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TThe contribution of high-mass mesons at q2 = 0 may be

very small, however.
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A natural and self-consistent method is given in the context of the ladder approximation
of the Bethe-Salpeter equation for the construction of gauge-invariant models for two-body
scattering involving photons. One vertex in these models is assumed to have structure and
to be described by a Bethe-Salpeter equation. As examples, models for the following
reactions axe given: yN-y¹ yN- x +, p' N; yx-yn; @7'-p"071.

I. INTRODUCTION

In order to explain particular experimentally
observed properties of scattering amplitudes,
such as the existence of fixed j-plane poles, scal-
ing, and forward peaks, it is useful to have several
possible models that describe the process, so that
the observed property can be traced back to fea-
tures inherent in a limited class of such models.
For example, the peaking of differential cross sec-
tions near the forward direction is associated with
models in which cross-channel exchanges are im-
portant. For reactions involving the photon, the
constraint that the models be gauge invariant makes
it difficult to propose test models. Although it is
usually possible to propose a set of Born diagrams
whose sum is gauge invariant, any attempt to in-
troduce particle structure by the insertion of form
factors in these diagrams invariably destroys the
gauge invarianee. In order, then, to restore
gauge invariance, it becomes necessary to add con-
tact terms or contributions unmotivated by basic
diagrams. ' The prescription for finding such
gauge-invarianee-restoring terms is often non-
unique.

Within the framework of the Bethe-Salpeter equa-
tion in the ladder approximation it is possible to
propose gauge-invariant models in which all con-
tributions are motivated by scattering diagrams.
In this framework, structure for the particles is
introduced by assuming that vertex functions satis-
fy Bethe-Salpeter equations. The covariant poten-

tial responsible for the structure of the particles
then naturally leads to a consideration of appropri-
ate diagrams whose inclusion in the model ensures
gauge invariance.

In the following we discuss several models, be-
ginning with the standard reaction yN- mN which
illustrates this technique. Models of the type dis-
cussed here are most appropriate for considering
the existence of fixed j-plane poles in Compton
scattering' and scaling of structure functions in
deep-inelastic scattering. In fact one of the models
we discuss is that used by Drell and I ee.'

II. GAUGE-INVARIANT MODELS

To illustrate the technique for constructing
gauge-invariant models with the framework of the
Bethe-Salpeter equation in the ladder approxima-
tion we consider first pion photoproduction of nu-
cleons, y,N~- m, .N~. , where the indices represent
the respective four-momenta. The normal gauge-
invariant model for structureless particles is given
by the sum of the Born diagrams in Fig. 1. If we
d'enote the charge of the incoming and outgoing nu-
cleons by Q and Q', respectively, the gauge-invari-
ant amplitude is just

7'„=~V ')l@,&V q)r„+0'r„pV ' ~)r,
—(0 Q')r, ~(a e')(-2e'-+q)„)~V ), -(I)

where P(x) and mt,'x) are the nucleon and pion propa-
gators given by
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FIG. 1. Primary diagrams for pN mN {structureless

particles).

P '(x) = —(ix y +m-ie),

x '(x)=x'+p' i~. -
Using the relations

P(P+q)q ru(P) =is(P}

u(P')q yP(P' —q) = —iu(P'),

and the fact that the external particles are on their
mass shells, we obtain

q"T'„=is(p')r.s(p)[Q —Q'-(9 —0')1 =o.
Structure can be introduced by assuming that the

vertex functions describing the coupling of vector
particles and pions to nucleons satisfy Bethe-Sal-
peter equations as illustrated in Fig. 2. The alge-
braic form of these equations is seen to be

r„(p q p+q)=r„-
=Z"y„+ d'x 8'„xP +q+x

~ rNvN(p+x)P(p +x)

r (p q p+q)=r (p)

constant. We assume that the potential is suffi-
ciently well behaved so that the integrals (3) and
(4) exist. In this model it is clear that the poten-
tial 8'„coupling the nucleons should be the same
for photons as for pions. We have made the tacit
assumption that this potential describes the ex-
change of scalar mesons. This is, of course, not
necessary, for Dirac matrices, i.e., y„y„, etc.,
could be inserted before the first propagator and
after the last propagator to enable, the potential
to describe the exchange of other types of mesons,
i.e., pseudoscalar, vector, etc. We have also
made the physicall. y reasonable assumption that
the pion, m&, is a bound state of two nucleons (i.e.,
of an KÃ pair) or two quarks and thus that it lies
on a Regge trajectory. Since it is impossible to
conceive of a Hegge trajectory for photons, we
have written an inhomogeneous Bethe-Salpeter
equation for its vertex function.

Clearly the potential 8'„, which couples nucleons
to give structure to the vertices, should also cause
exchanges between the initial and final nucleons.
This leads us to consider the model shown in Fig.
3. Denoting the contributions of the individual di-
rect-channel diagrams of Fig. 3(a) by D„, D„" (n

=1, 2, 3, . . . ) and those of the crossed channel dia-
grams of Fig. 3(b} by C~x, C„" (n= 1, 3, 3, . . . ), we
write

Dx =D„+QDx,
1f=l

Cx =Cx+ QCx.
g-1

The photoproduction amplitude T„ is then given by

Tq = QD„+Q'C~ .

d'x W„(x)P(p+x)r '(p +x)P(p + q +x),

(4)
where W„(x) is a potential and Z~ the NyN coupling

iw„(x)

WNIxn)
0

WN (x()

(b)

' W„(x)

(b)

WN (x„)

WN (x~}

FIG. 2. Bethe-Salpeter equations for photon and pion
vertices assuming the pion to be bound state of bvo
nucleons.

FIG. 3. Diagrams necessary to give a gauge-invariant
model for pN —r~.
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It is interesting to notice that the assumption that
the pion is a bound state of an NN pair means that
the pion w'ill appear as a bound state in the scatter-
ing process NF- NN, and thus that the ladder dia-
grams shown in Fig. 3 simulate the exchange of a
Reggeized pion as indicated in Fig. 4. This is not
an unexpected feature since the exchange of an
elementary pion was necessary to ensure gauge
invariance for structureless scattering as depicted
in Fig. 1. With the help of the generalized Vizard

identity for r""",
iq" I'„")'"(p,p+q, q)=P '(p+q) —P '(p)+0(Z}

Wpglo y (7)

and the Bethe-Salpeter equation for I", it can be
shown that the model given in Fig. 3 is gauge in-
variant. In particular, the generalized Ward iden-
tity results in each diagram giving two terms, one
containing no propagators involving q and the other
with just one propagator containing q. If the Bethe-
Salpeter equation (4) for I" is used to reexpressI' in the term whose propagators are independent
of q, the resulting expression w'ill just cancel the
term having one propagator containing q in the next
higher diagram. As an illustration of this cancel-
lation we consider D and D'.

q" dI=)u(p'}I"(p')P(p+q)q"I' (p)u(p}=-i (up')I"(p')P(p q+)[P '(p+q)-P '(p}]u(p)

=~ t)'))"))')p)t ~ «lp 'tt') )))- V')J& *)«,t*))'(0 +i«"'tt«'' «)I'V' «' «)«t))

=0 iu(p-'}
~

d'x W„(x)P(p'+x)I" (p'+x)P(p'+q'+x)u(p) .

Similarly,

D„=«IP')J &''«)«, t«, ))'tD'+*,))"U ''*,))')t «+*,)«')'j)t «, )P)t '*,) )) )

=*-.)t )f «;at. )~)t ..)r )) .«)s)) «+ )««)))- t t)) «'*w. t )«t), ~ ««r i+t) «i)p«))'tt'). ts)

Clearly, the term left over from q" Dj utscancels
the first term in q"D„', since q+p = q'+ p'. Similar-
ly the second term in q"D„' cancels the first term
in q"D„'—again with the help of the Bethe-Salpeter
equation for I'". This cancellation scheme is
shown diagrammatically in Fig. 5. Since D„and C„
are separately gauge-invariant, the model de-
scribed by Fig. 3 can be used to describe charged-
pion as well as neutral-pion photoproduction.

In the proof of gauge invarianee the fact that I'
described the coupling of a bound-state pion to the
nucleons was not essential. In fact, I" could be
replaced by any vertex function describing the cou-
pling of some particle to the nucleons. For exam-
ple, if I" is replaced by I'„, where 1""„describes
the coupling of a vector meson to the nucleons as
illustrated in Fig. 2(a), the model is then a gauge-
invariant description for reactions of the type

year- y&; y&'- p'~, p'&'; etc.

Since it is reasonable to consider the p meson as
a Regge pole and thus a bound state, Z" for the p
meson wouM be zero. The appropriate primary di-
agrams and the cancellation scheme are given in
Fig. 5. The q-independent terms containing Z
which result from the replacement of 1„"by its
Bethe-Salpeter equation cancel between D" and C".

It is also easy to include models where the in-

coming and outgoing nucleons are considered as
bound states. For example, we can consider the
nucleon as satisfying a homogeneous Bethe-Salpeter
equation. The diagrammatic form of this equation
is given in Fig. 6. We then have the following
equations:

y(p+x) =-y, (x)

d'x'V (x')P(p +x +x'))p~(x +x') v(x +x'),

(&0)

d'x V(x') w(x+x')Tt), (x+x'}P(p+x+x'),

where m is the appropriate propagator of the bare
meson x and P is the propagator of the bare nucleon

The potential V describes the coupling of the

~ Xn

Xi

FIG. 4. Simulation of a Reggeized pion.
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x+ x'

x

nucleons N which gives structure to the mNX, VAN,
etc. vertices. Similarly there should exist a po-
tential 8'„ to describe structure at ~XX, VXX, etc.
vertices. The potentials V and 8"„lead to basic
or primary diagrams for the reactions

&&z - &z&~

iV(x')

x+x
x~

FIG. 6. Bethe-Salpeter equation for the nucleon Nz
considered as a bound state of elementary particles N
and X.

nonidentical particles Xand ¹ We assume that
the potential V is sufficiently well behaved so that
the integrals {10)exist. Previously we assumed
the existence of a potential W~ between two bare

(««R is a bound state of an NN pair) as shown in
Fig. 5. We also show in Fig. 5 the ladder diagrams
which have to be added in order to make the model
gauge invariant. The gauge-invariance cancellation
scheme is again shown in the last column. Here
D"' is a diagram containing n horizontal lines each
denoting the potential W„between bare nucleons;
D is a corresponding diagram containing n verti-
cal lines with each denoting the potential V between
a bare nucleon N and a bare meson X. As an ex-
ample we consider the cancellation of D" by con-
tributions from D' and D '. The contribution of
the primary direct diagram D multiplied by q" is

d xp&.(x)P{p'+x)I' (p' +x}P(p+ q+x}ql'& «"(p+x)P(p+x)q«~(x}««(x) .

Replacing q"I'p "(p+x) by iP '(p+x) —«P '(p+q+x) and using (4) and (10), we may write this expression as

i [d'x P (x)P(P'+x)I" (P'+x)P(P +q +x) d'x, V(x, )P(P +x +x,)P (x +x, )w(x+x, ) w(x)1 P I 1

-i d'xp~ (x)P(p'+x} d'x, W„(x,)P(p'+x+x, )I"(p'+x+x, )P(p'+q'+x+x, ) P(p+x)p~(x}m(x) . (11)

The first of these two terms is canceled by a contribution from D". This diagram multiplied by q" is seen
to give, on using (7),

i d'xd'x, g~. (x)P(P'+x)I"'(f«'+x}P(f«+q+x}P(P+q+x+x, )P(x+x, )««(x+x, )««(x)V(x, )

«

—i d'x d'x, P .( )Px(P'+ )1"x(P'+ )Px(P+q + )Px(P +x+)Px{ + x) x( ««x+)wx( )Vx(x, ) .

Similarly D" yields, on using (7),

d'x d' yx, ( )Px(p'+ }Px(p' ++x)Ix"(p' +x+)Px(p q ++x)+Px(p+ )p~x( ) (x)vWx„( )x

iJ d'x d-'x g~.(x)P(f«'+x)P(p'+ x + x,)I' "{p'+x +x,)P(p +x +x,)P(p +x)p~(x) ««(x) W„(x,) .

Clearly the first of these terms cancels the second
term in (11). The cancellation of the remaining
terms proceeds in the manner indicated in Fig. 5,
row 3.

If we replace the pion vertex by a vector meson
vertex we obtain —in an analogous manner —the
gauge-invariance cancellation scheme shown in
row 4 of Fig. 5. Unless the vector meson is com-
posite, i.e., a p meson, the sum of the D (direct)
diagrams and the sum of the C (crossed} diagrams

are not individually gauge invariant. The primary
diagrams for reactions of the type we have just
been considering are box diagrams. The additional
diagrams necessary for gauge invariance are all
planar exchanges possible within the boxes, i.e.,
the sum of all diagrams with n horizontal exchanges
WN and all diagrams with n vertical exchanges V„
for n =1 to infinity. If we let W-0 in the case of
Compton scattering, the resulting model is that of
Drell and Lee.'
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As another example we can consider the case
when the meson X carries an electric charge and

couples to the photon. In this case the structure of
vertices of the form mXX, VXX is described by a
potential W„, and we can consider models for the
reactions yN„- m„NR and yN~- V,N~, where m„and
V&(Z = 0) would be considered as bound states of
two X particles. In the case of Compton scattering,
in addition to the primary diagrams D and C a
primary seagull diagram S must be added, and

gauge invariance requires the addition —to planar
ladder diagrams obtained from D and C~ by insert-
ing W„and V rungs —of a corresponding ladder of
seagull diagrams obtained by inserting any number
of rungs 8„' between the meson lines. This model
can describe the following reactions i.n a gauge-in-
variant form:

1'&s- (Ps, 1')&s

y&z- p~&z

where in the case of the bare point interaction
q"I"„~"(q,P) =q (2P+q}. From (13) it follows that

n=a

D„'"= —
I

dx'I „(x—p')m(x —P')

X Q~, {~—P ')&(.y) ~It),(~ —P) Yt (X —P) .

{16)
Proceeding in a similar manner we find for the
contributions of the crossed terms

QC„'"= dx'I"„(x-p+q')rr(»- p)

V„=V„, dx'„V(x„}P(e„)x(e„,—p —q),

(i4)
V, =

Jl
dx'I'„(x —p'}m(» —p')y, , (» —p'}p(x) .

In obtaining (13) we have used (10) and the general-
ized Ward identity

q"I„~ (q, p) =m '{p+q) —n '{p),

Since the proof of the gauge invariance of these
models is not at all trivial, we indicate the main
steps. Consider the diagram for D'" (see Fig. 5)
multiplied by qq. Its contribution to the amplitude
may be written

D„'"= V.[~(e. —p)q"F'„"-(q, p e.)x(p +—q e.)l—

= —v„~{~„-p)y, (~„-p)

x y, (x —p)p(x}71{x—p)y, .(x -p') . (j.7)

Next we consider the terms containing horizontal
rungs W„'. The contribution of the direct-channel
diagram containing n rungs is

D"„' =- F„~(:-„-p')r„(~„-p')~(~„- p)

&q" I'~~ (q, P —e„)m(e„—P —q},

where

where

+ V„,,m(~„,„-P) P (~„„-p),
W, = dx'q (x P}P(x}—q .(» P'). —

{ss)

C„=X+ X; Proceeding as before but using now the first of the
vector vertex equations,

r„(x-p') = d x"p(x'+ x -p') x(x'+ x - p —q)1 „(x'+x —p') W(x') +&(» —2p' —q'),

r„(x-p+q'}= ax"~(x'+x-f)~(x'+~- p+q')r„{~'+x-I +q' W~')+z(2X-2p+q'

we find that (18}may be written

D„"'=F„~(~„-p')r„(~„-p')m(~„- p —q)

—Z w(e „—p') IV„(2e„—2p ' —q')„x(&„p)-
rP(kg I P )Wg+ Iff{Eff+I P )7T(Cg+ ] P q)

C„"o=—W„x(e„-p}r„{e„-p+q')m(e„- p'+q)

+ Zx(e „—p)W„{2e„—2p + q')„x(e„—p')

+ I'„(e„,,—p+q')P„„p(c„„—P')7t(e„, , —P +q') .

The contribution of the corresponding crossed
term is similarly found to be

(21) The appropriate contribution of the seagull diagram
containing n horizontal rungs W„ is

Sp ———2q~W„Zm(&„—P)m(&„- P'} .
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Using (19) and (20) one now finds that

(gpp+ Sn + gnp) $0 ~ (gpn + Cpn)
P P P 0 ~ P

n=] n=p

which proves our claim.
Finally it is also possible to replace the incoming

and outgoing nucleons by pions. This results in
gauge-invariant models for yv- V,w (Fig. 5, row
6) and yn„- V,v„{Fig.5, row 7), where in the last
reaction the vector particle if it is a p and the pion
are considered as bound states of two nucleons.
The vertex functions for the two external pions
may be written

I'(P +x) = d'xP'(x, )P(P +x+x, )1'(P +x+x,}P(x+x,),
(24)

T'(P+x) =, d'x, W{x,)P(x+x,)I'(P+x+x, )P(p+x+x, ) .

The vertex function for the external vector parti-
cle is, of course, given by (2). The model de-
scribes in a gauge-invariant manner the reactions

p 4 4 4 p
yvR (yi ps) xs~ yes pavss yes pRxR ' (25)

III. CONCLUSION

It has been possible to construct within the
framework of the Bethe-Salpeter equation in the
ladder approximation gauge-invariant models con-
taining structured vertices for reactions of the
form yN- AN, V~ where the nucleon N could be

considered either as elementary or as a bound

state and ym- V,m where the pion m couM be con-
sidered either as elementary or as a bound state.
Clearly a bound-state pion model will provide a
gauge-invariant description of ym„- n„m„. Thus
we have presented a method of constructing gauge-
invariant models for an apparently unlimited
variety of photonic two-body reactions that is
natural and self-consistent. The models are useful
for the investigation of numerous properties of
photonic reactions such as, for instance, their be-
havior in the deep Regge region in analogy to the
investigations of Blankenbecler et aE.4 Of course,
in the one-Z models consider explicitly above, the
photon is assumed to be bare so that the %'ard

identity is protected, and there is no contradiction
between Egs. (2} and (7}. The case of structure in

both photon vertices in our models requires simply
replacement of the bare charged particle propaga-
tor by its appropriately dressed counterpart. This
need not be an additional complication since in

many applications the explicit form of the dressed
propagator is not required. Two special cases of
the models discussed here are implicit in the work
of Brodsky et al. ' and Scott. '
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