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Under the conditions of Eq. (2.7), K0, and K~, can in
general have intermediate states of 6, type, but such
elastic absorptions to the inelastic kernels are expected
to give much smaller corrections to T«.
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%'e have studied. the effect of fragmentation and energy conservation in the eikonal-Regge
model. A generalized eikonal representation involving multi-impact parameters is given for
the elastic and inelastic amplitudes vrhen fragmentation takes place. The generalized eiko-
nal function which describes a many-body potential depends on more than one impact para-
meter. In the strong-absorption model and at high energy, however, the elastic amplitude
can be approximated by a single-impact-parameter representation with an effective eikonal
function. As a result of the fragmentation, we find that although ez and 0'z still increase as
in~I, their ratio is no longer ). Instead, it is the sum of the elasiic and diffractive cross
sections which remains to be one half of the total cross section. To enforce the energy con-
servation, ere propose a thermodynamic approach by introducing an impact-parameter-de-
pendent temperature. Using well-known thermodynamics relations, we obtain various cor-
rections to the naive eikonal-Regge model predictions due to energy conservation. Experi-
mental consequences are discussed,

I. INTRODUCHON

The eikonal model' for high-energy scattering of
hadrons offers a semiclassical picture for a very
complicated process. A most striking character-
istic of high-energy hadron colbsions is the fact
that the number distributions in phase space are
very different in transverse and longitudinal mo-
mentum axes; they are rather limited in the for-
mer but apparently not in the latter. The impact-
parameter representation in the eikonal model is
ideal for describing this disparate situation. It
nicely separates the transverse degrees of free-
dom from the dynamics in the longitudinal space.

The main features of the eikonal approach are
that, on the one hand, the 8-channel unitarity is
automatically enforced, and on the other, it can

incorporate any energy dependence of the total
cross sections consistent with unitarity by a proper
choice of the eikonal function. This is in distinc-
tion vrith the conventional Regge approach in which
the Pomeron is assumed to be a simple pole. The
upper bound for the total cross sections in this
case is a constant asymptotically. If the rise in
the pp total cross section' observed in recent
CERN ISR experiments continues to hold in the fu-
ture, the simple Regge-pole approach must be
abandoned. In that case the eikonal model may be
a simple alternative to organize the data. Assum-
ing this possibility to exist, we will reexamine
and explore further certain aspects in an eikonal
model with rising total cross sections.

The eikonal approximation has been studied most
thoroughly for the elastic amplitude at high ener-
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gies and small momentum transfers both in the f'
theory and the massive vector-gluon model.
The two incident particles are assumed to retain
most of their energies throughout the collision.
The production processes under the same assump-
tion have also been studied "". Although the pre-
sumption of a negligibly small energy loss in the
two incident particles does not lead to any apparent
difficulties in the study of the elastic amplitude,
this assumption has to be supplemented by a self-
consistent procedure in the earlier calculation' of
one-particle inclusive cross section, number dis-
tribution, and multiplicities. Otherwise, energy
conservation will not be respected.

The purpose of this paper is threefold. " First
of all, we will include the fragmentation of the tar-
get and the projectile, so that the energy of the
initial particles is shared by groups of particles.
Second, in addition to the repeated exchange of a
connected piece between one fragment of the target
and another of the projectile, we will also consider
the exchange af a connected piece between one
group of target fragments and another of projectile
fragments. The latter type of exchanges generates
energy-dependent many-body potentials between
target fragments and prajectile fragments. Third,
we mill improve the treatment of energy-conserva-
tion canstraint in the eikonal approach, especially
in multiparticle production.

We will show that a generalized eikonal repre-
sentation can be established for the elastic as well
as inelastic amplitudes when both the fragmenta-
tion effects and many-body potentials are taken
into account. A particularly important result is
that when the Froissart bound is saturated, the
ratio of the elastic to the total cross section is no

longer —,'; rather, it is the sum of the elastic and
diffractive cross sections which is one half of the
total cross section. Another important conse-
quence is the existence of a gap on the rapidity
axis between pionization and fragmentation regions.
This is due to the large multiplicity (proportional
to a positive power of the energy) predicted by the
model. We must emphasize in the very beginning
that although the recent data' show a significant
rise in the pp total cross section with energy, and

they also suggest a faster than logarithmic in-
crease of the multiplicity with energy, it remains
to be seen whether the predicted ratio of the total
to the sum of the elastic and diffractive cross sec-
tion, and the existence of a rapidity gap will be
substantiated by future experiments.

II. THE MODEL

We will study a certain class of Feynman graphs
in a P~ theory under specific kinematic conditions
appropriate to the eikonal approach. These kine-
matic conditions will be described more precisely
later. We wish to emphasize that it is not our in-
tention to study the asymptotic behavior of the com-
plete theory. We will restrict our discussion to
the case where the exchanged connected part is the
t-channel ladder, and the momentum flowing into
and out of it is in the pionization region. Such an
exchanged part exhibits the well-known asymptotic
Regge behavior. It wi11 be further assumed that
the input Regge intercept o.(0) exceeds unity so that
the total cross section saturates the Froissart
bound. We will refer to such a model as the
strong-absorption model.

A. Eikonal-Regle model without fxalmentation

The model based on the above assumptions plus
the additional constraint that the fragmentation is
excluded has been studied in Ref. 6. As we shall
see, this simplified model contains many impor-
tant features as in the more complete theory and
is much easier to handle. Hence, we shall use
this model again in Sec. III to introduce some use-
ful thermodynamics concepts. The main results
in this simplified model for the elastic amplitude
and crass sections can be summarized by the fol-
lowing:

(l) The elastic amplitude is given by a simple
eikonal form

T = 2is d'ye ik ~ b 1 e-+(s, o)

The eikonal function A{s, k) is assumed to be purely
absorptive and is given by'

(2.2)

where n(k') and P(k') are the trajectory function
and the residue function, respectively, which ap-
pear in the ladder amplitude

a(g)
T~ = -iP(k') —, , a(0) & l. (2 2)

(2) The total, the elastic, and the inelastic cross
sections are given by

lmT (k2 0) = 2 d2k(l 8-A(sb)),1
S

(2.4)

In this paper it will be assumed that only scalar
particles are involved in the scattering process.

e-A,(s, b) 2 (2.5)
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=Pa = f» s('&-e '"' ") (2.6)

(2.7)

d 2b -2A(»b) (,~)e (2.8)

is the inelastic cross section due to the opening of
N ladders.

We wish to emphasize that the relation of A(s, b)
with Tl, as in (2.1) and (2.2) is only tentative. The
power dependence on s in A,(s, b) requires modifi-
cation in the strong-absorption model in order to
be consistent with energy conservation. This point
will be discussed in great detail later. However,
the modification wiB not alter the basic structure
of the amplitudes. In this section we will therefore
continue to employ the standard eikonal approxi-
mation in order to arrive efficiently at the general
structure. The necessary refinements wiH be de-
ferred to Sec. III. The readers are referred to
Ref. 6 for details of the earlier work.

pg=-pg = p ~ (2.10)

and lies in the z direction. For the elastic ampli-
tude, the final particles' momenta are

changes. They have also been discussed recently
by Skard and Paleo'8 and Blankenbecler et al. '
Our investigation. is a generalization of the earlier
work.

Consider the scattering in the center-of-mass
system. %'e are interested in the high-energy be-
havior of the type of Feynman graphs depicted in
Fig. I and Fig. 2 contributing to the elastic and
inelastic amplitudes, respectively. The lines
labeled a„.. . , a„(b„.. . , b ) represent the frag-
ments of particle a (particle b). All the other par-
ticles in the graphs are in the pionization region.
A particle is said to be in the fragmentation re-
gion if its longitudinal momentum P, satisfies

e«IP, I&P =- Ipl=2~~ (0&«&I), (2.9)

where c is small but s-independent; otherwise, it
is in the pionization region. The momentum p is
related to the initial momenta p, and p, by

8. Eikonal model mth fraynentation p,'=-p~=p- k, k=(k„b,). (2.11)

Our aim in this section is to derive a generalized
eikonal representation for the elastic and inelastic
amplitudes when the fragmentation and many-body
potentials are taken into account. Fragmentation
effects have been considered previously in simple
cases'0 "such as in the electron-photon scattering
and photon-photon scattering via multiphoton ex-

We will calculate first the graphs of Fig. 3 in which
particle a dissociates into two particles and par-
ticle b retains its identity. Let T„' denote the con-
tribution to T~ from exchange of n such ladders in
all possible permutations. We now express T „'
as products of various subamplitudes with simple
physical interpretation,

(2) . g P QP ~ 6 kg 4 lf 6 tg & CfT„(P,')=f
(2 ), (2 )»pj. (2 ), (2 )» (2 )» (2 )»' (2s) 5 Qb,. +P, -P,' (2w) 5 Ql,. +P, -P,'

tf

(P„P.) '(P,', P.')&, 'D. 'D, '
,

Q[E-(&„—I.;e., „~„)(2)' (b,'b, I~„, q„)], —(2.»)
1

where

P2 Pg P j.v P2 Pg Pl ' (2.13) (f =1,2), (2.15)

We shall define and simplify these subamplitudes
separately:

(1) The amplitude gu(P„P, ) describes the dis-
sociation of particle a into particles I and 2,

2+ 2

E-(P) Pi + 0
p' (2.18)

In the fragmentation region, the fractional longitu-
dinal momentum g defined by

e

PX -+ +&+ P2 -W +&~ p i = gp~ = &~s, 0 & g & 1 (2.17)

-fg 1 1
P'P2 P -E (P)+f~ P. E(P.)+fe-

fg I
P'P,' E-(P,).E (P,)-P;-

1 1
E (P,)+fe P. -E-(P.)+fe '. + . , (2.14)

is finite. Then, we find that E (P,) and E (P,) are
of O(1/v s) and P, =-P, +O(1/v s). Ignoring terms
of O(1/Ws), we have

I 1 1
+ +

Pi —E (Pi) + XEP2 —E (P2)+ Se P'g +Et -Pi +»E'
=-2vR(P, ) (2.18)
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FIG. 1. The elastic amplitude studied in this paper.
The lines labeled f)(l, ...,e„(b~,...,bQ represent the
fragments of particle a (particle b). The blobs exchanged
between u and b are t-channel ladders.

and, consequently,

1
(plsp2) p+p+ E (p ) + g (p ) p

( s) (pl)

=, ,C(p„p.)(2x)5(p;),
PiP2

(2.19)

~ p"p" p.'[& (p,)+E-(p,-)- p;]
g

2 + 2 2 +pi p +Pa p (pa+. a)
x 1 —x

x(1 —x}g
p»'+ (1 —x+x')p' ' (2.20)

p» =(1—x)j$, —xp, (2.21)

where g(p„p2) is the infinite-momentum wave func-
tion descrlblng the dlssoclatlon,

FIG. 2. A typical inelastic amplitude studied in this
paper.

being the relative momentum.
Similarly, the amplitude w'(p,', p,') describes the

recombination of particles 1' and 2' into a', and is
given by

2 =' i2 2 i2

I+
=

p, +p, .p(p pi)»~5(p,' ) (2.22)

The fact that p(p„p, ) and |lt(p,', p~) depend only on
their relative momenta is extremely important in
later interpretation.

(2) The denominator factors D, ', D, ', and D, '
describe the products of the propagators along par-
ticles 1, 2, and b, respectively. A summation
over all possible permutations of the exchange
pa.rticles along the fragments 1, 2, and b is under-
stood in the definition of these D "s. %'hen k, I,
q, and ~ are in the pionization region, i.e., when
k', f', q', and r'«Ws, the (D ')'s can be sim-
plified using the well-known identities"

g g
~ ~ X ~ ' ~ X

(pi+ki} —p +f6 (pi+k, +kg) —p +if (pi+ki+ +k„) -g +iE

, „ , (2s)" '5(k, )5(k, )x x5(k„),pi" ' (2.23)

(p, +f,}'-p'+ie (p, + f, + ~ ~ ~ + f„)'—g'+i~

and

, „,(2w}" '6(f, )5(i, )x ~ ~ ~ x5(f„-),ps" ' (2.24)

Z
X ~ ~ ~ X

(p, —q,)' —p'+ie (p, —q, — . —q, „)'—p, '+ie

(2.25)
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(5) The 5 functions appearing in T(„2) can be in-
tegrated readily after we introduce the light-front
variables (q', (1) and rewrite the phase space d'q
and the 5 function 5'(q) in the form

d g =~dg'dg d g,
5'(q) =25(q')5(q )5'((1) .

In particular, we have

(2.26)

(2.27)

FIG. 3. Example of elastic amplitude with two frag-
ments in particle a and no fragmentation in particle b.
The ladders link all 3 linesa =45 Qp; p,

' —p',
' p'(Qk, ~ p, —p')

(3) The function B(k, 1,q„q,} denotes the ampli-
tude of a blob in Fig. 3, including the four vertices
(ig), and the four propagators

2

p
2 + g f l 2 p2 + Q lg

2 p2 +

If we identify I1 as the sum of ladder graphs, then

B behaves like a Regge pole at large s,
(4) A combinational factor 1/s l associates with

the p( (identical} blobs.

XQ l +p2 p2

&;+ l, & &, 0 l~, 22S

where we have ignored terms of O(1/v s), such as
p,' —P,", p, , and p,' . The last three 6 functions
in (2.28) will be used to convert (D '}'s into prod-
ucts of 5 functions as given in (2.23)-(2.25).

Putting parts (1)-(5) together and carrying out
the integrations, we obtain

(2) p p dpi dpid pi dpi dpi d pi TT d~i d~ id f(i dfi dfi d fi dpi dq2i d q2(
( }5 ~ + + +

2(2r)' 2(2Ã)' ~~ 2(2r)' 2(2(()' 2(2r)'

+ +
x()' gk, +p, —p,' O' Ql(+pi —p2 +' +q(p„p, )2v()(p, ),+,+((i(p,', p2)2v5(p, '

)—,p,'p,'p,

TT (»)'()(&i)5(«)5(q:» .)()(q:i)xPj ', ,'( },
" ' " B(k, , l, , q„„q„)

d cj *
p(p p )C(p', p')(2v)'5' Ek +p —p' (»)'5' Zl +p -p'

4sp((1 —x) (2w}' (2w)'

s ) g J. (sii em' i P ~) (2 )g (2 )2
(2.29}

Pl ~1 +Pff (2.30)

=0; q+1 =0
(2.31)

and

s, -=(p,.p,)'-=p;p; =

s. =(p, +p.}'-=p;p.-=(1 «)s

(2.32)

T(2)(b) pa &i(p' —
p )' b T )(p(2)p

a (2 )2 a a

=2fs
4 &

fd'5 ~e(5 )~'

The result is particularly transparent in the im-
pact- parameter representation,

x—[ —a(s„s„b„b,)]",1

(2.33)
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+(b„)-=e' l)(P,b}

x(1 —x}g ((1 ,),i, b )2'
is the coordinate-space wave function,

a(s„s„b„b,) [=i)((s„s„b„b,)]

(2.34)

(lT b +()'bbF( Q 1)
(2s)' (2s)'

(2.35)

FIG. 4. Same as Fig. 3 except that the ladder only
links one fragment of a to particle b.

is the (three-body) eikonal potential, and

h, =h+(1 —x)h~, bb =h —xh, b (2.36)

where

h =xb, +(1 —x}b„b~=h, —h, . (2.38)

and consequently,

()(-e( b&,bbbb&, )bb1}

(2.37)

(P,') =2is d'b, d'b, e '(P' 4sx(1 —x)

are the impact parameters of the individual frag-
ments. Summing over all n, we obtain Equations (2.3V) and (2.38) can be generalized in

several ways. If the usual two-body potentials are
included (see Fig. 4), we only have to make the re-
placement in the eikonal function

a(sy, sb, bye bb) A(sx' qsbby' bb)

= a(s„b,)+a(s„b,)+a(s „s„b„b,),
(2.40)

X (y(b ) (b [ e-b(b~. bb. bg ~ bb) 1 ]

(2.38}

where a(s„b,) [a(s„b,)] corresponds to the ex-
change of two-body potentials between particle I
[particle 2] and particle b, and is given hy

a(s„b,) =-4 I
4s,'

1 ~~j, ~ ~1 ~ ~2 ~ ~I ~ (IIb 2 2 + ~(. ]i. 1+]4(2s) 5 (q, +qb —k, -kb)e ' b ' &( „&„6,V, )

(2.41)

For the same blob amplitude (here ladder) 8,
there is a relation between a(s, b} and

a(s„s„b„b,)
a(s„s„b,b) = 2a((s, sb)'~', b) . (2.42)

Suppose now that particle a dissociates into more
than two fragments, say three, as in Fig. 5.

These graphs can be calculated similarly. Only
the fragmentation parts need some comments. In
the following, we only present the results. The
detailed analysis leading to these results will be
published in a separate paper.

The elastic amplitude for the process described
in Fig. 5 can be written as

T(sb)(pb') =2is
4

'
4

'
4

' 4sb(x, +x, +x, —1)d'b, d'b, d'b ~q( bbx, —b„b, —h, ) ~b
FX] lT X2 FX3

x e-&(p, -p,).b [e-x((b(), (b())
J

where p is the three-particle wave function,

b = & bi + &2b~ + &Sbs

and

(2.43)

(2.44)

(2.45)A(( s( j, [b(])= a(s „b,) +a(sb, b, ) + a(sb, b, ) + a(s„sb, b „b,) +a(s„s„bb, b, ) +a(s„s„b„b,) .

When more general exchanges are included, the potential A([s,],(b,]) should contain true four-body po-



10 FRAGMENTATION AND ENERGY CONSERVATION IN THE . .

tentials as well.
The fragmentation of particle 5 can also be easily included. For example, the result for a-a, +a, and

b-b, +bq (Fig. 6) is (p,', =»{p,', p~, =y{pk)

' 4wb(x, + x, —l)d'b, d'b, b'(x b, + x b, —b) 4
'

4
' 4){5(y,+ y, —1)d'cd'c, b'(y c, + y,c,)4rxy 4r~ 4myy 4'F y2

I(c(x, b, )I'Ik(y c )I' d'be "' "'[1—s "' "' " '~ '] (2.46)

where b„b„and c„c,describe the positions of the fragments relative to the c.m. of particle b, and P(x, b)
and g(y, c) are their respective wave functions. As a result of momentum conservation, the potential
A({s,), (b, , c,]) depends on the impact parameter b and the coordinates b, and c, only through the differ-
ences b, -c~ (i,j = I or 2).

In the special case of the exchange of a four-body potential as depicted in Fig. 7, the eikonal function A
in (2.46) is given by

1' '] ' ' ""'= .(1-.)y(1- )" 4' 4' (2.)'(2.)'(2 )'(2.)'"""'"""'' ~)

(k&' b&+(k&' b& {q&' c)-{q&' c&fl(b b )
k~ =0;q ~0 (2.4V)

It is easy to see that a([s], b„b„c„c,) is a function of x(1 —x)y (1 —y) s and b, —c~ (i, j = 1, 2) only. When the
previously considered two-body and three-body potentials are included, they contribute additively to the
eikonal function.

The result (2.46) generalizes easily to the case in which particle a and particle b fragment into more than
two particles.

C. production processes w'ith fragmentations

The inelastic amplitudes can be calculated by a similar technique. " Only fragmentation of particle z
will be considered. To be specific, let us consider the high-energy limit of graphs in Fig. 8. Summing
over graphs with all permutations of the vertices attached to the three energetic lines and making use of
results in Sec. IIB, we obtain the simplified amplitude

T(i)i N ~ ) —2 sfd 2b dqb s-{{Py-rPa ' b)-{fpq
- {1-x) {)~) ' bq

x 0'(x, b„)
)
[-a(s„b,)] "& [-a(s„b,)] "q

(
[-a(s„s„b„b,)]")2

.11(-,' M,(~,))11(-, ,
'

))(,((,.)) .

Summing over all absorption corrections we obtain the eikonal representation

(2.46)

T, (s, p,', p,', fb)) = 2is

xe(x, l„)e "~(') ' 'dll — M((,))II —
& ( M((,)),

k

(2.49)

z

(q+ b, + ~ ~ ~ +b ) —i(,'+i& (2.50)

with the momentum labels {&„b2,~ ~ . , b„j sup-

where A((s,j, b„b2) is given by (2.40) and M„(b,) is
the Fourier transform of the multiperipheral am-
plitude

i
M, (q) =i(ig)"", x ~ ~ ~

+ Z6'

pressed.
A scattering process xs defined to be daffractxve

if only the fragmentation particles are produced
without being accompanied by any pionization par-
ticle. The amplitude for a diffractive process a
~ Q~+ 02 ls

(2)T =-2is d y d $ e-'{p~ "p
1

)p(» b )(I s A{By sq {)y lk)) (2 51)
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Pa

x (I-e "'i'2'i'2' }'. (2.53)

Similarly, from (2.49) we get

FIG. 5. Elastic amplitude arith three fragments in
particle a and no fragmentation in particle b.

x(1- e-'"&'i '2'i '2'}

(2.54)

From the amplitude given by (2.49) and (2.51) we
can calculate the various cross sections. For ex-
ample, the differential diffractive cross section
from (2.51) is

~(2) i ] T(2)(2 1 & PI & P~
2Z. 2Z, 2S'(2v}' 2Z'(2s)' 2S'(2v}'

x (2v)'5'(p&+p2+p, '- p, - p&)

2 I D (P1 tP2) I 4vgl ) (2v)I (2v)$

(2.52)

The p,', p,' integrations can be carried out trivially,
and we obtain

x(I e -A(8$.42.&g, bg))

1=--rmr', "(p,'- p. =o)

g(2) (2.55)

where Tz'~ is given hy (2.38) with the eikonal func-
tion (2.40). Equation (2.55) is the optical theorem
in this case.

Before we proceed further, we will derive a sim-
plified, single-impact-parameter representation
for various amplitudes and cross sections. We
note the relation

ff

2[a(s„b,)+a(s„b,)+a(s„s„b„b)]=+,2 „2&0 2
M(b„(k))+, , M(b„(k]) &0, (2.56)2(l —&jan

which implies

a(s„b,)+a(s„b,) ~ a(s„s„b„b,) . (2.5V)

bound approach each other and

e -&(S1,a2, bg, bg)

Further, since a(s„s„b„b,) is positive, "we fi-
nally obtain the inequalities

-O(ey, bI) - e(S2,52)

- (e,o )-a(~, o )-e(e,a,o,o )

(I e-2[a(s~.&~)+a(s2.&2)1 (2 59)

But in the high-energy limit, the upper and lower

=1- [1- 8(b. —b,)][1-8(b. —b,)]
= 8(b„—b, ) + 8(b —b2} —8(b —b, )8(b —b2),

(2.59)

where b is determined hy a(s„b,) or a(s„b,) alone.
In the strong-coupbng case at high energy, b„

increases as lns and has no x dependence, while

Q(

b)
q, ii

bp

FIG. 6. Elastic amplitude with two fragments each in
particle u and b.

FIG. 7. Ladder-exchange which leads to four-body
eikonal function (i.e. , four-body potential).
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P)
In the strong-absorption model all the Az(z, b)'s
have the same size:

1 —8 "z ""=g(b —b) (b =b, ins),

and we obtain

(2.67)

1
o~ = -- ImT@ = dS", 2m'. ',

S
(2.68)

Pb Pb c = o("'= ~ dr" mO
'

D D ~ g m (2.69}

FIG. 8. Production processes associated with Figs. 3
and 4. There are two methods from which v~ can be

determined:

c(s) I dsb(1 z-x(s, s))s (2.61}

b» (=b, —b, ) is finite and controlled by the wave
function 4(b»). Hence it is a good approximation
to ignore the x and 5» dependence in A and to re-
place A(s„s„b„b)by A(z, b) where b -=zb,
+(1—x)b, is the impact parameter associated with
the center of momentum of particle a. After this
replacement, we then arrive at the single-impact-
parameter representation results,

T(s) 2fzl gsb z-((ps -ps)' & (1 z-z(s, s))8 ~ 2

(2.60)

(1) oz is identified as the elastic contribution to
cr~, and

(2) gz is obtained directly from Tz through in-
tegration.

For a complete theory, these two definitions will
lead to identical results. In our theory, since we

have not considered all the diagrams contributing
to o~ and T~, these two approaches may give rise
to different answers. As we shall see, if we insist
that both methods lead to the same answer, we
shall arrive at some very restrictive predictions
tn oz/gr.

%e will assign T~', the contribution to the elas-
tic amplitude without fragmentation, to be

o(s) I dsb(1 z-sx(s, s))I 2 (2.62) T("=-2ssc" d'Oe-'"' ' I -e-"' " 2.70

where the positive constant I, is given by

2 dg 2b„4 ~1 )
(4'(x, b»)( (2.63)

Under this approximation, we obtain from (2.52)
and (2.59)

and the positive constant c(' (=J(ff ) is c'hosen
to satisfy unitarity. The elastic cross section crE

is given by the term on the right-hand side of
(2.68) with only the elastic intermediate state.
This is given by half of the absorptive part of
(2.70), in analogy to (2.54):

(2) (2) I (2)
D I 2~7 (2.64) (2.71)

The above discussion can be generalized to a more
complicated situation. In our later discussion we
will therefore very frequently ignore the coordi-
nate (such as b») dependence in the wave functions,
and base our discussion on the single-impact-pa-
rameter representation. In this approximation if
only the fragmentation of particle a is considered,
the contribution to the elastic amplitude from the
fragmentation into N particles can be written as

T g~ = -2is dI~ I, . . . , N

0, = e"+ dl(„' wS '.
X=2

Equating the two expressions we find

c(')=-s'[1 —2z+(1 —4z)'~') z = g

(2.73)

From (2.68), (2.69), and (2.71), we conclude that

10'g + O'D = 20'g ~

&y method (2), oz can also be calculated directly
from (2.66). The result is

and the full elastic amplitude is
(2.65)

where we have chosen the sign of the square root
such that e(' = I when z =0. Since e ' must be
positive, E(l. (2.74} implies

T(z)
N=l

(2.66)
0&z &~,

g~( )gg
(2.75)
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and consequently,
l I
g(r~ &0'@ & 2O'~. (2.76}

When the fragmentation of both particles a and b

is considered, E(l. (2.72) remains unchanged but
(2.76) now becomes

l 1,O~ &O~ &-2g~. (2.VV)

The result (2.72) has also been obtained by Blank-
enbecler, Fulco, and Sugar' in a different model.
Its validity appears to be very general. It is in-
teresting that there is also a lower limit on the
ratio os/or in our model. It follows from (2.68)
and (2.V4} that

(2.78)

Note that v„stands for N "open blob" final states
which usually contain more than N final particles.
The upper limit given by (3.3) is an overestimate
when the multiplicity grows as a power of s, as
in the case of strong absorption. In our earlier
work' this difficulty is corrected by a self-con-
sistent argument. Here we propose a more sat-
isfactory solution.

We propose to make the energy-conservation
constraint explicit by rewriting (3.1) [or (3.4)] as

(3.5)

d jF
00 l2

»» s» '~» s
Therefore, the disk is not completely black. Of
course, this is why the ratio as/or is less than —,'. xeE- (3.6)

A. The temperature space

In the P' model, the inelastic cross section due
to the opening of X ladders can be written as [see
Eq. (3.11), Ref. 61

N 2

2f, aA(s, »») -'g g Q(() k(i) y(»))
i =1 y=l S

where

(3.1)

2A(s, b) = Q —M(f), k„.. . , k„)

(3.2)

All the momenta k&'~ belong to particles in the
pionization region. The limits of integration of
each k, are restricted to

III. ENERGY-CONSERVATION CONSTRAINT AND

TEMPERATURE SPACE

We now turn to the question of energy conserva-
tion in the eikonal approximation. We will first
neglect completely the fragmentation events. Their
inclusion will be discussed in Sec. IV.

(3 7)

where E= e~s is the maximum energy available
for producing pionization particles. In our model,
e is a small (0 (s «I) but s-independent constant.
For the power of the s dependence, it is sufficient
to remember that E -

v s.
There are at least three reasons for making such

a modification:
(1}This is the simplest modification which in-

corporates explicitly the over-all energy-conser-
vation constraints.

(2) From the perturbation point of view and for
any fixed order n, the introduction of the 8 func-
tion in (3.5) and (3.6) does not affect the leading-
logarithmic calculation. The modification becomes
important only for large n (say»i-s') where the
leading-logarithmic calculation is no longer re-
liable.

(3}Although the energy-conservation constraint
destroys the factorizability of the individual ladder
amplitudes, the factorizability is regained by
making a Laplace transform with respect to E.

After the Laplace transform, we have

dEe ' ll (s f))
p, 4 6] &g/s 0 &'g && 1 (3.3}

by an order of magnitude estimate. From (3.1) we
obtain the integrated cross sections

and

1
=-[2A(v, I»)]" (3.8)

d 2()[2A(s b)] RA(sos. )»)
xf (3.4)

11(r t ) sRA( 7'. i))1

1

The function 2A is given by

(3 8)
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RA(r, ((T dZe '*g Q, 2 „2 2
(2(b, (,'„.. . , I) 8 2 —pc)

dEe —2A E, b

dE @-TE ) p{0) E
e b/-4(lln(E /((2)

8((cs2 ln(E '/I(2) (3.10)

where cy and c are defined as

(2(k2) = o((0) —ck', a =- (2{0) {3.11)

II(E —(.', b},(E 2),
rr(E, b) (3.18)

and we have made use of the structure of A(s, b}
given by (2.2). Approximate evaluation yields

2 I @+1

/1(r, b =
Bmc '( (1/g'v'({r'p'), '

ye-{) /4( ln(1/P V' )

where we have introduced the notation

p = I'(2n + 3)p(0)

(3.12)

(3.13)

8,(T, b, k) =2A(r, b)f{k), (3.15)

with f(k) the normalized single-particle distribu-
tion in the pionization region given by the multi-
peripheral model. '9 The symbol I ' signifies the
inversion of the Laplace transform. The sub-
scripts denote the arguments of the inverse La-
place transforms. The ratio of the inverse La-
place transforms can be easily determined by
noting that at high energies the method of steepest
descent is applicable to integrals such as (3.14).
Thus

do( )(k) = jd b
"E ' b} a{.(E, b), b, k)

" 'k
,11(E, b)

(3.16)

with &(E, b) determined by the standard relation

From (3.5), (3.6), and (3.V) we can calculate the
inclusive multiparticle distributions, multiplicity
and its higher moments, etc. The one-particle
inclusive distribution will be worked out to illus-
trate the technique of the Laplace transform and
to exhibit its thermodynamic interpretation. The
inclusive single-particle distribution is given by

(,)( ) f, L '[Il(v', b)B,(r, b, k)]~, d'k
L-'[11(r,b)],

(3.14)

1
ln —=(2n+3) ln —- ln ln—

(a + 1)Pp,
' b'

8((cs' Bc In(1/(2T)
'

For b2 «In2(I/p, r), Eq. (3.19}gives

(3.19)

b2 Q2

P 7{E b) Pr(E exp 4() In(E/ )
0 I 2(E/ )

(3.20)

with the definition

E 5 E,-1/(af)(+3)
)27(E, O) =— — ln— (3.21)

E ~ 40@cs'E
(a+ 1)(2a +3)p)/, 2 (3.22)

In (3.20) the coefficient of the first correction to
the exponent cannot be calculated reliably in our
approximation. From the temperature, it is
straightforward to determine the remaining quan-
tities. For instance, by substituting (3.20) into
(3.12), we obtain

(2o + 3) 2P E 2 E~(2(2+2)/(20+2)
A(r(E, b), b)=80 2 (~/ )

— ln—

40cln(E/(u) In2(E/g) - '

Equation (3.1V) is recognized to be the familiar
connection between the energy E and the partition
function fl{r,b}. Equation (3.18) is the well-known
Boltzmann factor found in statistical mechanics.
The Laplace transform variable 7 appears as the
inverse temperature and II as the partition func-
tion. '0 Many physical questions can be answered
from thermodynamic considerations.

To demonstrate the method, we now determine
the temperature r(E, b) for the Q2 ladder exchange.
From (3.12) and (3.1V), we find

8 8E=-—2A(r, b}=-—In[rii(T, b)]
Bg 8T (3.1V) (3.23)

Similarly, we can evaluate the one-particle inclu-
sive spectrum,
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(2(2 4 3)p&p E 5 E,(2&+2)/(2o+3)
do'"(k) =f(k), ,

— ln-
40vcs In E

2 2
'be '(~"exp — — —0

2&
' .*W.1- .

(3.24)

The b integration can be carried out, yielding

d 3k (2 + 3) 2p & g E (2lx+2)/(2o43)
do(')(k) f(k), " — ln—

S '- P P-

where

B2(k„k,) =2A(r(E, 5), b)f, (k„k2) (3.27)

do'"(k„k, ) = 2k[ B2(k„k2) + B,(k,)B,(k2)]
3 3

( ce-)(o4+, )42d ki d k
6'2

1x (I —e 'e "'). (3.25)
E, 0e

Even though the exact functional forms appearing
in (3.23)-(3.25) are model-dependent, the basic
structure of these equations, and in particular the
power E and the exponential b' dependence, are
general features of this class of strong eikonal-
Regge model. We shall encounter these basic
structures again in Sec. IIIC for another model
which is very similar to the vector-gluon model.

The two-particle inclusive distributions can also
be calculated by similar method. The result is

and f,(k„k,) is the normalized two-particle inclu-
sive distribution in the multiperipheral model.
The two functions f(k) and f2(k„k,) are connected
when k, and k, are separated by a large rapidity":

f2(ki k2) -f(kx)f(k2) (3.28)

In (3.26) the term B2 is the contribution from those
events in which both detected particles are emitted
from the same ladder; the other term B,(k,)B,(k,)
is the contribution from those events in which both
particles are emitted from different ladders.

The I) integration in (3.26) can be carried out,
and the result is given here for completeness:

d'k d'k '2a+3' '~ Z
(I e-c(t,o)(4~+42))

7 (E, O)(e, + e2)

d 3k d 3k (2~ + 3)2 4P2 E 5 E (4%+4)/(20!+3)
+f(k,) (k,) ' ', — ln—

4(hr cs4 In(E/)2)

(3.29)

In the central region r(E, O)(e, + &2) « I, and when (3.28) holds (i.e. , when particles I and 2 are widely sep-
arated in rapidity space), (3.29) simplifies to

&2 g 5 g -(2 +2)/(2a+3)
(3.30)

In the strong-absorption model, we expect that the
picture of short-range correlation in the sense of
Feynman-Wilson gas ana1ogy no longer holds.

is demonstrated by large N contributions. When
N is large, II„(s,5) can be obtained by inverting
(3.8) for II„(r,5) by the steepest descent method.
This gives for large N

8. Consistency of the eikonal and the statistical models

We now briefly comment on the elastic, inelastic,
and total cross sections in the strong-absorption
model. Our purpose is to demonstrate the mutual
consistency of the thermodynamic treatment of the
inclusive particle distribution properties and the
calculation of the cross sections to which no ob-
vious thermodynamic interpretation can be given.

Let us begin with the inelastic cross section.
This is given by the sum of (3.5) over N. This sum

E (20(-2)/(2f)I+3)
N =const- e-5 /4ocl($/2) cN(E 5)

So approximately we have

(3.32)

2'+ 2 N

llye I)) — c n
e 52/sc)c(s/-oN)

In(E/pN) e' y,N

(3.31)

As a function of N Ilgs, 5)/N i is maximum at
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II js, b) =const(2A, «)",
with

(3.33)

80c(a —1},E
2m+3

(3.36)

This result should be compared with the naive re-
sult which follows from (2.'I):

b„' = 16c(a —1) ln' — (naive) . (3.37)

const E (20. -2)/(20. +3)
&-n~/~oct (s/p)

In(E/p, ) p,

(3.34)

It is important to point out that (3.33} is good only

for N near N, i.e. , for ~N-N~«¹ Since N-N
is the region where the dominant contribution
arises, this restriction is in fact not important.
Notice that both 2A,«and 2A(7(E, b), b) [see (3.22)]
have the same energy dependence. (Recall that
s -E'.) Substitution of (3.34) into (2.6) gives

(3.35)

FIG. 9. The generalized Mandelstam diagrams, also
known as the "nested diagrams, " studied in Ref. 9.

from the contributions of the graphs with the con-
figurations described in Fig. 9, the generalized
Mandelstam diagrams. " We will continue to as-
sume this feature to be true in an improved calcu-
lation when some nonleading logarithms of the lad-
der are included. Then in order to ensure that
each segment on the top and lower line in Fig. 9
carries practically all the energies of the initial
particles, we require

The calculation of the elastic amplitude in the
strong-absorption model is somewhat subtle. This
is because the additional constraint required does
not follow directly from energy conservation.
Rather it arises from the requirement which en-
sures the validity of the eikonal approximation.
According to the analysis of Hasslacher et a/. ,

' in

the l.eading-logarithm approximation to the ladder
exchanges the eikonal elastic amplitude comes

gc, &E= eels, 0&@«1

where the sum extends over all pa.rticles in the
rungs of all ladders. Here it is understood that the
eikonal function is purely absorptive so that all the
particles in the rungs are on the mass shell. Then,
the contribution to the elastic amplitude from ex-
change of N ladders with all possible permutations
Is

(3.38)

When N is large the discussion for the inelastic
cross section can be repeated here to obtain

(3.39)

with A,«given by (3.34). Thus, the eikonal func
tion which appears in the elastic amplitude and
that in the inelastic cross section agree.

In retrospect, we can construct an eikonal model
in the strong absorption for the elastic amplitude
and inelastic cross sections by retaining the naive
results such as (3.1) and (3.2) but change the upper
limit of integrations (3.3} to

5/( pa+ 3)
) 40cll)(E/Il) (3 40)

N p.

where N is given by (3.32). Obviously this con-
struction yields all the correct results. It is in-
teresting that the upper limit (3.40) depends on the

impact parameter. Apart from the impact-pa-
rameter-dependent factor, (3.40) is precisely the
prescription given in Ref. 6 to correct for the en-
ergy loss. Here, it emerges as a result of taking
into account the necessary constraints to ensure
the validity of the eikonal approximation.

Unitarity relates the virtual processes which
determine the elastic amplitude and the real pro-
duction processes. It is satisfying to know that
our treatments of both virtual and real processes
are mutually consistent.

C. Weak Pomeron model

Finally, we sketch briefly the analogy as well as
some quantitative changes if the Regge pole has an
intercept which starts out from 1. We call this the
weak Pomeron model. Apart from some minor
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differences this model shares many similar prop-
erties with the vector-gluon model studied exten-
sively by Cheng and %u. As one can verify readi-
ly, all the general conclusions of the theory, such
as described in (3.5), (3.7)-(3.9), (3.14)-(3.18),
and (3.26}-(3.2S}, etc. , are not modified. How-

ever, the quantitative expressions of the potential
A(s, I)), the temperature function r (E, 5}, the mul-
tiplicity distribution N(E, 5), and the one- and two-
particle spectra are somewhat different. Vfe list
in the following the corresponding expressions in
the weak Pomeron model for completeness [these
equations are the analog of (3.10), (3.20), (3.23),
(3.25), and (3.29), respectively]:

$2
)), v(E, f)) =)/. v(E, O) exp—

(3.41)

g E™1/(Q~-1)
)),r(E, 0) = —ln— (3.42)

ave p, 'E
(2a —1)(a —1)P '

2cx -2
&-O~/Sc h()((1/P 7) .

16vcg'In(I/pr) )).r

~(E 5) g(~E 5) 5)
{ — )P [(~/)() ( /V)]'" '""

J y t geggp2 In(Z/)() ScIn(Z/g)
(3.43)

dsk (2 1}p g g 2n-2)/( 2a-z) 1 -~(s,o)e
do("(k) f(k), —ln—

E, Oe (3.44)

dan d3k (2+ 1)p g E (2~-2)/( 2~-~) 1 e-~(s.o)(t'g+E2)

r(E, 0)(e, + e,}

{2~ 1) P~ g E (4a &) ( 0 1 e T(8 0)(cl+ 2)[1+r(E 0)(e +e )]
EI 6~ SICQ P, P, [&E, 0)(e, + e,)]'

(3.45)

Interested readers are invited to reproduce these
expressions for an exercise.

The result (3.44) for the vector-gluon model in

the region 7(E, 0)e «I has been obtained by Cheng
and Wu"

(X ~ 1-a e( 5 /CI~O
r(E, 5)

(4.2)

where F~ is the magnitude of the rapidity of the
incident particles,

Y,
' = In(E/)), ) . (4.3)

IV. RESULTS AND IMPLICATIONS

In this section we present the main results ob-
tained in the present paper and discuss their im-
plications. %e shall concentrate on the general
features of the results which appear in both the p'
and the weak Pomeron model {WPM), and shall
emphasize the possible physical and geometrical
interpretation.

Parameter g controls the energy-dependent height
of the central plateau, and c, is related to the ex-
panding rate of the absorption disk. These param-
eters are measurable quantities, and will appear
frequently in our discussion. In p' and WPM, they
are given respectively as

a = (p' theory)
2(n- 1
2Q +3

A. 94151 and lelgl1f Of Cle Celltf8l PhfSSQ

From (3.24) and (3.44), it is seen that the one-
particle inclusive cross section in the central re-
gion for a fixed impact parameter b has the general
structure (to within a lnE factor)

and

(WPM)2c- ~

c, =40c (P' theory)

= Sc (WPM) .

(4.4)

(4 5)

do( ) cc f(Q ) E4e ~(& )')~e &~ /~pro) (4 1)
de

J.

with

Note that 0 &a &1 in the strong-coupling case and
a 0 as +-1.

From (4.1), we find that the central plateau has
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a 5-dependent width,

D(b} = ln
1

t

$2
=(1—a) y', + +0(1),

~l ~0

and a 5- dependent height,

H(b) &a ro &
-( ~ jclro)

(4.6)

(4.7)

The width D(b) and the height H(b) are related by

The constant in the front of (4.13) can be computed
exactly, and is found to depend on the large-5
(-lnE) integration region. Since the thermody-
namics approximation breaks down in this kine-
matical region, the constant computed from (3.25)
and (3.44), which follow from the thermodynamics
treatment, is no longer reliable. Nevertheless,
(4.13) gives the correct energy dependence and it
is consistent with the energy dependence of cr~

given by

D(b)+ lnH(b) = 1; (4.8) c~=2mc, aln'E . (4.14)

D=ln =(1 —a)1'0
1

(4.9)

and a height

a = e'"0. (4.10)

Ne observe that the width on the rapidity axis oc-
cupied by the pionimation particles does not cover
the whole available region 2F,. There exists a
rapidity gap 6(P):

—,'a(1') =a1"0. (4.11)

This gap is related to the increase of plateau
height at increasing E, and is required by energy
conservation when the multiplicity is a power of
energy.

8. Energy and multiplicity sum rules

The consistency of (3.25) and (3.44) for doi'i(k)
can be checked by the energy-conservation sum
rule

(4.12)

independent of the parameter a and the impact pa-
rameter b The .width D(b) increases as b in-
creases, while the height H(b) has the opposite ef-
fect. When integrated over all values of b, the fi-
nal single-particle distribution (3.25) or (3.44)
gives a flat central plateau of width

From (3.24} or (3.44) we can also calculate the
average multiplicity (n) from the sum rule

do'"(k) =(n) or.

%e find"

(n&or =const d kf(k), [1n(E/p)]
(E/V)'

with

c, = a/2(a —1) .

Since"

or = const + rrc, a in'(E/p),

(4.16)

(4.11)

(4.18)

the average (n) grows as a power of total c.m.
energy within logarithmic corrections:

(E/g)'
( n) —const

[
(4.19)

A careful examination of the b integral reveals
that the important region of 5 extends to b' -ln'E
for the energy-conservation sum rule (4.12); on
the other hand, the contribution to (n) is domi-
nated by 5'» lnE. This indicates that most of the
particles are produced in the region of small 5
with low energies. This is the reason why the
temperature 1/r(E, b) is lowest at b = 0, according
to (3.20) and (3.42).

Explicit evaluation of the integral gives

edo ' (k) =const x(a —1) d2kf(k) —ln'—

(4.13)

C. Moments of multiplicity and particle sizes

As another application of our results we calcu-
late the second moment of the multiplicity given
by

1 -a E -1+~2-
doi "(k„k,) =(n(n —1))or =( )'n'ar + const && — ln-

2rr c, in(E/p) (4.20)

Hence

o, fdo'"(k„k, ) (n(n- 1))

[fdo'"(k}]' (n)'

(1+ft,
2vc, ln(E/g)

(4.21)

where R -0 as E -~. Thus

(n(n -1», E
(n)' 7 (4.22)

This result differs from that in the multiperipheral
model in which the right-hand side is a constant. "
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b„' = c,a In'(E/i(, ) . (4.24)

However, for the multiplicity, the dominant con-
tribution comes from a smaller radius 5, charac-
terized by the width of the Gaussian distribution
(see Fig. 10).

To understand (4.21) and (4.22) qualitatively, we
recall that there are two relevant sizes or radii of
the particle in our problem. This can be seen
most easily from the multiplicity distribution
function N in (3.32) or (3.43),

~(E b) &z E& e -b I c)In (&I [& ) (4.23)

The radius 5 which determines the total elastic
and inelastic cross sections is given by /=1, and
has the value [see Eq. (3.36)]

(a)

N (E, b)

l

I

I

I

I

I

L

b, ' = c, In(E/g) «b „' . (4.25) 0 b

To the first approximation, we can replace N(E, b)
in (4.23) by

b[(E, b) =iV(E, 0)6(b, '-b'). (4.26)

n'(b) —s(b) =[s(b)]2 .
Integrating s(b) and s'(b) —s(b) over b, we have

(4.2V)

It is also known that the multiladder emission in
b space in our model is approximately indepen-
dent, and hence, the multiplicity distribution in b

space is essentially Poisson,

(4.28)

u, (a' —n) fd'([e(()['==[a(D)]'w(, '. (4.29)

Hence, we have

(n'- n) cr, o,
(n&' sb, ' »(Elp)

as desired. In other words, the mismatch of radii
in (4.24) and (4.25) is crucial for arriving at the
results (4.21) and (4.22). Equation (4.22) is valid
only at extremely high energy. At the present en-
ergy range, gl only increases slightly with E and
thus the left-hand side of (4.21) may not increase
notably at all. Thus, the so-called KNO scaling
may be approximately valid at the present ener-
gy

25

O. Effects of fragmentation and'many-body potentials

We will now briefly summarize the effects of in-
cluding the fragmentation and many-body potentials

FIG. 10. (a) Multiplicity distribution in b space;
(b) bvo relevant radii 5» {half-w'idth) and b~ (maximal
size) obtained from the distribution curve.

on the results presented above. We will ignore the
momentum transfer dependence in the "wave func-
tions" so that the various cross sections can be
expressed by a single-impact-parameter repre-
sentation. We will also assume that the exchanged
object is a t-channel ladder. Thus, we have in-
cluded up to four-body potentials.

1. Central region

(My the fragmentation of particle u will be con-
sidered to simplify the discussion. In the notation
of (2.65) the one- and two-particle inclusive cross
sections in the central region are



FRAGMENTATION AND ENERGY CONSERVATION IN THE. . .

do(2)(k„k, ) = c+ g N' dI(„')(l, 2, . . . , N) [do("(k„k,)]a,
X=2

oo

+ p [bt(i)t-1)]' df(„'(l, 2, . . . , iV} [do'"(k„k,)].. . (4.32)

where we have employed the notations

[do"(k)]a = 'bB [&(E, b), b, k) e ' (4.33)

d'A d '0
[de(2)(k k )] dab B (k k ) e r(e-())(3,2+3 ) d k1 d k3

1 2

d'0 d'0
[do'"(k k)] = d'bB(k)B(k)e '

1 2
(4.35)

and B, and B, are given by (3.15) and (3.Ã).
From (4.31) we see that fragmentation and many-

body potentials only change the over-all energy-
independent normalization of the one-parti. cle in-
clusive cross section, and hence the average mul-
tiplicity. This is not true for the two-particle and
n-particle (n & 2) inclusive distributions. The two

detected particles may come from a single ladder
attached to different fragments or they may come
from different ladders attached to different frag-
ments. These possibilities are represented re-
spectively by the first and the second series in

(4.32). Although the two particles coming from a
single ladder do exhibit the short-range correla-
tion in rapidity, "this contribution is nonleading.
Because of the existence of many competing
mechanisms, there seems no obvious and physi-
cally meamngful way to define the two-particle
correlation. The normalization is complicated
and no obvious definition seems to provide any in-

teresting formation.

dQ

d'k

=(wb„') g & d(2)d(3) ~ ~ d&lg, (1,2, , &) I',
-N=2

where (4.36)

d(1) d(2)" urlq. (1,2, . . . , bt) l'=dr(„')(1, 2, . . . , b))

(4.3V)

and d(1)d(2) ~ db( is the phase-space volume ele-
ment. Equation (4.36) exhibits the Feynman scal-
ing" or the Benecke-Chou-Yang-Yen limiting dis-
tribution" for the combination (1/or)e2da/d'k).
This is in contrast with the one-particle inclusive
cross section (4.31) where the scaling behavior is
violated.

It is clear that there is no physical correlation
between a left-moving and a right-moving frag-
ment, in the sense that

2. Fragmentation region
1 dc'

c, "d'0„ (4.38)

%e have also calculated the one-particle inclu-
sive distribution in the fragmentation region. It is

Of course, there is a strong correlation between
two right- (left-) moving fragments. For example,
for two fragments of particle a, we find

=(Irl ')gd(21 1)fd(3)d(d) .ddd(3, (1, 2, 3, . . . , d-)('. (4.39)

3. Ratio of elastic to total cross section

An important consequence of including the frag-
mentation events in the strong absorption model is
that the ratio of the elastic to the total cross sec-
tion is no longer —,'. This ratio is reduced from —,

'

since the incident particles have only fractional
relative probabilities to maintain their identities.

It is only the sum of the elastic and diffractive
cross sections that remains to be —,

' of the total
cross section.

V. DISCUSSIONS

%'e have presented in some detail the results of
an eikonal model with rising cross sections.
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Whether such a model represents the truth of the
real worM is not clear. Although, as mentioned
in the Introduction, there are some encouraging
signs from the recent ISR data, there are also
some possible difficulties. Among them we men-
tion the rapidity gap between the pionization region
and the fragmentation region, a feature which has
not yet been observed experimentally. Perhaps
the gap exists only because we have not handled
the fragmentation properly. Clearly if a smooth
transition is to occur between the fragmentation
and the pionization region, there must be some
stringent conditions on the eikonal funcfion and the
fragmentation amplitudes. Most likely the energy
dependence of the eikonal function will be weakened
and at the same time fragmentation states with
higher masses should be incorporated. " We are
not able to see how the smoothness may be
achieved if the total cross section is to increase
as ln'E with the energy.

Another difficult question concerns the validity
of keeping only the ladder exchanges in the field
theories. Many authors have issued the warning, "
based on some model studies, that when aQ ex-
changed connected pieces are summed, the eikonal
function may have an energy dependence very dif-
ferent from individual terms. The starting point
of the present paper is the premise that the total
cross sections saturate the Froissart bound. The
model studied in this paper is the simplest one to
realize this possibility. Presumably this question
is also related to the t-channel unitarity. We have
no idea how much of our results wi11 be modified
when the t-channel unitarity is enforced.

We became aware of two very interesting pieces
of work when this paper was in preparation: (l)
Sugar'o recently has studied the effect of the iso-
spin in the eikonal-Regge-type model. He as-
sumed that both the sides (called p) and the rungs
(called m) of a t-channel ladder carry unit iso-
spin, and that the pions are coupled to the isospin
current of the p's. In this model, Sugar demon-
strated at high energy that the pion cannot be
emitted from a ladder, and its emission amplitude

is dampened dynamically by a power of s. Hence,
any t-channel exchange more complicated than a
ladder is suppressed dynamically because it in-
volves the emission and absorption of n's from
ladders. Thus, one is led automatically to the
elastic and the inelastic contributions as given in
Figs. l and 2. (2) Steinhoff" has examined the
asymptotic behavior of the elastic and the one-
particle inclusive spectrum in the P' ladder am-
plitude by means of the statistical mechanics
method. He found that the transverse momentum
dependence in da~'~ is given by

f(k~) ~exp[-const(k~'+ g')'t'] .
Steinhoff also demonstrated that the above result
is also valid in the generalized ladder amplitude
with the rungs being crossed in all possible w'ays.
It should be pointed out that the above result is
valid in the dual model as well. On the other hand,
the above f(k~) is completely different from those
obtained in the straight ladder amplitude based on
the leading-logarithm approximation where only
the correlations between nearest rungs are in-
cluded,

1f»&ieadinglog y2+ ~2 2f(Q 5, (X:

Thus, the exponential damping in f(k~) probably
reflects the many-body correlation effects, and is
insensitive to the detailed dynamics. It would be
interesting to know which and how many of the ob-
served hadron phenomena can be understood easily
in terms of the statistical mechanics language.
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