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The coherent-state representation is used to discuss the production of isovector pions. Techniques are

developed for constnjctmg states of de6nite isotopic spin and 6 parity, and a variety of models are

discussed. Particular attention is paid to con'elations between charged and neutral pions which appear
to play an important role in the understanding of the underlying dynamics.

I. INTRODUCTION

The large number of pions produced in high-
energy hadron-hadron collisions suggests that it
is useful to study the scattering operator and the
pion field density operator in the coherent-state
representation. %'e have previously used this rep-
resentation to discuss models for the production
of spinless, isoscalar pions. ' In that work me
also pointed out hom our ideas could be general-
ized to include internal symmetries. Here me
develop in detail the techniques which are neces-
sary to discuss the production of isovector pions.
We consider a variety of models and obtain ex-
pressions for their generating functions. Partic-
ular attention is paid to correlations between
charged and neutral pions, which play an impor-
tant role in determining the isospin structure of
the under lying dynamics.

While me do not expect that the pion field pro-
duced in a high-energy collision mill be mell rep-
resented by a, single coherent state, me have sug-
gested in I that coherent states can provide a use-
ful basis for expanding the operators of interest.
In fact, using these states me have been able to
construct simple parameterizations for the scat-
tering operator and the pion field density operator
which describe a wide class of pion distributions
ranging from Poisson to Gaussian. "

In order to construct coherent states of physical
pions, it is convenient to introduce creation and
annihilation operators which axe vectors in isospin
space. The creation operators mill be written in
the form

a'(q) =(a', (q), at(q), a', (q)) .
The four-momentum q mill be written in terms of
the rapidity y and the transverse momentum q~,
and the creation and annihilation operators will
be normalized so that their commutation relations
take on the Lorentz-invariant form

[«(y, q, ), a~&(y', q,')] =6;~ 6(y —y') 6'(q. Hi&.

I

!II&=exp —g dq ill(q)l' exp
L

qll(q) a'(q)~ I0&.

(5)

Here l0& is the vacuum state defined by a(q)l0) =0,
and dq =-dyd'q is the invariant phase-space vol-
ume element. The simple coherent state given
by Eq. (5) is not an eigenstate of total charge, to-
tal isotopic spin, or 6 parity. However, states
mith definite internal quantum numbers can be
generated from the coherent states in a variety
of mays.

Let us first consider making a direct projection
on a single coherent state. We denote by II(a, t), y)
the unitary operator which produces a rotation in
isospin space through the Euler angles z, P, and

y . Then,

U(u, P, I)lll&=III '(a fI y)ll& (6)

where II(n, P, y) is the usual three-dimensional
rotation matrix. The projection onto the state of
total isotopic spin I and z component M is given
by

in;s, M)=g f~a ,„a (o, .)„', ,

x lII -'(o, P, y) II &,

where D'(o. , P, y) is the Wigner rotation matrix
and d Q„sz

-=do dcosP d y. l II; I,M& is not a state
of definite Q parity, but since

GlII&=l —II&

The physical pions are created by the standard
linear combinations

a, (q) = + 2 ' '[a, (q) + ia, (q)J,
a', (q) = a', (q) .

The coherent states are by definition the eigen-
states of the annihilation operator

a(q)ill&= II(q)III &,

where the components of II(q) are arbitrary com-
plex functions of q. lII& can be written in the form
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one can always construct such states by taking
appropriate linear combinations of

~
II; I,M) and

~

—11;I,'8). One can of course employ the same
technique on a general pion state by expanding it
in the coherent-state representation.

An alternative approach, which was outlined in

I, is to use functional integration techniques to
construct superpositions of coherent states with
definite internal quantum numbers. Let us write

tion. In order to discuss the production of pions
in a state of definite isospin we again apply pro-
jection techniques. Choosing F(II) to be a scalar
functional of II, the projection of the density rna-
trix p onto the manifold with total isospin I and z

component M is given by

~ IIP(11)g&,

where J6II indicates an integral over all functional
forms for II(q) subject to a proscribed set of
boundary conditions. If the weight function P(II)
is rotationally invariant, then the isospin and G

parity of the state
~ g) are determined by the bound-

ary conditions on II. For example, if these bound-
ary conditions are invariant under rotation and
reflection then a state of zero isotopic spin and
even G parity is produced. More general states
can be generated by modifying the boundary con-
ditions.

In Sec. II we study the properties of states of
the form given in Eqs. (7) and (9). Particular
attention is given to two limiting cases: the
"global, " in which the isospins of pions over the
whole rapidity range are coupled to give a def-
inite value of J, and the "local, " in which the iso-
spins of only those pions which are close together
in rapidity space are coupled. The global state
is of the type that one would obtain in the uncor-
related-jet model. ' It is an example of a model
with long-range correlations. The local state is
similar to what one would obtain the rnultiperiph-
eral model, ~ and contains only short-range cor-
relations. '

In the models discussed in Sec. II it is assumed
that few particles other than pions are produced,
and that these other particles have little effect on
the final state of the pions. A different approach
is discussed in Sec. III. If a high-energy hadron-
hadron collision involves a large number of under-
lying degrees of freedom which couple strongly to
the pion field, then a statistical theory in which
a pion field density matrix is introduced appears
to be useful. ' Because of the overcompleteness of
the coherent states, the density matrix can always
be written in the diagonal form"

p"(II)

p= 5 II i II) (II i . (10)

Here Z is a normalization factor and F(II) is a
functional which characterizes the pion field. In
general, F(II) can be singular; however, a wide
c1.ass of possible pion distributions can be de-
scribed by a simple, nonsingular parameteriza-

Here Z» normalizes trpb„ to unity. It is possible
to extend this procedure to construct density ma-
trices which describe a phase-coherent linear
combination of several isospin manifolds.

In Sec. III we study the isospin structure of a
statistical model of pion production whose density
matrix has the form given in Eq. (11). The results
are qualitatively similar to the short-range cor-
relation models of Sec. II.

A particularly useful probe of the isospin struc-
ture of all of these models is provided by the
study of correlations among charged and neutral
pions. Two quantities for which experimental
data exist are the charge-neutral correlation mo-
ment,

f„=(n,n, ) —(n, )(n, ),
and the average number of m, 's produced for a giv-
en number of charged pions, (n, (n, )). We shall
concentrate our attention on them. In all models
that we have studied and in any model with only
short-range correlations, (n, (n, )) can be written
in the form

(n, (n, )) An, + BY+C+ 0(n,/y),

where A. , B, and C approach constants indepen-
dent of n, at high energies. P is the rapidity dif-
ference between the incident particles, 1'= lns.
It will be helpful to keep in mind that experirnen-
tally f„andA are both positive. A is increasing
at low energies, but may well be approaching a
constant limit at high energies. 8, on the other
hand, appears to be small.

II. ISOSPIN -ZERO STATES

In this section we shall consider a class of mod-
els in which the produced pions are described by
a single state vector, ~ g), of the type described
in Eqs. (7) and (9). In these models we can write
the semi-inclusive cross section for the produc-
tion of a given number of charged and neutral
pions in the form
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o(n„n, n, )/a =P (n„n, n, )

=(n !.n !n, !) '
dj)& ' ''clp„dr& ' ''dp„

xl(0la, (q, ) ~ a, (q„)a (p, ) ~ ~ a (p„)a,(r, ) ~ ~ a, (r„&l(l'&I /(&l !)&. (14)

Here o is the total cross section and n„n, denote
the number of m', m' produced. We imagine that
the ener gy-momentum-conservation 6 functions
have been evaluated in integrating over the phase
space of particles other than pions. ' These 5 func-
tions of course place constraints on the momenta
of the pions, the most important being that in the
laboratory system the rapidities of the pions are
restricted to the approximate range 0& y& Y,
where F= lns is the rapidity of the incident parti-
cle.

The quantities in which we shall be interested

can be most easily obtained from the generating
function

it(z„z, z,) = I(z„z,z,)/f(1, 1, 1),
where

(16)

Q (z„z,z,) = Q z, "+ z "-z,"()P (n „n,n, ) .

(15)

Since any pion state l(!I& can be expressed in the
form of E(I. (9) we see from E(Is. (4), (5), and
(14) that

r(*„,e )= err err'P(rr)p(rr')'exrr —
fdq ( 'I rr(rr)I' 'I "'(q)I'-"'"(q)'d'"(q)I

and the matrix Z is given by

1 1
2(z, +z ) 0 —.(z, —z )

(18)

the z axis along e, one sees from E(I. (7) that the
required state is

Itr;0)= —Jdrr Irrrr (, d, r) )

1—.(z -z, ) 0
2i

—,'(z, +z )
where

dn-„l!In&, (20)

If one neglects the production of particles other
than pions, then in P-P and rr-P collisions [()I) can
be at most a linear combination of states of iso-
spin 0, 1, and 2. In order to present our tech-
niques in the simplest possible setting we shaB
limit ourselves to the study of I = 0 states. In
this case all partial cross sections except those
with n, =n =- ~n, vanish, and one sees from Eq.
(15) that it is possible to set z, =z «z, without
loss of any information. Z then becomes a diagon-
al matrix. Although the restriction to I =0 states
does simplify the calculations, there is no real
difficulty in including states with higher values
of isospin. '

As a first example let us consider a state ob-
tained by taking the isospin-zero projection of a
single coherent state. In the uncorrelated-jet
model one expects the isospins of all pions, re-
gardless of their momenta, to be coupled to form
the total isospin. This can be accomplished by
considering coherent states with II(q) of the form

Slnp ) ~ Slnp
Pl=

~2 g, cosP, ~ 8 (21)

dqill(q) I' (22)

will grow linearly with F.
The generating function for the global model is

given by E(I, (16) with

~e A pr(*„*,)= Jdrr„. dree. e'"' (23)

With a slight amount of algebra one easily finds
that

(n)= — + f(1, 1)
8 8

Z I(1, 1)

and dO„-=d(2dcosP. We shall refer to the model
obtained from lII;0) as global. In order for this
model to have any chance of fitting the experimen-
tal data II(q) must fall off rapidly with (I' and be a
smooth function of y in the central region, 0& y & F,
going to zero for y outside this interval. As a re-
sult,

II(q) =II(q) e, (19)

where e is a unit vector independent of q. Taking

=ccoth(c) -1=c -1

=2(n, )= —,'(n, ), (24)
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= —~~ [2 &n&'+ 3 &n& -3],

(u, (n, )&
= „, I(0, 1)

~0 ~c
I(0, 1)

write

II exp
all(y) 811(y)

Bp 8$

+ V(11()) [ ~11&.

= &n& —(n, + 1) . (26)

Notice that Eqs. (25) and (26) are in disagreement
with present trends in the data which indicate that
both f„and 8&no(n, )&/Bn, are positive at high ener-
gies. ' One can generalize this model by introduc-
ing suitably weighted functional integrals over
II(q) and by including states of higher isospin.
However, it does not appear to be possible to ar-
range for s(n, (n, )&/sn, to be positive. The reason
is that in this type of model the probability of pro-
ducing n particles is sharply peaked around &n&

and is essentially independent of the ratio of
charged to neutral particles. As a result, an in-
crease in the number of charged particles always
leads to a decrease in the number of neutrals.

Let us now turn to a model which has only short-
range correlations. For simplicity we neglect
the depend nce on the transverse momenta and

Here f6 II indicates a functional integral over all
rea/ fields II(y). The reason for requiring II(y) to
be real will become apparent below. We shall
take II(y) to be free on the boundaries y =0, Y.
Since these boundary conditions are invariant un-
der rotation and reflection,

~ g& will be a state of
isospin zero and positive G parity provided the
effective potential, V, is a function of II'(y) only.
The term involving SII/Sy introduces short-range
correlations in rapidity. The utility of this para-
meterization of

~ g& arises from the fact that it is
possible to find simple forms for V(II') which de-
scribe a wide class of pion states ranging from
incoherent to highly coherent.

In order to understand the content of this state,
consider the probability amplitude for finding n
pions with rapidities y„.. . , y„and isospin indices

~ 4 ~ j

6 II II;,(y, ) ~ ~ II; (y„) exp
an err

dy c —~ —+ V(II~)+ ~IV
Bp 8$

(28)

where the factor &y~ g&
'~' has been introduced be-

cause our state is not normalized. This functional
integral is most easily performed by first finding
the energy levels of the Schrodinger equation"

1

II
——&n'+ V(II')+~ail' g, (ll) =~, $((II), (28)

where
82 82 822—

8 II, & 02 &II3

Because of the rotational invariance of the effec-
tive Hamiltonian, the g, mill be states of definite
isotopic spin. Following the techniques of Ref. 2,
one finds that

+(yi~ 'i~ lynch fn)= G&, exp(- ye&~, )k' I,', i, exp[-(y2 —yi) ~i, ] ' ' '

where

(31)

Equation (30), of course, has just the form that
one would obtain in a one-dimensional multi-Regge

model. Notice that if we had allowed II(y) to be
complex, the imaginary part of II(y) would have
given rise to trajectories with negative residues.
One sees directly from Eq. (31) that because of
our choice of free boundary conditions, no isotopic
spin is transferred to the pion field at the bound-
aries y =0, Y. Clearly, by generalizing the bound-
ary conditions one can allow for such a transfer.

As always, the generating function is given by
Eqs. (16) and (I'I). To compute it one must solve
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for the energy levels of the Hamiltonian

G, (z. z) , J, z=rr'z *r'rrb( r,rr'r; .z, z). (35)

Here e,(z, , z,}and g, (II, II';z, , z,) are the ground-
state energy level and wave function.

As a first example, take V(112) =aII2, which
gives rise to a Gaussian distribution of pions. In
this case 8 is the Hamiltonian for a pair of cou-
pled three-dimensional oscillators. After making
the change of variables

rr' =2-'"(ll ~ rr') (36)

EI = ——(V„2+3b'„,') + V(II') + V(II")4c

+ -'. (ll'+ ll")- 11 Z lib z

Working to leading power in s = e one finds

( )
exp(- [z,(z, , z,)-z,(1, 1)]V jG,2(z„z, )

CP 0 G '(1, 1)

(34)

with

(2C1 2/F)3 2 Q [(0+ 1)2 r z2]1 2

x exp(-(II;)' [(a+ —,'+ -', z, )CJ'/2j

x exp(-(II, )' [(a+ —,
' ——,

'
z, )c]'/2},

(38)

where z, =z, =z, , z, =~,. SinceB does not contain
any coupling between the charged and neutral
fields, the generating functions can be written in
product form, II(z„z,) = Q, (z,) Q, (z,). As a result,
f„=0and &33,(n, )} is independent of n, .

In order to introduce correlations between
charged and neutral pions, one must include terms
in V(II') which couple the charged and neutral com-
ponents of II. The simplest generalization of
V(II') would be to add a term of the form b(II')'.
However, since the energy levels of the anhar-
monic oscillator are not analytic functions of 6
at 5 =0, it is more convenient to consider a poten-
tial which grows less rapidly for large values of
II'. As an example, let us take

one easily finds that
3

c,(z, , z,) = —,
'

([((2+ —,'+ 2 z,}/c]'/'
1

+ [(a+ —,
' —2 z, )/c]1/2 )

and

(37)

V(112) = a II'+ b(II')' [1+d(II')']

For small values of b one can use first-order per-
turbation theory to calculate the shift in the ground
state energy from the harmonic oscillator value
given in Eg. (O'I). Taking d to be small also, one
has

zz, (z, z) bfz'rrz'rr =I( I'((ir')*(r z(3')')-' (ir-i'(r z(rr")')-'}

=5 O'IId'll')P II + 0'

=25 Q (Q( +(2z) + 2 Q ((2z (+2Q/(Q(/ + 2Qz o(/ ) (40)

where (J)2 is given in E(I. (38) and

c((' =[c(a+-2' ~ -2'z, )] '/' .
Working to leading order in Ã one then finds

f — (I)/32C)[(2-3/2 ((2+ 1)-3/2]2 Iz

and

s&&.(31.)} h, /2 3
( 1),

Bnc

X [a-3/2 -(a+ 1)-'/'
J

(41}

(42)

(43)

words the coupling between the charged and neu-
tral components of the pion field must correspond
to an attractive term in the effective Hamiltonian.

One can obviously generalize this model by con-
sidering more sophisticated forms for the effec-
tive Hamiltonian; however, our primary purpose
here is to illustrate techniques rather than to
present a finished model. As a result, we have
not attempted to make a detailed fit to the data.

Ill. THE DENSITY MATRIX
The point we wish to emphasize is the correlation
between the signs of f„and 8&32,(n, ))/832, . If one
wishes to have both be positive, as is indicated
by the data, then b must be negative. In other

In the previous section we considered models
in which the pions came off in a definite final
state, so the pion field den.".ity matrix was separ-
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able. ' %'e now consider a different class of mod-
els. In computing an inclusive or semi-inclusive
cross section for pion production one must inte-
grate over the coordinate of aD other produced
particles. If they are strongly coupled to the pion
field, then the pion density matrix will not be even
approximately separable. Under these circum-
stances a statistical approach, in which the pion
density matrix is taken to be diagonal in the coher-
ent-state representation, is likely to be most use-
ful."

The inclusive cross section for the production

0' ~

0' dp~ '

=tr( pszai', (y()" a((y. ) a(, (y, ) a;„(y.) J .

Using the density matrix given in Eq. (11), for
f =0, Eq. (44) takes the form

(44)

of n pions with rapidities y„.. . , y„and isospin
indices i„.. . , i„can be written

CT

0

g |)IIexp — E- dye+ -1 II II~ y A II Y ~
II'. S. ~ II X. ~

(45)

As in the short-range correlation models of Sec.
II, we have neglected the transverse momentum.

Constructing a generating function from the in-
clusive cross sections in the usual way leads for
large E' to the form

where J(z„z,) is given by

(47)

The matrix Z appearing in the exponential is just that previously defined in Sec. 11, Eq. (18), with z, =z
=z,. In the spherical basis, the inverse of the three-dimensional rotation matrix is

-' (1+cosP) e'~"'~' ~ e(~ z (1 —cosP) e(~~
W2

-sinP
8 cosp

sinj8
W2

I 4

—,'(1-cosP)e '~ "' e '~ ~(I+cosP)e ""'~'

Just as in Sec. II, the functional integration in Eq.
(4V) to leading order in y becomes

eH

0, r
(51)

1(*., z) = fd(),, exp[-a, (*., s„a,(, y) )'1 For f„, the parameters z, and z, are near unity.
In this case, c0 can be most simply determined
as the perturbed ground-state eigenvalue of the
zero-order Hamiltonian

As an example of this formalism, let us again
consider the harmonic oscillator model for which 1

H = ——& '+(a+1) II* II -II* Z II0 4 II (52)

drr+ dry
F(II) = dy ail+ ~ II+c

dp
(50) with the perturbation

and choose for the complex vector fieM the bound-
ary condition'

V=II~ Z(1-8 ') ll.
The ground-state energy of H0 is

(52)
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eo~ = [(a+ 1 -z~)/c]' '+ 2[(a+ 1 —z,)/c]' (54)

The shift in the ground-state energy due to V is,
in first order,

d'11~0 ('ll" Z(1-R ') ll

2
(2) zp Z p
0

[c(a+1 —z }] '/' [c(a+1 -z,)] '~'

[(a+ 1 —z,)/c]'"+ [(a+ 1 —z,)/c]'~'
(57)

z,(1 —cosP)
2[c(a+ 1 —z,)]"'

z, [2 -(I + cosP) cos(n + y) J

2[c(a+ 1 —z,)]"' (55)
d (z, , z, ) =exp[-c~"(z„z,) I']

y 3/2 (58,

All other contributions to the ground-state energy
are of higher order in the angular variables.

Combining these three contributions, the angular
integral for J reduces to

Here yp is the ground-state wave function. In view
of Eg. (49), for large I', the regions of dII z~

phase space in which the ground-state energy is
lowest will dominate. From Eq. (55) we see that
this corresponds to P's 1/I' and a'+y's I/Y. In
this region

( I z.p' 1 z,[P'+2(n+y)']
4 [c(a+1 —z,)]' ' 4 [c(a+I -z,)]'i'

(56)

Because of 8 ', which connects II, with II„ there
is also a sin'P-P' contribution in second-order
perturbation theory. This is simply calculated,
glvlQg

where H (z„z,) is independent of I'. Therefore,
it follows directly from the separability of &,"
that

8 8f p lnQ const (59
zp zc z0 — c-

where the constant is independent of V.
In order to obtain a contribution to f„which

varies linearly with P it is necessary, as in Sec.
II, to couple the components of the charged and
neutral pion fields. Using the interaction dis-
cussed in Sec. II [last part of Eq. (39)] one has
for small values of b and d a ground-state energy
shift given by

ld'Il (go~
—= —[(a+1 —z,) ' z(a+ I -z,) ' 2+ —(a+1 —zo) '+ —,'(a+1 —z, ) 'J .

1+d(II )z
(60)

The first term gives a nonseparable contribution
to the coefficient of 7 appearing in the exponential
of J'. Carrying out the differentiation of Eq. (59}
then gives

V=II~ Z[R '(n, 0, y)-R (a, P y)] 'll

Proceeding as before, one finds that the zero-
order energy is

blf„=—4, +O(const).p (61) a+1-z, '~' a+1-z, e' '

0

Just as discussed in Sec. II, in order to obtain a
positive 7 slope for f~ it is necessary to choose
b&0.

Turning next to the evaluation of (n, (n,)), one
needs the generating function for z, -1 and z, -0.
In this case, for the harmonic model, the appro-
priate unperturbed Hamiltonian is

1If, = ——&„-'+(a+1)II -II*'ZR '(a 0 y) ~ II

(62)

and the perturbation is

a+1-z, e '"'
+ c (64}

Computing to order P' involves again both first-
and second-order perturbation theory. We find

where e' =- e+ y. For small z, this can be expanded
as

~ (p)
p

~ ~ I~2a+1-z ' ' a+1 ' ' z coso. '
+2 C

C c [(a+ 1')cJ'~'

+ 2Re
Z 8C

4c'~' (a+ 1-z )'~' ("~-*."')"*) (66)

and
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gg (2) 0 c Re 0 c1 P'z z s'"'(a+ I -z ) '~'(a+I -z e"') '~'

2 c'~' (a+ I —z,)v'+(a+I —z, e'"')'t'

The P integration in the expression for J can be carried out and one obtains
27r -&/'2

J(z z ) e efeo)r d ser[c(o+13] sc cosa f(z z )

(67)

(66)

Here z(z, ) =[(a+ 1 —z,)/cJ'~' and f (z, , z, ) is independent of Y. Note that each factor of z, , including those
in f, is accompanied by cosa' and that f(0, z, ) =1. The do' integration projects out just even powers of
z, so that only even n, values can occur.

In order to calculate (n, (n, )) we expand the integrand in powers of z, and carry out the n' integration.
This gives for J the expression

(69)

Using this in the expression for (&o(n, )) (n, (n, ))= 2,~, + O(1/Y). (71)

(n, (n, ))= „,J(0, 1)
0 ~~ C

one finds that

J(0, I),
QgC C

(70)

The coefficient of Y is just -Bz(z,)/sz, and the con-
stant term vanishes.

Including now the interaction b( 11)2'[ I+d(II')'J ',
treated by lowest-order perturbation theory, the
energy shift is given by

'II~ yJ' —= —(a+ I -z )-'~'[(a+ I —z e'" ')' '+ (a+1 —z, e '"')'~'J--'I (112)'

I+ d( rr')' (72)

Here me have written out the only term containing
both z, and z, . This term leads to a 7-independent
contribution to (n, (n, )) which is proprotional to n, ,

s(N, (n, )) b
ce~oV2(s+I) . (76)

Thus if b is negative, the slope of (n, (n, )) versus
n, is positive. Just as in the discussion of the
states in Sec. II, an attractive, nonlinear term in
F is necessary in order to give positive values
for f„and the slope s(n, (n, ))/sn, .

IV, DISCUSSION

It is well known that the coherent-state represen-
tation is useful for studying the statistics of the
radiation fieM in systems in which the average
number of photons is large. Here we have seen
that this representation can be used to discuss
the statistics of boson fieMs even when non-Abe-
lian symmetry groups are involved. The calcula-
tions involved in the models for the production of
isovector pions studied in Secs. II and III are not
appreciably more difficult than in the correspond-
ing models for the production of isoscalar bosons
discussed in I.

It would appear from the models discussed here

that the study of correlations between charged and
neutral pions will be particularly important for
an understanding of the underlying production dy-
namics. This point has been emphasized by sev-
eral authors. '-' For example, the global state
of Sec. II, which is typical of final states obtained
in the uncorrelated-jet model, appears to be ruled
out by the sign of s(n, (n, ))/sn, . The point is that
in this type of state the probability of producing
n particles is peaked about (n) independent of the
charges of the produced particles. As a result,
an increase in the number of charged particles
always leads to a decrease in the number of neu-
trals, contrary to the existing data.

The short-range correlation models discussed
in Secs. II and III have no difficulty in fitting the
data for f„and S(n, (n, ))/Sn, . The signs of these
two quantities are related. %'hat one learns from
the data is that the underlying dynamics must
have attractive couplings between the charged and
neutral components of the pion field. The present
data for (n, (n, )) are consistent with the coefficient
Bdefined in Eq. (13) being zero. Although B can
certainly be made small in our models, it appears
to be quite difficult to make it identically zero in
them or in any model with only short-range cor-
relations.
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The short-range correlation models of Secs. II
and III seem capable of fitting the major trends
in the multiplicity data with a simple parameter-
ization of the effective potential V(II). However,
we have not attempted to make a detailed fit to the
data since our main purpose here has been to de-
velop techniques which can be used in a variety of
models. Furthermore, the models which we have
discussed have the disadvantage that a self-cou-
pled isovector fieM seems incapable of reproduc-

ing the known spectrum of meson Regge trajecto-
ries. A more promising approach seems to be to
replace the field II in the coherent states by an
isovector current made up of quark fields. The
functional, E, would then depend on these fields.
This approach seems flexible enough to reproduce
known Regge trajectories without losing any of the
attractive features of the models we have pre-
sented here. We hope to return to such a model
at a later time.
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