak PCAC the right-hand
side of (5.7) can be estimated. As an example we
adopt the values® m =< } GeV, f~1.2 (weak PCAC),
and f ~ 25 (strong PCAC). Then we find

° 2 GeV? (weak PCAC),
L ds@2-R)= { 0.5 GeV? (strong PCAC).
Of course, for strong PCAC the integral comes
out very small.

Sum rule (5.6) can, of course, be generalized to
more extended cases. In general one finds

J:ds< qg;ks e’ —R(s)>

where e, are the formal quark charges and m, are
the formal bare quark masses.?!

In the Han-Nambu case we can estimate the sum
rule as follows, provided there is no substantial
SU¢ breaking:

=6 ). ¢’m,?, (5.8)

quarks

f ds(4-R)=6(2m,2 +mg® +m,?)
o

=6<1+%>m,2

1.5 GeV? (strong PCAC),
5 GeV? (weak PCAC).

(5.9)

It is interesting to apply the sum rules (4.8) to
e’e” annihilation. We define an interpolating func-
tion R™ as given by free quark theory:

R(s)= Y 0(s —4m,e,*

quarks
- 2\1/2
2 43"“) . (5.10)

s+2m? (
x
s

This function fulfills, of course, also the sum
rules (5.7) or (5.8). Hence one has the supercon-
vergence relation

fwds[R(s)~R"“(s)]=0. (5.11)

HEINRICH LEUTWYLER

As in Sec. IV, we now suppose that the integral
(5.11) can be saturated already by the lowest-lying
vector-meson states. This assumption is evidently
related to the generalization of duality as proposed
recently.”"® Rapid saturation of the sum rule (5.11)
implies that there is a relatively low cutoff M?,
above which R(s) practically coincides with R™(s)
and one has

M2
f ds[R(s)=R™(s)]~0. (5.12)

0

Only % of the total e*e~ annihilation cross sec-
tion is due to strange quark degrees of freedom;
hence it should be a good approximation to take as
a cutoff the same value as found for the isovector
spectral functions in Sec. IV:

M?*=~ (1.3 GeV),
(56.13)

R(s)~R™(s)~2 (Vs >1.3 GeV).

Of course, these considerations make sense only
if the electric charge is a pure SU, octet.

If new degrees of freedom get excited by electro-
magnetism (charm, color, etc.), the saturation of
(5.11) by low-lying vector mesons can only be valid
for the part of R which is due to ordinary SU, de-
grees of freedom. The sum rule (5.11) for the
non-SU, part of R can certainly not be saturated by
low-lying ordinary vector-meson states. Hence,
if new degrees of freedom get excited, a separation
of R into contributions from ordinary SU, degrees
of freedom and from charm, color, etc., would be
necessary to study the question of rapid satura-
tion.

Note added in proof. The sum rules (3.7) and
(3.8) were found previously by Morita.?? We should
like to thank him for bringing his paper to our at-
tention.
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