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Previous attempts to extract the ~~ scattering length ao from E«data have been handicapped
by:he lack of any one-parameter model for 60 which is valid over the entire energy range of
the data. In this paper, we present a simple but reliable one-parameter model for the ~~ S
waves and P wave. The model is based on rigorous representations fox ~~ amplitudes„and
is valid from threshold to 34« = 400 MeV or more. We apply the model to all available K«
data, and extract the value of ao together with the corresponding values for several other
low-energy «parameters. We find that the world average of the data yields ao ——I'0.26 ~ 0.08) p ~,
in agreement with the current-algebra prediction of Weinberg. As an appendix, we pre-
sent in detail the rigorous one-parameter equations for the 8 waves and the P wave upon which
our simple model is based. We make a precise prediction for the I = 2 8 wave between thresh-
old and 900 MeV, and we predict the P wave for given values of the p mass and width.

I. INTRODUCTION AND SUMMARY

The primary purpose of present E„experiments
is to measure the I=0 mn S-wave phase shift Goo,

and thereby determine the scattering length a,.
In order to determine ao in this way, it is of
course necessary to extrapolate 5', between
threshold and the upper limit of the data, i.e. ,
up to about 400 Me V. Previous efforts to deter-
mine a, have been handicapped by the lack of any
one-parameter model for 5,' which is valid over
the entire energy range of the data.

In this paper, we present a simple but reliable
one-parameter model for the mm S waves and P
wave. The model is based on rigorous repre-
sentations for mm amplitudes, and is valid from
threshold up to 400 MeV or more. We apply the
model to all available E,4 data, and extract the
value of a, together with the corresponding values
of several other low-energy xm parameters. We
find that the world average of the data yields
a, =(0.26+0.08)p, ', in agreement with the current-
algebra prediction of Weinberg. '

In the Appendix, we present in detail the rig-
orous one-parameter equations for the S waves
and the I' wave upon which our simple model is
based. We make a precise prediction for the
I=2 S wave between threshold and 900 MeV, and

we predict the I' wave for given values of the

p mass and width.

II. NOTATION AND CONVENTIONS

We shall denote the mm amplitude with isospin
I in the s (direct) channel by A (s, t), where

s = (M„„)',

t = 2(s —4p') (z - 1),

with z =-cosH. We normalize the A' such that

A (s, t ) = Q (21+ 1)A"i (s}P, (z),

A ' '(s) =Q 'exp(i5', }sin6', ,

where p. = 138 MeV denotes the mean pion mass.
As a final remark on conventions, we use units
wherein 0 = c = l.

III. LOW-ENERGY MODELS FOR 5 WAVES

The A ' are analytic in s, except for left and
right cuts for s&0 and s&4p, '. Since

q cot~i [g( l Il] —s + & q

is reaL for s & 4 p. ', it has no right cut and is
analytic for s&0, excejt far poles corresponding
to ~haLever zeros may occur ie A'"'.

Of the four groups' ' which have extracted mm

phase shifts from K«data, only two'" have ex-
trapolated 6,' to threshold to obtain a,. Beier
et al. ' used the scattering-length approximation

Q cot5,'~ (pa, ) '.
Equation (1) has the virtue of simplicity, but the
right-hand side contains no pole term, so the
approximation must break down near threshold
if A ' has a zero near threshold. Since mm S
waves are expected to have zeros somewhere
near threshold, Eq. (1) may (and indeed does)
fail over part of the K„region.

Zylbersztejn et aL. ' used the approximation
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Q cot5,'~[pa, +2b(s -4p, ')] ',
b=-(32vf„') '~ 0. 022p, ', (2)

where f„&95 MeV denotes the pion decay con-
stant. ' Equation (2) is a simple unitarization of
%'einberg's current-algebra amplitude, ' wherein
no assumption is made about the cr commutator,
so that a, is a free parameter. Equation (2) has
the virtue of accommodating a zero in A{' ', but
it is limited by the fact that b is regarded as
independent of a, (also see Ref. 6}. In reality,
the optimal value for 5 depends on the strength
of the cuts in A ', and both cuts depend on ao.
Furthermore, the right-hand side of Eq. (2} is
a pure pole term, whereas one should expect
a slowly varying additive term as mell.

In thiy payer, we deal with the afoxementioned
problems by using an S-wave approximation of
the form

q cote', ~' + q, ,s-s

IU. RIGOROUS REPRESENTATIONS FOR nn
AMPLITUDES

Roskies' and Roy' have shown that analyticity
proven in field theory is sufficient to derive
bvice -subtracted disper sive representations for
the A . These representations are valid over
a substantial portion of the physical region, and
constitute a powerful tool for studying the low-
energy mm interaction.

The two subtraction parameters in the repre-
sentations of Roskies and Roy are usually chosen
as the S-wave scattering lengths Qo and +g. How-
ever, it seems firmly established that the mm

charge-exchange cross section tends asymptot-
ically to zero [in Regge language, az(0) & I], in
which case (2a, —5a, ) satisfies a well-known sum
rule. ' The resulting relation between a, and a,
is summarized by the "universal curve" of
Morgan and Shaw. "

Recently the present author" has combined
the analyticity used by Roskies and Roy with the
fact that a~(0) & 1, and has derived a representa-
tion for the A in which only one subtraction pa-
rameter appears, namely the symmetry-point
parameter X of Chew and Mandelstam. " In the
same paper, "the pew Regge residue function

where E&, sl, and q, are independent of s. The
right-hand side of Eq. (3}has a superficial de-
pendence on three unknown parameters, but we
shall see that all three can be expressed in terms
of a single parameter A.. Toward this end, we
next consider rigorous representations for wm

amplitudes.

was determined within about 15% from recent
mm data. Since the asymptotic contributions to
the A are dominated by Reggeized p exchange,
we now have theoretical tools and empirical in-
formation which are sufficient for constructing
reliable low-energy amplitudes in terms of ~.

t'0= (17.0+42.6A)g

s, = (1.42+ 105.5a)g',

q = -0.401-2.94K. .

(4a)

(4b)

(4c}

Therefore, Eqs. (3) and (4) comprise a one-
parameter representation for 5,' which is valid
over the K,4 region for 0.03» ~» -0.09, which
corresponds to 0.0 «a, » 1.ip '. After X has
been determined by fitting the 50 of Eqs. (3) and

(4) to the data, a, can be obtained from

2 + '01
(s
-~r (5)

or more simply (within" +0.001' '} from

ao = (0.163 —7.28k. + 28.6X )p, (6)

To illustrate the limitations of the approxi-
mations (1) and (2}, we present in Fig. 1 the 5',

generated by Eqs. (1) and (2) for so =0.0, 0.25p, ~,

and 0.50', ', together with the 5', generated by
Eqs. (3) and (4). The scattering-length approxi-
mation (1) is rather poor above 325 MeV, and
the approximation (2) is only fair above 325 MeV.
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FIG. 1. Different models for 5o for a0=0.0, 0.25@ ~,

and 0.50p, ~. The dotted curves are based on Eq, (1), the
dashed ones on Eq. (2), and the solid ones on Eqs. {3)
and (4).

V. SOLUTIONS FOR LOW-ENERGY AMPLITUDES

We have conStructed the S waves and I' wave for
the cases ~=0.03, -0.01, -0.05, and -0.09
(see the Appendix). Upon comparing the solutions
with Eq. (3), we find that 5', can be expressed
within" +0.5' between threshold and 400 MeV
by Eq. (3) with
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Since about half the K«data lie above 325 MeV,
a significant improvement can be made in deter-
minations of a, by using Eqs. (3) snd (4).

The phase shift actually measured in K„decay
is the difference (5,'-5', ). We find that the P-wave
scattering length a, is given within" 0.5% by

a, ~ (0.0378 -0.1481+0.26K )g

and that 5,'is given within +0.3 between threshold
and 400 MeV by

Q cot5, ~ (,)
. (8)

(A formula for 5,'between threshold and 900 MeV
is given in the Appendix. ) Equations (7) and (8)
imply that 6,'is less that 1' below 350 MeV and

less than 2' below 400 MeV, so that its neglect
in previous fits to K„data has been a good ap-
proximation. However, we shall include 5', in

the fits of this paper,
Although 5,' is not involved in K«decay, it does

depend on ~, and can therefore be inferred from
E«data. Vfe find that 5', can be expressed within"
+0.5' between threshold and 900 MeV by Eq. (3)
with

for the low-energy mw amplitudes, we proceed
now to a discussion of the data.

Vl. ANALYSIS OF DATA

Beier et al. ' presented values for (50 —5,') at
three distinct energies. They recognized that
the scattering-length approximation (1) is good
only near threshold, and chose to use only the
data below 353 MeV in their determination of

ao. Their result (neglecting 5',) was ao =(0.17
+0.13)p, ', and their best fit to the data below
353 MeV is shown in Fig. 2(a).

%e have fitted all three data points of Beier
et al. to the (5', —5',}of Eqs. {3},(4), (7), and (8).
Our result" for a, is a, = (0.21+ O. OS) p. ', and

our best fit is shown in Fig. 2(a). We remark that
our curve differs from that of Beier et al. by
5W{-, or more above 310 MeV, so it is coincidental
that our result for a, is so close to theirs. The
explanation lies in the fact that the second data
point deviates appreciably (though acceptably" )

],= (-45.2 + 43.4X)p

s, = (1.08 —74.2X)p.',
q, = -0.947+2.06X.

The scattering length a, is given by Eq. (5) or,
within" +0.001', ', by

a, ~ (-0.061 —1.55K+0.3X')p,

(9a)

(9b)

(Qc)

It is worth noting that 5,' depends only weakly on

For example, Eqs. (3) and (9) imply that
whenl„„=m&, -23»5,'» -18 if -0.05&A, »0.03,
i.e. , if a, lies in the rather broad range 0.0»a,
«0.6p, '. Hence the model has strong predictive
power for O', ." An unfortunate corollary is that a
very precise measurement of 6,' would be re-
quired in order for us to gain useful information
about A. or a,.

The symmetry-point derivative parameter"
X, is given within' 1@by

),, ~ (0.105 —0.60K+1.7X )p '.

I

QO
ce

(b)

20-

&00 350
{ MeVI

400

A (2p', p') =0.036 -5.23K+0.9X',

&'{2p', g'}~ -0.017 —1.90K -0.2X'.

(12a)

Having summarized our one-parameter model

The mm matrix elements of the cr commutator
are measured by the values of A' and A' at the
Dashen-Vfeinstein point, "where s = 2 p, ', t = g'.
%e find within +0.001 that

FIG, 2. (a) Data of Beier et al, The dotted curve is
their hest fit of Eq. (1) to the data below 353 MeV. The

solid curve is our best fit of Eqs. (3), (4), (7), and (8)

to all three data points. (b) Data of Zylbersztejn et al,
[Triangles: maxkmum-likelihood method; circles: y

points; squares: Pais- Trepan method. Each datum

vrithin each cluster of three points is taken at the energy
of the center (triangle} point. f The dashed curve is their
best fit of Eq. (2) to the data; the solid curve is our best
fit of Eqs. (3), (4), (7), and (8).
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Vll. RESULTS FOR nx PARAMETERS

The weighted average of the four measured
values for a, is"

a, = (0.26+ 0.08)g (13a)

The weighted average is clearly dominated by
the Beier value, because of its relatively small
uncertainty.

The weighted average for a, corresponds to

from our best fit to all three points.
Zylbersztejn et af. determined (6, —6,') at

three distinct energies, and did so by three
different methods. The data are displayed in

Fig. 2(b). Their result for a, [using Eq. (2) and

neglecting 6', ] was a, =(0.60+0.25)i{, ', and their
best fit is shown in Fig. 2(b). Using the same
data, we obtain" a, = (0.50'o', 9)p ', and our best
fit is also shown in Fig. 2(b).

Schweinberger et a/. ' reported an average value
for (6', —5',) of (11+13)', but did not state the

corresponding energy. Since phase space peaks
near 330 MeV, we assume this value for the

energy, and obtain ao = (0.24'00', 27)p

Ely ef al. ' reported an average for (6O —6I) of
(25+9)', but did not report the energy. We again
use 330 MeV, and obtain a, = (0.70,',",)p

Within the stated uncertainties, the four values
we have deduced for ao are mutually consistent,
except for the values of Beier et a/. and Ely et a/.
With regard to this discrepancy, we note that
a standard deviation is defined in such a way that
one out of every three measured values is ex-
pected to lie more than one standard deviation
away from the "true value. " Since the Ely value

is only 1-,' (Ely) standard deviations away from
the Beier value, this discrepancy is fully con-
sistent with the extent of agreement to be ex-
pected among four measurements. "

direct support to his assumption that the a com-
mutator is predominantly isoscalar. "

We wish to emphasize that Eqs. (3), (9), and
(13b) imply a very precise curve for 50 between
threshold and 900 MeV. For example, taking
all uncertainties into account (see the Appendix),
we predict that 6,'=(-9.3+O.S), (-17.6+1.6)',
and (-24.4+3.1) atM„=500, 700, and 900 MeV,
respectively. These values for 5,' are consistent
with the values inferred from pion-production
data by Walker et a/. ,

"Colton et a/. ,
"Cohen

et a/. ,
"Baubillier eI; a/. ,

' and Hoogland et a/. ,
'

and lend support to them. Our results are in-
consistent for some energies with the 6', of
Baton et a/. ,

"Katz et a/. ,
"and Baker, "and

cast doubt on them. Because of the precision of
our results, and because our results are free
from the systematic uncertainties characteristic
of Chew-Low extrapolations, we regard the com-
bination of theory and experiment described
herein as the best determination of 5,' available
at present. "
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APPENDIX

In this appendix, we discuss the S waves and
the P wave implied by Eqs. (3b) and (24) of Ref.
11. Our notation and conventions are identical
to those of Ref. 11, except that we now adopt
mass units wherein p. =1.

The A'"'{s) could of course be obtained from
the A'(s, f ) by the standard projection procedure.
However, it is advantageous to exploit Bose
symmetry and thereby write

x = -0.013 ~0.010,
A{&){(s)= dzP, (z)A (s, f),

which we combine with Eqs. (7), (10), (11), and

(12) to conclude that"

a, =(0.040+0.003)p ',
a, = (-0.041 ~ 0.016)p ',
h. , = (0.113+0.007)g ',
A'(2 p, ', p') = 0.104 + 0.053,

A'(2 p ', i{,') = 0.008 + 0.019 .

(13c}

(13d)

(13e)

(13f)

(13g)

The uncertainties stated in Eq, s. (13a)-(13g) are
all correlated, since the value of ~ determines
all the other parameters. Note that Eqs. (13a)-
(13g) are all in good agreement with Weinberg's
predictions, ' and that Eqs. (13f) and (13g}give

where the relation between s, t, and z has been
given in Sec. II.

The advantages of Eq. (Al) derive from the
fact that t remains smaller for z on the interval
0 ~ z ~ 1 than would be the case for the standard
interval —1 &z &1. At high energies the ImA
are best known near the forward direction, so
it is desirable to keep t as small as possible.
Furthermore, the A'(s, t) of Ref. 11 which we

utilize here are only valid for -32 ~ I; ~4. Hence
Eq. (Al) results in A"" valid for Oc s ~ 68,
whereas use of the interval —1 ~ z ~ 1 would limit
the validity of A"" to 0 ~ s ~ 36. Therefore,
we shall use Eq. (A1) to obtain the A' "'.

We note that for energies less than about 1.5
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GeV, only the 8, P, and D waves have non-
negligible absorptive parts. Furthermore,
Regge theory provides good approximations for
absorptive parts above roughly 1.5 QeV. There-

fore, it is convenient to introduce a parameter
A- (1.5 GeV}', and to treat the regions s&A and
s &A in different ways which exploit these facts.
In this spirit, we write the S waves for I= (', ) as

A0 '(s)0-. X+ — ds', +5imA~'~'{s'), , +gC», ImA''" (s')&, (s', s)f
-5 1,( s-c ImA"'1(s'

~,&, , (s' —2 —'-s)i
-2 w ~ ]s' —c0 s' —s

+A~„0si1(s, A),

where c, -=+,

2
&0(s', s}—= E —E

S —4 0

3
Z1(s', s)—= , [(s'+2S —4)E'+(c, -s')E -2],s'-

5 ~r2

If (s' s) —= (s" - Ss'+ 16+ 6s's —24s+6s')E i {~—s "}E +2 4 —3S+ ',
0 I (SI 4)0

2 s —4
lns-4 2s'+ $ —4

A'"'(s A)-= 2( f —c,)' Im T'(s', c,)
w p ] (s —c0) (s —t) (s + l —2c0)

T'(S t)= Q C11 A {s t}
Il p

Ne have expressed A„'E in terms of the T
because these are the amplitudes for which

Hegge theory prescribes simple asymptotic
behavior.

The only approximation made in Eq. (A2) lies
in the fact that ImA'"'(s') has been set equal

to zero for / ~ 3, 4» s' » A. Aside from this ap-
proximation, Eq. (A2} is rigorously valid for
0» s» 68, as will be the ease for our equation
for A~

For the P wave, we obtain

where

M0(s', s}= (O' —G —4},1

2

1=0 1=0
(A3)

M, (s', s)-=, f(s'+2s —4)G'+(3s' —4)G +2(2s' —s —4}],
(s —4) (s' —4)

M,(s', s}=- , f (s"—Ss'+ 6s's+ 16 —24s+ Ss'}G' + (32s' —13s" —16)G
(s —4) (s' —4}

+ 2(52s'+20s —14s'0 —Qs's —46 —4s')],
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I A""(sl '"
(

6' ~ I b'

where v-=4(s -4). The 5'„are to be determined
by imposing Eq. (A2) at a set of closely spaced
mesh points, while simultaneously imposing (in
a least-squares sense) the unitarity relation

(A4)

In this paper, we use A =(1.5 GeV)2.
To construct solutions to Eq. (A2) which sat-

isfy unitarity in the low-energy region, we use
the trial-function method" developed earlier by
the present author. Between threshold and 900
MeV, we represent the ImA"' by functions of
the form

within 1%& below 900 MeV. ] We remark that for
each given value of ~ it is essential to solve
simultaneously for 5,'and 5Q', since each depends
on the other through their respective left cuts.

When constructing the S waves, we approximate
ImA'"' and ImA "' by p and f, energy-dependent
Breit-signer formulas, "and we neglect ImA" '.
We assume rn~ =770 MeV, I'~ =146 MeV, m&= 1270
MeV, and I'(f - vv) = 130 MeV." (Gur assumptions
for the region s ~ A will be stated later. )

After constructing the S waves for A =0.03,
-0.01, —0.05, and —0.09, we construct the
corresponding P waves by an iterative procedure,
assuming at each stage that 5,' can be approxima-
ted between threshold and A by

ReA'"'=[ImA""(Q ' —ImA'"')]'". (A5)

Above 900 MeV, we consider two cases for
ImA' ', corresponding to the data of Protopopescu
et al."and, alternatively, the data of Martin and
Estabrooks. " We feed the data for ImA~Q Q into
our integrals, and constrain tQe b~ by imposing
continuity on the zeroth and first derivatives of
ImA at 900 MeV.

Our treatment of ImA "' above 900 MeV is
iterative. In zeroth order, we assume that ImA~"'
is an unknown constant above 900 MeV. We con-
strain the b„by imposing continuity on the zeroth
and first derivatives of ImA ' at 900 MeV, and
feed the resulting absorptive parts (which involve
seven free parameters) into Eq. (A2). Upon

imposing the unitarity relation (A5) in a least-
squares sense below 900 MeV, we obtain a zeroth-
order solution for 5Q' in this region.

In the next stage of our iteration, we approxi-
mate the zeroth-order 5Q' below 900 MeV by an
equation of the form (3). We use the result to
extrapolate the zeroth-order ImA "' above 900
MeV, and assume that the first-order ImA' '
is given above 900 MeV by the extrapolated zeroth-
order result plus an unknown constant. The
additive constant is determined by imposing con-
tinuity on the zeroth and first derivatives of
ImA"" at 900 MeV, while imposing unitarity
(in a least-squares sense) below 900 MeV. In
this way we obtain our first-order result for 5Q',

which is then approximated by Eq. (3) to begin
the next cycle of the iteration. This procedure
converges within five cycles to a stable result
for 6,. [The unitarity relation (A5) is satisfied

Q cot61 — +'gI + 7Is,

where („g„and 71 are assumed to be linear
functions of A. Thus the right-hand side of Eq.
(A6) contains six initially unknown parameters.

To begin our iteration, we utilize the fact that

$, =4/a„and we set a, =0.035 for all four values
of A. . At this and every stage of the iteration, we
regard 7/I and TI as functions of („m~, and I p,
specifically, we impose on Eq. (A6) the con-
straints

5,'(VV0 MeV) = 90',

e', (853 Mev) = 135'.
(A V)

(AB)

We shall find that Eqs. (AV) and (AB) correspond
to a p width of about 146 Me V, which is our jus-
tification for using them. We wish these two
equations to be satisfied for arbitrary values of
~„and that is why we use linear forms in A for
E„q„and i, : The right-hand side of Eq. (A6)
is then a linear function of A. , so it is possible to
satisfy Eqs. (AV) and (AB) for arbitrary values
of A..

The first-order g, is obtained by fitting Eq.
(A6) below 600 MeV to the 6,' implied by Eq. (A3),
when the zeroth-order 6', is used in the latter.
The A. dependence of O'I arises from the fact that
both S waves depend on A. , and the S waves con-
tribute to the right-hand side of Eq. (A3). The
first-order q, and 7, are determined by („ to-
gether with the fact that Eqs. (AV) and (AB) are
required to hold for all A. . Successive stages of
the iteration are obvious, and the procedure con-
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verges within five cycles. The result is

$, = 101.25 + 266.18k, ,

q, = -3.032-18.7iz,

v, = -0.02254 + 0.2860k. .
{A9)

Equations (A6) and (A9) imply that 5', =45' at
M„„=709, 707, 705, and 703 MeV for A, =0.03,
-0.01, -0.05, and -0.09, respectively. Measur-
ing I'p from the 45' point to the 135' point, we
conclude that Eqs. {A6) and (A9) describe a p
resonance with 144 ~ I'p ~ 150 MeV, in good
agreement with the current experimental value"
I'

p
= (146 + 10) Me V.

For s ~A= (1.5 GeV)', we assume that

Im T'(s, t) =y~(t)(s/s)"+t" + y~ (t)(sQsQ"',
Im 7'(s, t }= yp (t )(s/sP'",
Im T2(s, t ) = 0 .

We use s = 1 GeV', which defines the scale of the
y's.

With standard assumptions for the e's, simple
power counting reveals that the A~„'~F~ are all
dominated by the contributions of Im T'. In our
calculations, we assume that

ap(t) =0.50+ 0.90(t/s),

and we use the result of Ref. 11 that

yp (t) =—0.83+ 3.04{t/~)+ 0.88(t/s)'.

We exploit duality in assuming that

a~(t) =np(t),

yp(t)=2yp(t),

and we incorporate an asymptotic total cross sec-
tion of 15 mb (Ref. 40) in our assumptions

a~(t) =1,

y J,(t ) = 1.18 .

The lack of t dependence in our 0.& and y& is a
crude but harmless assumption: The resulting
Pomeranchon contributes less than 0.01 to the
ReA~'~~ below 600 MeV, and less than 0.04 below
800 MeV, so that even a 50% correction would be
almost negligible.

Having described the input used in our equations,
we shall now discuss briefly the uncertainties in
our solutions.

Below 400 MeV, the primary uncertainty in 6,'
arises from the experimental uncertainty of + 10
MeV in I"p, and from an estimated uncertainty of
s 15@ in yp(t). If we regard these uncertainties
as statistically independent, the resulting un-
certainty in 5', is less than ~1.0 below 350 MeV,
and less than + 1.4' below 400 MeV.~' The few

remaining uncertainties are much smaller and
also statistically independent, so that their net
effect is negligible. (For example, alternate
usage of the data of Hefs. 36 and 37 above 900
MeV affects 5', by less than +0.3'below 400
MeV. ') Of course, the preceding remarks are
valid only when A, has been given; in practice,
further uncertainties arise from the imprecision
in our knowledge of X. The latter uncertainties
are readily estimated from Eqs. (3) and (4).

For X =-0.01 (near our favored value of -0.013
+ 0.010}, we find that 5,'=40', 54', 64', and 75
at M„, =500, 600, 700, and 800 MeV, respectively.
However, the results for 5~ become increasingly
sensitive to input above 900 MeV as one ap-
proaches 900 MeV. We have not made careful
estimates of the uncertainties in 5,'at these higher
energies, but we believe the uncertainties to be
appreciable. Hence the 5', stated above should not
be taken too seriously. Fortunately, it is ImA~"'
which enters into our dispersive integrals, and
ImA~' ' is insensitive to moderate uncertainties
in 5~ when 60' 5~ 120 . Hence our low-energy
results for 5,'should be reliable despite the un-
certainties in the p region.

The primary uncertainties in 5', are those re-
sulting from the aforementioned uncertainties in
I'p and yp(t). Above 700 MeV, an estimated un-
certainty of 30% in the Pomeranchon contribution
also becomes significant. The resulting net un-
certainty in 60 is + 0.5', + 1.5', and + 3.0' at
M«=500, 700, and 900 MeV, respectively.

The uncertainties in 5', resulting from imprecis-
ion in our knowledge of X can easily be estimated
from Eqs. (3) and (9). For X=-0.013+0.010, the
corresponding uncertainty in 520 is less than + 0.6'
between threshold and 900 MeV. Combining this
with the preceding uncertainties, we estimate the
total uncertainty in 5', to be +0.8', +1.6', and
+3.1'at M„~=500, 700, and 900 MeV, respec-
tively.

Finally we consider the P wave. When the
ImA "' implied by Eqs. (A6) and (A9) is substi-
tuted into the right-hand side of Eq. (A3), the re-
sulting BeA~' ' is not precisely consistent with
Eqs. (A7) and (A8). Consistency can be obtained
by adding to the right-hand side of Eq. (A3) a
phenomenological term

zg« = -iO-'(3. 15+ 15.0x)(s-4)'.

Since EACH" ' is quadratic in (s-4), it can be
interpreted as a contribution from distant singu-
larities, in which case its nonzero value simply
rectifies small errors in our treatment of high-
energy contributions to the right-hand side of Eq.
(A3). When hA ' ' is added to the right-hand side
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of Eq. (AS), the result agrees with the He&i" '
implied by Eqs. (A6} and (AQ) within a 0.002 be-
tween threshold and 900 MeV. This agreement
justifies a fortiori our use of the approximation
(A6), and indicates that if Eqs. (AV) and (A8} are
presumed to be exact, then Eqs. (A6) and (A&}
yield a 5,'valid within a 0.2' between threshold
and 900 MeV. In practice, the aforementioned
uncertainties in I'z and yz(t) make a, uncertain by

about a '}%, and make 6I uncertain by a similar
amount below 400 MeV. In the p region, 5,'is of
course sensitive to the precise values of mz and
r, . The uncertainties in a, and in 5', below 400
MeV resulting from imprecision in our knowledge
of X may be estimated from Eqs. (7) and (8), and
are quite small —only a 8% for X = -0.013 + 0.010,
yielding a net uncertainty of + l@ in a, (and also
in X,).
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