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Nuclei as generators of quasireal photons: Testing an equivalent-photon method
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It is shown that the equivalent-photon method /Williams-. %eizsacker method) can be used to
predict, with a, good approximation, the invariant-mass spectra produced in various processes
of inelastic scattering of high-energy nonhadronic particles (photons, charged leptons, neu-
trinos) in the electromagnetic field of nuclear targets. The test cases here considered are
y+g J(f, +p+g', p, +g p, +y+g', p, +g jtt+y*++' p, +p, +p+gp, and l +I, p+ Q'+X'.
The nuclear targets involved in this study are &H~ and 92U23~. On the target side, both coherent
scattering (in the case of uranium) axjd elastic plus inelastic scattering of individual nucleons
are included in the calculations. For all four processes, both target nuclei and all partial con-
tributions considered t'as well as for the sum of these contributions), we compare the exact
and the approximate values obtained for do/8$', where 5' is the invariant mass of the sys-
tem produced at the incident-particle vertex. A factorization formula, based on a helicity
treatment, is used in the exact calculation; the equivalent-photon spectrum introduced is
also derived from that formula.

I. INTRODUCTION

The increasing importance of electromagnetic
interactions, i.e., one-photon exchange processes,
at growing accelerator energies has been stressed
by many authors in the last years. ' '

One of the important aspects of the study of
these interactions will be the seax'ch fox' any anom-
alies (such as heavy leptons or bosons) produced
in the inelastic scattering of nonhadronic particles
(photons, charged leptons, neutrinos) by the elec-
tromagnetic field of nuclei. It is thus useful to
predict the invariant mass spectra pxoduced in
such processes, as given by the "normal" theory
(@ED or weak-interaction theory).

The equivalent-photon approximation (or
Williams-Weissacker method') has been used
many times in the past (actually, from its very
beginning) for computations of inelastic scatter-
ing processes in the Coulomb field. ' Current
variants of this method were tested, more or
less successfully, by some authors; in most
cases, the comparison with the exact calculation
was made for the total cross section. Recently,
Kim and Tsai" tested the validity of an improved
%'illiams-%eizsacker approximation for calculat-
ing angular distx"ibutions in the production of lep-
ton and boson pairs in the Coulomb field, restrict-
ing themselves, however, to small angles.

It is not trivial to extend the px inciple of the
equivalent-photon approximation (i.e., treating
"almost real" photons as real ones) to the cal-
culation of invariant mass spectra. As will be
seen in Sec. II of this paper, high invariant

masses produced at the incident-particle vertex
involve a rather large minimal four-momentum
transfer, i.e., virtual photons quite far from their
mass shell. Qn the other hand, as we shall show,
target excitation can no longer be neglected, and
one must generalize the equivalent-photon meth-
od in order to include it. Such a genexalization
has not been performed before, except in the re-
cent work of Kim and Tsai."

It is the purpose of this paper to show that, in
spite of these difficulties, it is possible to use an
equivalent-photon method, as a good approxima-
tion, in the calculation of invariant mass spectra.
The advantage, then, of using such a method is
considerable and hardly contestable. It lies per-
haps not as much in the field of practical com-
putations (since the exact calculation can usually
be performed without major pxoblems, at least
in lowest-order perturbation theory, by using
powerful modern computer techniques) as in the
physical transparency of the formulas obtained.
Furthermore, it leads to a kind of philosophy for
the type of processes considered: Nuclei are
treated (just as are high-energy electrons in ac-
celerators or e e' storage rings) as generators
of quasireal photons, allowing one to perform
photon-photon, photon-charged lepton, and photon-
neutrino collisions (and also, to a more restricted
extent, photon-pion or photon-kaon collisions'").

Our problem, thus, is to try to reduce the
scheme of Fig. 1(a)—where A is the incident non-
hadronic particle, X is the target nucleus, and
X' is its final (unexcited or excited) state, and B
is the system of interest —to that of Fig. 1(b). By
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FIG. 1. Feynman diagrams for (a) A+X-6+X' via
one-photon exchange; (b) p+A -B.

doing that, me are obviously neglecting two con-
tributions:

(i) two-photon exchange, which might not be
negligible, actually, in the case of high-Z tar-
gets";

(ii) processes where 8 is produced through ex-
citation of the target (instead of excitation of A)."

Radiative corrections are also left out; scatter-
ing from atomic electrons, as well as screening,
appear to be insignificant.

Four different effects (Fig. 2) are taken into
account and summed up on the target side, in the
general case of a complex nucleus:

(a) coherent elastic scattering,
(b) incoherent elastic scattering,
(c) incoherent inelastic scattering with res-

onance production,
(d) incoherent deep-inelastic scattering.
We here consider two different targets, urani-

um and hydrogen [for the latter, of course, "co-
herent" or "incoherent" becomes meaningless,
and only the terms (b), (c), and (d) above are con-

sidered].
In the incoherent elastic term for the complex

nucleus, restrictions due to the Pauli principle
combined with the Fermi momentum distribution'~
are taken into account. On the other hand, the
spread-out of the initial total energy, due to the
Fermi motion inside the nucleus, "is neglected.

In Sec. II, we introduce a generalized helicity
formula (demonstrated in Appendix A) for one-
photon-exchange processes. This formula, in-
volving a factorization of "virtual photoproduction"
cross sections, provides by itself an important
structural simplification. Actually, me use this
formula in our exact calculations. Qn the other
hand, it leads us in a very direct way —substitut-
ing a real photoproduction process for the virtual
one at the incident-particle vertex —to an equiva-
lent-photon approximation, involving further con-
siderable simplifications. This approximation
formula may be considered as a generalized
Williams-Weizsacker formula, since it allows one
to include, in the most natural way, the "inelas-
tic-inelastic" effects (i.e., inelastic also at the
target vertex) in addition to the "elastic-inelastic"
ones (elastic at the target vertex) Sectio. n II also
contains the detailed expressions of the equivalent-
photon spectra calculated in this formalism.

Section III shows the numerical comparison be-
tween both types of calculation (approximate and
exact) for both target nuclei chosen, two energies
of incident particles (20 and 200 GeV) and four
different processes, namely (see Fig. 2):

(A)

FIG. 2. Feynman diagrams for inelastic scattering in
the electromagnetic field of nuclear targets. (a) Coher-
ent elastic term; (b) incoherent elastic term; (c) inco-
herenf, inelastic (resonant) term; (d) incoherent deep
inelastic term.

FIG. 3. Feynman diagrams for (A) p+X- p + P + X',
(&) w+&-w+ v+&', (&) v+&-w+v*+&'-v+w+P
++, (D} v+g p, + 8' +g'.
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(A} @+X-t(+p+X',

(&) t(+ & "t + y+ & ',

(C) t(+X - t(+y*+X'- t(+t(+t(+X'

(where y* is a timelike photon);

(D} (+X -t(+ W+X'

(where W is the intermediate vector boson of weak
interactions). What is compared are the values—
computed in both ways —of the differential cross
sections with respect to the invariant mass of the
system B produced. The various contributions
mentioned on the target side are considered first

separately and then altogether. A detailed dis-
cussion is given on these numerical tests. The
paper finishes with a short conclusion.

The expressions of the virtual photoproduction
cross sections used —in the exact calculation-
at the incident particle vertex, and those (usually
much simpler) of the corresponding real photo-
production cross sections —used in the approxima-
tion —are shown in Appendix B.

II. FORMALISM USED

In the framework of a generalized helicity meth-
od for Feynman-diagram calculations, "the follow-
ing formula is established in Appendix A for any
diagram involving one-photon exchange (Fig. 4):

f2 +~ 121
(7 1 (W )(W } [o o~ (1 + cosh 8) + (or (7L +a~or) sinh 8 +0'zozcosh'8]

dtdW'dW" 16v' A(s,m™)

where t is the absolute value of the virtual pho-
ton's four-momentum squared; s is the total ener-
gy squared (in the c.m. frame); m, m ' are the
masses of the initial particles A and C, respec-
tively; W, 8" are the invariant masses of the final
systems 8 and D, respectively; A is defined by

A(x, y, z) =x'+y'+z' —2xy —2yz —2zx,

or, o~ (or, oz) are the usual "virtual photoproduc-
tion" cross sections, "transverse and longitudinal,
at the left-hand (right-hand) vertex; and finally,
8 is the "space-time rotation angle" between the
left-hand and the right-hand "vertex plane" in
four-space (see Appendix A).

From the exact formula (2.1), we derive the
equivalent-photon approximation through the as-

sumption (which is made implicitly or explicitly,
in all equivalent-photon methods; see Ref. 18):

o, (W', t) =o,(W', 0}=-(T„(W'),

o~(w, t) = o~(w, 0) =—0,

(2.2)

(2.3)

-P (W) o„(W—),
do'

(2.4)

we get from (2.1)

where a~ is the free photoproduction cross sec-
tion for y+A- 8 (we always assume 8xA), and
where the identity used in the second line is due
to gauge invariance.

Using this approximation, and defining an equiva-
lent-photon spectrum P(W) such that

~t2 ~ l2
[o'r(1+ cosh'8) +oL sinh28] dt dW", (2.5)

where the exact kinematic limits are used in the
integration over t and also (when the right-hand
vertex is inelastic) over W".

Coming back now to Fig. 2, we determine the
various components of P(W), i.e., we express
or, oJ. for each of the contributions (a}-(d) occur-
ring at the right-hand vertex [the same expressions
are of course also used in the exact calculation,
based on formula. (2.1)].

(a) Coherent elastic term. As usual (except for
the lightest nuclei}, only the electric (Coulomb}
term is included, and one thus gets

(2.6)

o' =16zz(xg'E~(t)m "(W" m") ' 6(w"-m"), (2.7)-

where m' is the full mass of the nucleus. The

FIG. 4. Feynman diagram for A. + C —8 +D via one-
photon exchange.
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infinite factors (W" -m "}"'and 6(W" -m ") are
obviously fictitious, since they drop out when cr~

is multiplied by external factors, integrated over
The electric form factor of ~U~' is taken

as follows':
~2

)"(()= () + () m GIV'/c') . (2.8)

g) Incoherent elastic tenn. %e get

a' =4z'at p'G'(t)R(t)(W" -m ") ' 6(W" -m "),
(2.9)

gz =16rP(zm'zzG (f)ft(t)(W' -m ' ) '6(W' -m '
)

(2.10)

where m ' is now the nucleon's mass. Here again,
the infinite factors drop out when multiplied by ex-
ternal factors, integrated over 5"~. p. is the mag-
netic moment of the nucleon (2.79 for the proton,
—1.91 for the neutron) and z is its charge (1 for
P, 0 for s} The f.orm factor G(f} is taken as

Fxom the literature, "we extract the following
values for the phenomenological parameters used;

W~ (GeV) 1520 1688

o. (~b)

f. (GeV*/+)

I' (GeV)

600

0.15

300

3.0

0.15

250

3.0

0.15

(2.1V)

We here make the assumption (roughly con-
firmed at least by experimental data on real photo-
production~) that the contribution is about the
same for a neutron as for a proton target.

(d) Incoherent deep-inelastic term. Our calcula-
tions are based on the extensive analysis, per-
formed by Brasse et al. ,"of deep-inelastic elec-
troproduction data (combined with photoproduction
data}. We thus use for a proton target

(2.11)
4m ~ 1

2 +W-m COy
(2.18)

t l/2 1 t 3/2

4Q I6Q for f 'i' &2Q„(2.12)

For a complex nucleus, the reduction factor
B(f), due to the Pauli principle combined with the
Fermi momentum distribution, is given by"

@""-m" +t
P =

2m' (2.19)

where m ' is again the nucleon mass, and one de-
fines

R(t) =1, for f '~'&2@~ (2.13) 2m 'v+ 1.53
t+ 0.41 (2.20)

where t =t+ f'/4m "; for QT (dimension of the
Fermi sphere), we take the value 0.26 GeV."

For elastic scattering on hydrogen, &~ and &I,

are given by the same formulas with ft(f) -=l.
(c) Incoherent inelastic (resonant) term. %e

here consider the resonances &(1236), N*(1520},
Ã~(1688). Using electroproduction and photopro-
duction data, "we take

g(' ~0 (2.14)

T () (W/s W/$)1 + Wild v'( / ) (2.15)

(2.16)

where 8" is the on-shell mass of the xesonance
considered; o, is the total photoproduction cross
section at the mass W'; 1" is the resonance width;
P(t} is a "virtuality factor" which we express by

(W' and m ' being expressed in GeV, and t in
GeV'/c'), and 5, =0.839, 1), = —1.398, 5, =8.985,
b8 = —14.50, 5, =6.472.

For a neutron target, we multiply the above-ex-
pressed cross sections by (1+//W") ' (see Ref.
24).

We let the deep-inelastic region start (as in Ref.
23) from W' =1.8 GeV. The upper limit for W'
is 8"' =s'/'-g.

The contribution of the various incoherent terms
(b), (c), and (d) to the over-all cross section is
obviously obtained for complex nuclei by multiply-
ing the proton cross section with the proton num-
ber (Z} and the neutron cross section with the neu-
tron number (A —Z).

Finally, in all the calculations of partial equiva-
lent-photon spectra [or partial contributions to the
exact differential cross section, as expressed by
formula (2.1)], we use

4st(t —t~)(t~ —f)sinh'8 = (, , }+„„),cosh*8 = 1+sinh'8,
y

(2.21}
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1 (m" -m')(W" —W'} A"'(s, m', m ")A"'(s, W', W")
t = — s-Z+ +

TAX S 8

1 (»" -m')(W" —W') A'~'(s, m', m") A'"(s, W', W")}
t = —'s —Z+

Hllfl S

(2.22)

with 5 = m'+m "+8"+ 8'". (Let us recall that
m ' is the mass of the nucleus in the coherent
term, and that of the nucleon in the incoherent
ones; the value of s is also quite different, of
course, for coherent and incoherent scattering. )

The above-expressed parameters t,„,t;„are
as well the limits of integration over t. Let us
remark that formula (2.22) is not very convenient
to use for computing the crucial parameter t;„,
since one has to take the difference between two
huge terms in order to get a usually rather small
quantity. Therefore we use

Imax f~ = (W' -m')(W" -m ")

(w" w' m" +m')(m'w" m" w')
+

S

(2.23)

and obtain t by dividing that expression by t,
„

as given in (2.22).
When the right-hand vertex is elastic (W' = m '),

one simply gets

(2.24)

In the high-energy limit, one obtains

(s -m "}2 m "(W' -m')'t,„=,f = „), [ term (a)]

(2.25)

m I a(W2 »2)2i,„=s, t =, [term (b)] (2.2&)
8

(W" -m "){W'-m')t,„=s, t,„= [term (e)]
S

(2.2'I )

The above expressions of t - clearly show that
the virtual photon spectrum involved becomes
"more off shell" when the invariant mass 8' pro-
duced becomes larger. Qn the other hand, the
photon spectrum becomes "less off shell" when
the incident energy is increased.

The formulas given in this section allow us to
calculate do/dw both in an exact way (once we
know or, cr~ for the process considered) and in
the equivalent photon approximation (once we know

&z). For the four processes studied here (Fig. 3),
the expressions found for o„,a~, and a'~ are
shown in Appendix B.

III. NUMERICAL DATA, AND DISCUSSION

Tables I-VIII show the ratio (do/dw). „,„.„./
(do/dw), „„,at two incident beam energies (20 and
200 GeV) and at a series of W values, for the four
processes considered and for the various terms
we have defined ["uncorrelated" or "correlated"
in the incoherent elastic contributions means with-
out or with the reduction factor R(f)].

Some general features appear in these tables:

(i} One notices that the approximation works
somewhat better at 200 Gev than at 20 GeV. This
fact is easily understood, since a higher energy
implies a smaller minimal transfer, i.e., a larger
proportion of photons which are almost real I see
Eqs. (2.25)-(2.2'I)].

(ii} The coherent term gives the best values.
This observation is also easy to understand, since
the contributions of large t values (i.e., of highly
virtual photons) are destroyed to a very large ex-
tent by the sharp form factor of the nucleus.

(iii) As to the incoherent elastic terms, the ap-
proximation works better for the proton than for
the neutron, " the obvious explanation is that in the
proton case we have a mixture of electric (o'~) and
magnetic (a'r) contributions, whereas the neutron
gives only a magnetic one [remember from (2.9)
and (2.10}that or contains an extra factor f with
respect to o~]. On the other hand, the "uncorre-
lated" figures are better than the "correlated"
ones (where the lowest t values are cut away to a
large extent). However, at the upper end of the
W spectrum, all four values obtained (for P or n,
correlated or uncorrelated) become almost iden-
tical, for the following reason: Large 8' values
imply large f values [since one has t,

„

(W -» )']; the magnetic term then becomes
largely predominant in the proton ease too, and
on the other hand the correlation plays no role
any more.

(iv) For the resonant term, the approximation
is, generally speaking, somewhat worse than for
the incoherent elastic ones; and for the deep-in-
elastic terms, it is still worse. These facts are
easily understood, since larger t values are in-
volved when the inelasticity at the right-hand ver-
tex becomes higher [see Eq. (2.27)].

Apart from these common features, each process
considered shows some particular characteristics.

For process (A), the approximation appears to
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TABLE E. Batio R =—(do'/d W} pp /(cfo'/dS) I for various contributions to the process y+X p +p, +X' at beam ener-
gy E& =20 GeV.

W„'„-(Geg)
U

coherent

P elastic
(uncorre-

lated)

& elastic
(uncorre-

lated)

P elastic
(correla-

ted)

n elastic
(corre la-

ted)
p, n

resonant
P deep-
inelastic

n deep-
inelastic

0.22
0.3
0.5
1.0
2.0
3.0
4,0

1.001
1.001
1.001
1.001
0.997
0.992
0.986

1.005
1.010
1.010
1.017
1.023
1.028
1.047

1.036
1.070
1.050
1.056
1.044
1.040
1.049

1.019
1.037
1.028
1.033
1.030
1.030
1.047

1.049
1.095
1.065
1.069
1.051
1.041
l.049

1.039
1.078
1.062
1.085
1.102
1.117
1.159

1.063
1.158
1.137
1.190
1.271
1.314
1.382

1.062
1.157
1.138
1.191
1.267
1.304
1.372

work particularly mell, because of the special dy-
namics of the photoproduction of pairs: A factor
(W'+f) ' occurs at the left-hand vertex, i.e., in
&r, az (see Appendix B); this factor plays the role
of a form factor, i.e., cuts the larger t values
off to a large extent. Qne also notices that here
the quality of the approximation does not depend
strongly on 8'.

As to process (B), one remarks that the approx-
imation is by far not as good as for (A). On the
other hand, it is considerably worse here at the
lowest W values than at the higher ones. The ex-
planation is the following:

When W goes to its lower limit (m), the kinemat-
ic situation at the left-hand vertex becomes that
of elastic scattering, where —as is mell knomn-
the equivalent-photon approximation cannot be
applied any more. More precisely, for 5'= m

and t finite, the exact calculation gives an infinite
cross-section value (infrared divergence) whereas
the approximation gives zero lbecause of the fac-
tor (W' -m') in the equivalent-photon spectrum
and of the finite Thomson limit for Compton scat-
tering]. 25 The situation improves, but only grad-
ually, when one departs from the infrared limit;
the approximation underestimates the exact re-
sult all along the 5' spectrum. Some values in

the upper right-hand corners of Tables III and IV
seem really catastrophic, ' however, it will be
shown that these values have practically no weight
when the comparison between the approximation
and the exact calculation is made for the over-all
cross section.

In process (C}, the quality of the approximation
is intermediate, as compared to the cases (A) and
(B). We also notice that there may be an under-
estimation or an overestimation, according to the
various terms and 8' values considered. Since a
deep connection exists between the dynamics of
processes (B}and (C), we are not surprised to
remark that bere, as in (B), the ratio between the
approximate and the exact result steadily in-
creases —in the incoherent terms at least —with
rising 5 .

In the weak-interaction process (D), the approxi-
mation works less well, generally speaking, than
in the @ED processes considered above. As in
(C), it overestimates or underestimates, accord-
ing to the various terms and 8' values involved.
All values of the ratio defined go down with in-
creasing g; the decrease is particularly sharp
for the incoherent terms. Because of the com-
plicated dynamics of the process, this phenomenon
is hard to analyze.

TABLE EE. Ratio R for various contributions to the process y+X p, -p. +X' at E =200 GeV.

U

coherent

p elastic
(uncorre-

lated)

n elastic
(unco rre-

lated)

p elastic
(corre la-

ted)

n elastic
(correla-

ted)
P,n

resonant
p deep-
inelastic

deep-
inelastic

0.22
0.3
0.5
1.0
2.0
3.0
4.0
5.0
6.0
8.0

1.001
1,001
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.003
1.007
1.006
1.009
1.009
1.007
1.006
1.005
1.004
1.004

1.036
1.069
1.050
1.055
1.040
1.026
1.017
1.012
1.008
1.006

1.020
1.037
1.028
1.030
1.021
1.013
1.009
1.007
1,005
1.005

1.049
1.093
1.065
1.068
1.049
1.031
1.021
1.014
1.009
1.006

1.045
1.076
1.051
1,063
1.056
1.041
1.031
1.025
1.021
1.017

1.051
1.116
1.091
1.122
1.156
1.159
1.155
1.150
1.145
1.135

1.051
1.115
1.090
1.121
1.153
1.155
1.150
1.144
1.138
1.128
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TABLE III. Ratio R for various contributions to the process p, +X p, +y+X' at E& =- 20 GeV.

(GeV)

0.12
0.2
0.3
0.5
1.0
2.0
3.0
4.0

U

coherent

0.896
0.950
0.974
0.987
Q.S92
0.986
0.972
0.952

p elastic
{uncorre-

lated)

0,736
0,754
0.790
0.839
0.894
0.927
0.933
0.924

n elastic
tuncorre-

lated)

0.005
0.082
0.191
0.385
0.680
0.882
0.931
Q.S27

P elastic
{correla-

ted)

0.077
0.278
0.422
0.605
0.806
0.909
0.930
0.924

n elastic
{correla-

ted)

0.001
0.033
0.111
0.292
Q. 619
0.861
0.927
0.927

p, n

resonant

0.004
0.069
0.158
Q, 312
0.556
0.754
0.811
0,799

P deep-
inelastic

0.001
0.019
0.048
0,109
0.240
0.419
0.521
0.54."&

deep-
inelastic

0.001
0.020
0.052
0.117
0,259
0.445
0.546
0.~);)8

It is of course of more practical importance to
cheek the approximation on the over-all cross
sections, i.e., the sum of all contributions for a
given target nucleus. Such a check obviously de-
pends not only on the values shown in Tables I-
VIII, but also on the relative weight of the various
terms. This relative weight can be inferred from
Figs. 5-10 [since there are great similarities be-
tween all these figures, two eases were left out,
namely process (A) at 20 GeV and process (8) at
200 GeV].

In Pigs. 5-10, daidWis given, as obtained from
the exact calculation, per nucleon of the target
nucleus. The four curves shown in each figure
represent the coherent elastic term for uranium;
the elastic term for hydrogen; the incoherent elas-
tic term for uranium, including the reduction fac-
tor R(f} and averaging over neutrons and protons;
the incoherent inelastic term, i.e., the sum of
the resonant and the deep-inelastic contribution,
averaging again over neutrons and protons for the
uranium target; we checked that practically the
same curve is also valid for the inelastic term
in the case of a hydrogen target.

The following features are shown in Figs. 5-10.
(i) The coherent term dominates, for the urani-

um target, up to W = 1.5-2 GeV at incident beam
energy E=20 GeV, and up to W'=5 GeV at E=200
GeV; at larger W values, it becomes rapidly neg-
ligible with respect to the incoherent contribution.
[Notice that, in process (D) at 20 GeV, because of
the relatively high threshold, the incoherent part
of the cross section practically predominates
from the start. J

(ii) Among the incoherent terms, for the heavy
target, the inelastic term is predominant at 200
GeV, with respect to the elastic one, in the entire
region considered except near threshold. At 20
GeV, it dominates at the lower W values (except
again close to threshold), and then falls down be-
low the incoherent elastic contribution (obviously
because of the less available phase space). The
difference between both incoherent terms is never
very large, except in process (D} at 200 GeV.

(iii) For hydrogen, the elastic contribution dom-
inates (quite strongly in the lower part of the W

spectrum, and only mildly in its higher part) over
the inelastic one, both at 20 and 200 GeV. The
only exception is, here again, process (D) at 200
GeV, where the inelastic term becomes the larger
one at lV&4 GeV.

According to these curves, we expect the over-

TABLE IV. Ratio R for various contributions to the process p, +X p +y+X' at F-~, = 200 GeV.

(GeV)

P elastic
(uncorre-

lated)

& elastic
(uncorre-

lated)

P elastic
(correla-

ted)

n elastic
(correla-

ted)
P,n

resonant
p deep-
inel. astic

deep-
inelastic

0.12
Q.2
0.3
0.5
1.0
2.0
3.0
4,0
5.0
6.0
8.0

0.929
0.969
0.986
0.995
0.998
0.999
0.999
0.999
0.999
0.999
0.998

0.814
0.829
0.861
0.902
0.947
0.975
0.984
0.988
0.990
0.991
0.992

0.005
0.081
0.190
0.383
0.675
0.877
0.938
Q. 964
Q.S77
0.984
0.990

0.078
0.280
0.428
0.616
0.826
0.938
Q.968
0.980
0.986
0,989
0.992

0.001
0.033
0.111
0.292
0.615
0.853
0.926
0.957
0.972
0.981
0.989

0.005
0.080
0.179
0.349
0.614
0.825
0.900
0.934
0.952
0.962
0.973

0.001
0.024
0.060
0.128
0.266
0.436
0.538
0.607
0.659
0.700
A. 762

0.001
0.025
0.063
0.135
0.280
0.456
0, 560
0.629
0.681
0.721
0.782



1568 CARIMALO, CGC HARD, KE SSI.ER, PARISI, AND ROZ HWER

TABLE V. Ratio R for various contributions to the process @+X p +y'-(-X' p, +p+p, +X' at E& —-20 GeV.

5"p~p I'GeV}

U

coherent

p elastic
(uncorre-

lated}

n elastic
(uncorre-

lated}

p elastic
(corre1.a-

ted}

& el.astic
{correla-

ted}
p, n

resonant
p deep-
ine las tie

& deep-
inelastic

0.32
0.4
0.5
1.0
2.0
3.0
4.0

0.994
0.993
Q.994
0.998
0.976
0.937
0.929

0.952
0.936
0.936
0,981
1.040
1.090
1.180

Q. 638
0.626
0.663
0.888
1.060
1.140
1.210

0.818
0.797
0.816
0.952
1.050
1,100
1.180

0.511
0.518
0.571
0.849
1.060
1.140
1.210

0.599
0.578
0.605
0.813
1.050
1.160
1.210

0.372
P.349
0.363
0.512
0.753
0.906
0.961

0.383
0.362
0.377
0.537
0.788
0.938
0.981

all ratio (approximation jexact calculation) to be
mainly determined, for the heavy target, by this
ratio's value for the coherent contribution in the
lower part of the 5' spectrum, and by its values
for the incoherent terms in the higher part. For
hydrogen, we expect in general the elastic term
to be the most influential one, especially in the
low-R' re gion.

These predictions are confirmed by Tables IX-
XVI showing the over-all ratio for both nuclei con-
sidered. One notices that, on the whole, the ap-
proximation works well, and systematically better
at 200 GeV than at 20 GeV. The worst case, as
expected, is that of the weak-intex'action process
(D); but even there the order of magnitude given
by the approximation is not too bad, since the
error ranges between + 70% and —50%.

As already mentioned, the "catastrophic" values
found in the right-hand upper corner of Tables III
and 1V (and also some rather bad values in the
right-hand upper corner of Tables VII and VIII
are not reflected in the over-all ratio. The ex-
planation of this fact can be stated as follows: the
over-all cross section is mainly determined by
contributions which contain the photon's pole (ap-
pearing in the form of a f ' factor) and by kinemat-
ic regions which are not too far from that pole;
these contributions and regions are precisely

those for which the equivalent-photon approxima-
tion is applied successfully; thus "bad" terms,
such as those mentioned, happen to be small
terms.

%'e finally remark that, in all Tables IX-XVI,
the over-all ratio (approximation/exact calcula-
tion) tends to become about the same, for both
nuclei considered, at the upper end of the W spec-
trum. This is easily understood, since in that
region the incoherent contribution becomes pre-
dominant by far for complex nuclei; and since-
as already mentioned —neutrons and protons there
practically behave in the same way (magnetic con-
tribution) and, on the other hand, the correlation
between the nucleons vanishes, i.e., R(t) = l.

IV. CONCLUSION

%e have shown that the equivalent-photon meth-
od can be applied with confidence, in the high-en-
ergy region considered, to provide approximate
predictions for one-photon-exchange processes
with nuclear target, s, even when inelasticity is in-
cluded on the target side. %e may now extend this
approximation to other electromagnetic or weak-
interaction processes, and also of course to other
target nuclei (with different form factors involved
in the coherent contribution; see Ref. 19). Actual-

TABLE VI. Ratio R for various contributions to the process p -'X p ~y*+X' JLt +p+P+X' at F&
—-200 GeV.

W„„„-(G V}

0.32
0.4
0.5
1.0
2.0
3.0
4.0
5.0
6.0
8.0

U

coherent

0.997
0.997
0.998
1.001
1.002
1.003
1.003
1.002
0.999
0.990

P elastic
(uncorre-

lated)

0.970
Q.962
0.963
0.992
1.Q20

1.030
1.040
1.050
1.050
1.070

n elastic
Qncorre-

lated}

0.637
0.624
0.661
0.883
1.050
1.080
1.090
1.090
1.090
1.090

P el.astic
(correla-

ted}

0.822
0.803
p.823
0.959
1.040
1.060
1.060
1.060
1.070
1.070

& elastic
(corre l.a-

ted}

0.511
0.518
0.571
0.845
1.050
1,090
1.100
1.100
1.100
1.100

p, n

resonant

p. 629
0.610
0.639
0.843
1.030
1.090
1.120
1.130
1.140
1.160

p deep-
ine 1.astic

0.422
0.395
0.407
0.549
0.754
0.875
0.957
1.020
1.070
1.140

n deep-
inelastic

0.430
Q.404
Q.417
0.565
0.775
0.897
Q.978
1.040
1.090
1.160
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TABLE VII. Ratio R for various contributions to the process &+X p, +8 +X' at E„=20 GeV (mass and magnetic mo-
ment of the%": Mmt =2 GeV, 8+=2).

S~~ {GeV)
U

coherent

p elastic
(uncorre-

lated)

n elastic
(oncorre-

lated)

p elastic
(correla-

ted)

n elastic
(correla-

ted)
p, n

resonant
p deep-
inelastic

n deep-
inelastic

2.2
2&3

3.0
4.0

1.093
1.005
1.003
0.967

1.499
1.240
1.025
0.994

1.843
1.383
1.029
0.991

1 ~ 672
1.326
1.028
0.993

1.765
1.456
1.031
0.990

1.715
0.932
0.370
0.226

5.104
2.258
0.507
0.298

4.943
2.200
0.582
0.319

ly, an equivalent-photon spectrum may be calculat-
ed once and forever for any type of target nucleus
("photon generator" ), and then be applied to any
process of the kind considered in Fig. I(a). The
use of this method is obviously justified by its
simplicity and physical transparency.

So far, we have checked our equivalent-photon
approximation on the invariant mass spectrum
produced at the incident-particle's vertex. In a
further study, we will verify that the same meth-
od is also able fo repxoduce approximately the an-
gular and energy distributions of outgoing parti-
cles in the lab frame.

Te analyze a given experiment —in particular if
one looks for some small effect, such as a break-
down of @ED—it will of course always be pre-
ferable to perform the exact calculation (including
radiative corrections and other diagrams which
were neglected bere), and also to use still more
refined nuclear models.
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APPENDIX A: DERIVATION OF THE GENERALIZED
HELICITY FORMULA FOR ONE-PHOTON-

EXCHANGE PROCESSES

Considering a Feynman diagram of the type
shown in Fig. 4, we write its differential cross
section, according to standard techniques, in the

form
1 1 d'q

2A'I'(s m' m") t~ (2v)4 ' (Al)

where s, t, m, m ', and A are defined as in Sec.
II; and

I„„=—g dF j «j,*,1

I ggulQ dI s~rgP jlv1
n' y (A4)

(A5)

where W, 8" are defined as in Sec. II, and ter) is
the virtual photon's azimuthal angle, we are led to

d'a 1 1 1
dtdW'dW" 64m A(s, m', m") t'

Let us now establish the helicity structure of I,

where j„is the electromagnetic current at the
left-hand (or right-hand} vertex; dI' is the
Lorentz-invariant phase-space factor at the left™
hand vertex [incorporating a factor (2w) '(2p, } 'd'p
for each final particle, and a factor (2v)4

X5'(P„-Ps-q)J, and dI" is similarly defined
at the right-hand vertex; Q (Q') means summing
over all polarization states of initial and final par-
ticles at the left-hand (right-hand) vertex, and
n (n') is the number of initial polarization states
at either vertex. Using

TABLE VIII. Ratio 8 for various contributions to the process &+%-p+8'+X' (M~=2 GeV, g~=2) at E„=200GeV.

U

coherent

p el.astlc
(U,ncorre-

lated)

n elastic
(uncorre-

lated)

p elastic
(correla-

ted)

n elastic
(correla-

ted)
p, n

resonant
p deep-
inel astic

n deep-
inelastic

2 ~ 2
2.3
3.0
4.0
6.0
8.0

1.013
1.009
l.007
1.003
1.001
0.997

1.172
1.075
1.003
0.998
0.997
0.996

2.553
1.317
0.997
0.994
0.992
0.991

1.609
1.190
1.017
0.996
0.987
0.989

3.065
1.465
1.022
1.003
0.985
0.987

1.673
0.966
0.517
0,491
0.460
0.383

9.005
2.232
0.819
0.653
0.511
0.427

8.701
2.222
0.865
0.660
0.514
0.458
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TABLE IX. Over-all ratio R =—(do'/cAV)app pz/
(der/cAV), x,&t for the process y+X p +p +X' at E& = 20
GeV.

(QeV)

TABLE X. Over-all ratio R for the process @+X p
+p+M' at E&

——200 GeV.

W„'p |'GeV)

0.22
0.3
0.5
1.0
2.0
3.0
4.0

1.006
1.015
1.019
1.033
1.054
1.061
1.076

1.001
1.002
1.002
1.005
1.069
1.073
1..087

0.22
0.3
0.5
1.0
2.0
3.0
4.0
5.0
6.0
8.0

1.004
1.008
1.013
1.024
1.029
1.040
1.038
1.038
1.036
1.032

1.001
1.001
1.001
1.002
1.004
1.008
1.020
1.032
1.037
1.040

using the helicity treatment already shown in Ref.
16. We first remark that the four-vectors of
the left-hand vertex (p„,ps, q) are forming a plane
(the "left-hand vertex plane" ) in four-space; sim-
ilarly, we define the "right-hand vertex plane"
(p., ps, q)

We introduce a set of unit polarization four-vec-
tors (e~~ eo t, e, ) associated with the left-hand
vertex and defined as follows in four-space:
is parallel to q; ~, belongs to the left-hand ver-

tex plane and is orthogonal to &t~; ~ is orthogonal
to both vertex planes; and f] is orthogonal to & ~„
&„and&,. We then use the circular combinations
e, =+ (e, + i e, )jv 2 and thus stay with another set
of unit polarization four-vectors (e~~, e„e„e),
all mutually orthogonal (e~a„=at) ). Although
the definition of these vectors is completely in-
variant, it is particularly simple to represent
them in the Breit frame of the left-hand vertex
(where q is along the s axis):

e, =+(1,~ i, 0, 0),

(05

f0

~o'

%) ]02

foo

4 fO-'
b

f0

f05 )(

10

4 fO'

10

fQ'

10'

10
10

]0-5
0 8 10 122 4 6

w (Gev)

FIG. 5. Contributions to the (gpss invariant mass
spectrum produced, per target nucleon, in the reaction
'Y+% p+ p+%' at beam energy E& 200 GeV. ———U,
coherent; ——H, elastic; U, incoherent
elastic; ———incoherent inelastic.

10
a 2 3

(Gev)

FIG. 6. Contributions to the (pp) invariant mass
spectrum produced, per target nucleon, in the reaction
p, +X-p + y+X' at beam energy +„=20GeV. All
curves are characterized as in Fig. 5.
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0.12
0.2
0.3
0.5
1.0
2.0
3.0
4 0

0.6S5
0.679
0.692
0.720
0.771
0.832
0.869
0.879

O.S93
0.947
0.968
0.974
0.957
0.802
0.845
O.SV3

'o=&(0»0» o» I)»

el = (0» 0 l» 0)»

where the ordering of components is (x, y, s, f)
and where the factor 1 included in e, is the time-
like unit, distinct from the imaginary unit i
(P = —I, but i~ =+ I).

The physical interpretation of these polariza-
tion vectors is that (e„e„e) are associated re-
spectively with helicity states (helicity is here de-
fined as the spin component in the vertex plane)
0, +1, —1 of the virtual photon with respect to the
left-hand vertex plane; ~1~ corresponds to the non-

TABLE XI. Over-aH ratio 8 for the process p, +X p
+q+9P at Z& =20 GeV.

Wpy (Geg)

TABLE XII. Over-all ratio 8 for the process p +X
p. +y+'X' at E& = 200 GeV.

(Gev)

0.12
0.20
0.30
0.50
1.0
2.0
3.0
4.0
5.0
6.0
8.0

0.768
0.732
0.742
0.754
0.787
0.825
0.854
O.S75
0.892
0.907
0.927

0.925
0.966
0.978
0.981
0.9SV
0.979
0.967
0.949
0.917
0.898
0.916

physical state of the photon ("scalar photon" ).
For the right-hand vertex, we introduce, in a sim-
ilar way, a set of linear polarization vectors
(&~~» e,', e,', ~,'). Notice that eI, =

e~t and e,'=-~, . We
then make e', =v(cf + ie2)/v 2 and get another set
(~ Ii » «t»» ~+» ~ )

The two tetrads e and e' ~ (m»m ' = ~[» 0, +, -)
can be superposed to each other by means of a
four-space rotation made about the plane defined
by (e ~~, e, ) and carrying (~„e,) into (et, e,'). The

fo'
I

I»»,

fQ'

10
{l)

E 10~
V

I

fo

~ 10'
b

~Q"6

fg 2

/Q 3

~ e~

fQ

66

ta

3 4
(Ge Y)

FIG. V. Contributions to the (@pe) invariant mass
spectrum produced, per target nucleon, in the reaction
p, +% p, + p'k+X' p+ p +@+9(' at beam energy E&
=20 Gev. All curves are characterized as in Fig. 5.

1Q i i } I

6 8 f0
In/ (Ge Y)

FIG. 8. Same contributions as in Fig. 7, at beam ener-
~u =200 GeV
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TABLE XIII. Over-all ratio 8 for the process p, +X
-p+y*+%'-p, +p+P+R' at E& =20 GeV.

TABLE XIV. Over-all ratio R for the process @+X
@+@*+9' p+@ p+9V at gu =200 GeV

0.32
0.4
0.5
1.0
2.0
3.0
4.0

0.932
0.904
0.894
0.931
1.024
1.098
1.184

0.992
0.991
0.990
0.985
1.003
1.113
1 195

corresponding rotation matrix [r„,j is defined

by

0.32
0.4
0.5
1.0
2.0
3.0
4.0
5.0
6.0
8.0

0.951
0.928
0.918
0.933
0.979
1.011
1.034
1.055
1.072
1.105

0.997
0.995
1.033
0.997
0.998
1.003
1.011
1.037
1.076
1.125

(A 1)

and its expression is easily calculated (or derived
from the %igner rotation matz ices, extrapolating
them from real to imaginary rotation angles):

mmmm' + 0

in combination with (AV), we immediately get

j „j'*"=i„g"pi p*

defining

(A10)

1+x
2

y

1-x
2

0 0 0

(A8)

and we obtain

) P If'' y

'I I rgp

I = I~r «r„„.I'0„.
Hl ~ 75 «ft «ft

defining

(Al 1)

(A12)

vrhere x=cos8, y =sin8, 8 being the imaginary ro-
tation angle.

Using the closure relation

(A8)

dry g«,
1

I I P s+P
INt'ft' I pv ~ms ~n'

(A12)

(A14)

10 f

10

fob

fo

)0'4
2 3

(Gev)
FIG. 9. Contributions to the (pS') imariant mass

spectrum produced, per target nucleon, in the reaction
v+p( p+ 8'+5,' (MI, =2 GeV, gz, =2) at beam energy
E„=20GeV. All curves are characterized as in Fig. 5.

We notice that, in (A10) and (A12), only the values
m(m', N, n') =+, 0, —are to be considered, since
jJ~=j~~=0 by gauge invariance.

»»

»»»»

.l

6 8
~ (SeVj

FIG. 10. Same contributions as in Fig. 9, at beam
energy S„=200GeV.
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TABLE XV. Over-aH ratio 8 for the process ~+X
p, +8'+3P (M& =2 GeV, go =2) atF~ =20 GeV.

TABLE XVI. Over-all ratio R for the process &+X
—

I ~ aV (M~ =2 Gev: g, = 2} at Z, =200 Gev.

Wpq, (GeV}

2.2
2.3
3.0
4.0

1.593
1.214
0.767
0.753

1.675
1.178
0.652
0.666

8'p~ (GeV}

2.1
2 ~ 3
3.0
4.0
6.0
8.0

1.317
1.157
0.851
0.790
0.702
0.636

1.034
1.023
0.967
0.891
0,600
0.548

In (A13), (A14), integration over the left-hand
(right-hand) invariant phase space means that the
left-hand (right-hand) final state may be decom-
posed into partial waves with mell-defined quantum
numbers: mass, spin, helicity, etc. It results
that only diagonal density matrices are associated
with the final (as well as the initial) states. This
fact, together with rotational invariance (angular
momentum conservation at either vertex}, leads
to the selection rule n = m, n' =m '; thus

I=+ I (r ) I'

where we write I for I „,and I„'~ for I' ~ ~

(-=I'~ .). Using parity conservation (I,= I,

I,'=I'), we get

I = I,I,'(1+cos'8}

+ (I,I,'+ l,l,') sin'8+ I, I,' cos'8 .

Then, using the conventional definition" of virtual
(transverse and longitudinal) cross sections, i.e.,

j.
v = I 0 = (- IT 2(gr2 ~+2) + t L 2(ly2 ~2) 0} &

(A17)

and substituting the resulting expression for I in
(A6), we get

~ ~ ~ [or or(1+cos'8) —(or a~+c~cr) sin'8+a~ c~oc's8J. (A18)

Since 8 is imaginary, we put cos(9 = cosh8, thus
sin 8= —sinh'8, finally obtaining Eq, (2.1) of Sec.
II. The calculation of cosh& or sinh8, involving
trivial kinematics, leads to Eg. (2.1).

A last remark: From (A13), using the helicity
rule n~ =~ and the parity rule I, =I, together with
(AQ} and (A17), we are led to

=I,e,"so+I,(e+"e", +a*"e')
= (I, —I+) c,"e,' —I,(g "'+e,,"~ e",~)

2(, ,
)
[(a~+or) e,"so+or(g ""+a~~ e', ~)].

(A19)

%'riting down the analogous expression for I'„„
using (A2) and (A6), and making e, eo= —cosh8,
we are brought back immediately to Eq. (2.j.). Qn
the other hand, noticing that e,

~
=q "/(-q')'~', and

that c," can be expressed as

2&t
q (p 'q}

0 AlfR(~2 pp)2 t) P q2

(A 20)

where P" —=P„"or Pg, we may cast I"' into the fa-
miliar form

Igr/ ly P 2 PP (P q) P Pl/ (P q) ll
2 q2 I q2

(A21)

where W, and 8', are the well-known structure
functions, 2' related to the virtual photoproduction
cross sections (or and or +v ~, respectively) by
trivial proportionality factors. Thus the helicity
treatment provides a better physical interpreta-
tion of the structure expressed by (A21).

APPENDIX 8: EXPRESSION OF a,oL,O~,

%e here give the expressions, for the processes
(A)-(D) considered, of the virtual and real photo-
production cross sections for the left-hand vertex
(y" +A-B, where y' is the spacelike photon ex-
changed, becoming real at the limit t =0).

(A) r'+~-~+a.
2 @p2

16p'
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(» 16~~'P& 1-P' 1+P
(W'+ t)' 2P 1-P

() 4m' P 3- P 1+P

(82)

(83)

where )/, is the muon mass, and P = (1 —4g'/W2)'/'.
(C) yr+ g - t(+y*. [We here consider (C) before

(8), since the latter process may be treated as a
limit case of the former one. ]

W(W' —t)') W' —)),
' 2kq k '

p

+ 2 2
—

2 2
———(M +2)/. }I'+ W +p, +t —M +q2t 2g +M q q

gI' —g' 8"—p kp 2kq p
(84)

7 2
=

W2(W2 2)2k2
—W I (W2 2) [)2 —)( (5W +M —t) —)( (5W +4tW +tM )+W (W +t-3M')]

+ [3)), +2)),'(5W'+3t)+)/, '(3W'+6W't 2W2M2+-2t2 —2M't -M')I.
2kq

+ M W (2W'+2t —3M')]

—2I '[ 4P'+ 2)2'(2W '+ t —2M') —)/2M'(t+ M') —M'(W + t M')]—[,
2maq I +' -p, M +2@,

W(W' —t(2) W'- g' 2k q
' k '

p

(85)

where M is the mass of the timelike photon y*,
and

A 1/2(W 2 M2 ~2} /11/2(W 2 ~2 t )q= ' '
, k=

, [(W' —)t')(W'+ t)'+t-M')+M't),1

In these formulas, the heavy photon y* is treated
as a final particle. In order to account for the
additional vertex y* —t(+)) in process (C}, the
above g ven expressions for g(Tc) gsc) g(7c) must be
multiplied by the factor

2a 4p. ' '~' 2p, ' dM

q, I.=In4k 1+
I ' 1-p'

W'(W' —p, 2)

)2'(W —)2 ) +tM'(W'+3P, '+t-M') '

[(W2 ~2)(W2+~2 M2)]
1

4k q 1+p
P0 I r 0 1 r 0 2(W2 2)

and integrated between M . =2]Lit, and M =8"—g.
Coming back now to process (8), i.e. , y'+ )),

+ y, we simply need to make

o(2 ) o(c)(M —P)

o~,»=o«)(M =P), (8"t)

z(B) &(c)(M
7 7

For g7, it can be che eked that one obtains the
well-known Klein-¹ishina formula.

(D) )r+y'-)2+W. With the value g~=2 of the
vector boson's magnetic moment, one gets for g„o~

+ (2M~2 + t)2) [2(M~2 —3)(')(W' -M~2+ t(2) —W'] ln 1+&

+ 2(2M~' + )22}(M~2 —)22)(W 2 —M ~2 —t(2) ln 1+ 1' (88}

where f is the coupling constant of the vp. W vertex,
M~ the vector boson's mass, and

Al/2(W2 M 2 ~2} /11/2(W2 M 2 ~2)
-M& +p, ' g +M& —p

The corresponding formulas for gT+, g~~D are con-
siderably longer than (88), and actually too long
to be given here. Notice that, when applying Eq.
(2.1) or (2.5), one must make m = P in process (A)
or (D), and nt= t( in process (8) or (C).
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