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Within the context of a general unitarization scheme of Baker and Blankenbecler and others, we
reconsider the necessary ingredients needed to define a class of Feynman-diagram models at high
energies. We then discuss the relationship between the threshold behavior in the total cross section of
the diffractive production and the choice of the kernels that defines a class of diagrams.

1. INTRODUCTION

Recently considerable attention has been given
to the rising total cross section observed in pro-
ton-proton interactions at the CERN ISR.* Of the
papers on this subject, the more recent letter of
Blankenbecler? is uniquely interesting in the sense
that a different interpretation of the threshold
effects of diffractive production is made. Namely,
within a class of Feynman diagram models it is
shown that the diffractively produced inelastic
states lead to a decrease in the total cross section
at high energies. While the result is in agreement
with that of the high-energy eikonal approach, it
is contrary to what is expected from triple-Pom -
eron effects which® regard the rise of the total
cross section as due to the appearance of large-
mass diffractive dissociation.

In this paper we would like to reexamine Blan-
kenbecler’s analysis by tracing the standard uni-
tarization scheme.*® We find the formalism in-
troduced by Neff® in another context very conve-
nient for our purpose. Particular attention is
given to different ways of choosing the kernels
that can be useful in the event that experiments do
indeed prove the rising total cross section to be
due to diffractive one-gap production. Certainly,
the analysis of Ref. 2 does not include the nonpla-
nar diagrams completely and a different choice of
the kernels can define a different class of Feynman
diagrams and take account of additional nonplanar
contributions. Otherwise, our work may be re-
garded as giving corrections to the analysis of
Ref. 2. To see how the kernels are chosen, it will
prove useful to review the derivation of the basic
unitary equations for the scattering amplitudes
once the “Born” approximation is given.

We will see that the basic equations are obtained
under rather general constraints of unitarity and
they do not give the scattering amplitude uniquely.
In actual calculations, however, one makes ap-
proximations directly on the equations by choosing
the kernels semiphenomenologically and thus one
ends up with a certain class of Feynman diagrams.
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The choice of the kernels is generally based on the
existence of various rapidity gap states, the iden-
tification of the “bare’”-Pomeron term, and the
interpretation of the inelastic zero-gap overlap
functions. While it is perfectly true that’ in the
multiperipheral scheme the inelastic overlap func-
tions coming from the zero-gap intermediate
states generate the Regge behavior, it is also pos-
sible that this bare Pomeron is a different object
from the physical Pomeron. In fact, no multi-
peripheral bootstrap calculation has successfully
given yet the Pomeron trajectory with the correct
intercept and/or slope. On the other hand, there
are several works which® distinguish between the
two types of Pomeron on phenomenological grounds.
Such a distinction is not made in Ref. 2. By taking
into account the Pomeron contribution to production
amplitudes, further multi-Pomeron inelastic sums
can be introduced. Such situations can approxi-
mately be dealt with by keeping the diagonal ker -
nels in the equations that are used. In view of the
two types of Pomeron, we define throughout our
paper the diffraction with reference to the bare-
Pomeron exchange, i.e., the final state is con-
nected only by the zero-gap propagators.

In Sec. II, derivation of the generalized Lipp-
mann-Schwinger equations is traced more or less
following the lines of Baker and Blankenbecler and
others. The choice of the kernels made in Ref. 2
as well as a possible modification is discussed.

In Sec. III, the threshold properties of diffractive
and nondiffractive one-gap production are dis-
cussed for our choice of the kernels.

II. FORMALISM

We shall assume that the full scattering operator
can be labeled by the number of large-rapidity gaps
in each state as in Ref. 6. The transition amplitude
for n particles with ¢ large gaps scattering into m
particles with j large gaps will be denoted as
Tpi.mj- Although one can include the higher num-
bers of gaps trivially, we shall limit up to one-gap
states only as we intend to review the derivation
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of the basic equations used in Ref. 2.
Then we can write the many-body unitarity re-
lation

ImTli;lll=Z Z T':‘;n’kpn'k Tn'l;n.i ’ (2'1)
n R

where p,, is the appropriate projection of the
phase space. As has been pointed out by other
authors,*~® the only limitation on our formalism

is that the amplitudes do not contain disconnected
parts and anomalous thresholds. The aim is to
write the general solutions for T,,,,; for given
B,i.n; appropriate to the kinematic regions in such
a way that the unitarity equation (2.1) is satisfied.
It is obvious that the formalism based on the uni-
tarity condition alone does not determine the S
matrix uniquely, and one has to introduce addi-
tional dynamical assumptions. In any case the
Born terms are assumed to be real and symmetric.
Then following the generalized unitarization scheme
of Baker and Blankenbecler® and others,5® we re-
late the exact T,y t0 By, my by

Tni:ml =Bni:ml +Z Z Tni;n’h Gn'an'k:m.I ’ (2'2)
n’ &

where the G,.,’s are collections of the k-gaps
projection of the n’-particle Feynman propagators
in the s channel whose imaginary part is p,, in
the appropriate physical region. It turns out that
the representation (2.2) can be written either in
the impact-parameter formalism or for the gen-
eralized partial -wave amplitudes.

To the extent that we limit ourselves to states
with up to one gap, we have to solve the three
equations for T,y (=2, i=0,1) from (2.2) simul-
taneously, which involve the three Green’s func-
tions G,; m=2, i=0,1). Following the notations
of Ref. 2, the labels (2 1), (n 0), and (2 1) will be
denoted simply as e¢, 0, and 1, respectively,
hereafter. Accordingly, the equations for the
scattering operators read

Tye =K oo + TooGoKos + Ts1G 1K 14 , 2.3)
Tyo=(1+ Toy Go) Koo+ Ts,G K 1o (2.4)
Ty1=(1+ Tyy Go) Koy + TegGoKor » (2.5)

where
Ky =By,(1-G,B,,)™" (i,j=e,0,1). (2.6)

We note from (2.6) that the transition kernels are
not necessarily restricted to the Hermitian form,
but in general they can contain intermediate states
of the G,, G,, and G, type. Nevertheless, the
unitarity equations (2.1) are satisfied by the gen-
eralized Lippmann-Schwinger equations (2.3)—
(2.5).
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On the other hand, if we choose the transition
kernel to be completely off-diagonal, i.e., K;; =0,
then the remaining elements K;; (i#j) are neces-
sarily real (or in general Hermitian) for the choice
of the Born amplitudes specified above. With this
choice for the kernel, we arrive at the basic equa-
tions for the scattering amplitudes that are used to
define the class of diagrams considered in Ref. 2.
In this case, the lowest-order contribution to the
transition amplitude T,, is K,, so that the elastic
amplitude T,, contains the term K,,G,K, which
is the familiar ladder graphs representing the
inelastic overlap functions when K,, is chosen to
contain the multiperipheral production graph.
Although this sort of approximation does not allow
us to treat the nonplanar diagram completely, it
is shown in Ref. 2 that the result obtained under
such approximation agrees with the eikonal at high
energies. The term K,,G,K, is often identified as
the “bare-Pomeron” term and the main result of
Ref. 2 is that the contribution of the bare Pomeron
to the total cross section is larger than the actual
total cross section, after taking into account the
contributions of the elastic and one-gap interme-
diate states.

We devote the remainder of this paper to the
examination of this result under a slightly different
situation. Following the line of Refs. 4, 5, and 6,
we can construct a high-energy model by appealing
to phenomenology and choosing K;; directly. In
this way, we can avoid the step of choosing the
Born amplitudes By;. In what follows, we shall
put only

Koo=K, =0 @.7

in the basic equations and choose the off-diagonal
terms to be real.’ But we shall allow K,, to be in
general complex having the s-channel singularities
of the G, type.

There are several reasons for making this ap-
proximation. There have been numerous attempts’
to build up the Pomeron through the inelastic over-
lap functions of ladder diagrams, i.e., the multi-
peripheral mechanism, but none of them has suc-
ceeded to obtain the bare-Pomeron intercept to be
close to unity. In fact, there seems to be mount-
ing phenomenological evidence® to choose the bare-
Pomeron intercept less than one. In order to
boost the physical (or renormalized) Pomeron
intercepts to unity, we may need the elastic ele-
ment of the kernels. Moreover, by keeping the
elastic kernel K,,, we may effectively take account
of contributions of the nonplanar graphs that are
not treated completely in Ref. 2. In addition, it
is then possible to see to what extent the result
obtained in Ref. 2 is dependent on the particular
choice of the kernels.
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With the choice of the kernels specified above,
we obtain the elastic scattering operator

T98=(K“+I’V“) (1 "Ge W/ce)—l, (2.8)
where
Wee =K oGoK
+(Kq1 +KeoGoK o)
X(1=G,K 10GoKo)) ' G (K 1o +K10GoKoe) - (2.9)

At this point. we introduce the positive-definite
operator used in Ref. 2,

Tr=(Tk - Te)/2i , (2.10)

from which the total cross section can be calcu-
lated in the forward direction.

III. CONSEQUENCES OF DIFFRACTION

We reexamine in this section the analysis of
Ref. 2 with (2.8). The elastic kernel kept in our
equations serves to give additional elastic ab-
sorptions to the inelastic intermediate states, and
thus the resulting total cross section of diffractive
and nondiffractive production amplitudes will get
additional corrections. To explore the conse-
quences of diffraction, we assume as in Ref. 2
that G, and G, are dominated by their imaginary
parts at high energies,

G, = —id,, Go=—id,, 3.1)

where the real positive-definite d’s contain the
mass-shell 6 functions of the particles in the rungs
of the unitarity sums.

a. The case of Ky, =K ,,=0. In this case the

dx
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unitarity diagrams involving K,,G,K,,, K 0G, Ko,
and K ,,G,K . are not contributing. Thus if we de-
fine the unitarity diagrams connected by the zero-
gap propagator G, as the diffractive processes
(which is equivalent to using the bare-Pomeron
exchange in the { channel as criterion), then all
of the inelastic diffractive productions are sup-
pressed and we are left with nondiffractive and
elastic (diffractive) productions only.

By introducing the x variable to control the
strength of the one-gap states by G,=-ixd,, we
have

Woo==i(KoodoKoe +XKg,d K 1) 3.2)
and
Zpldy,d, , xd,)= (KegdyKoe + XK, d K, +AKg,)
X[1+do(K oodoK oo+ XK o1 d, K 1)) 7",
3.3)
where
AK e =(1/20) (K2 -K,,) (3.4)

is positive-definite for any semiphenomenological
choice of K,,. As expected, (3.3) reduces to the
situation considered in Ref. 2 when K, is taken to
be real. But phenomenologically the Pomeron
term is to a large extent imaginary. Moreover,
for a given elastic Born term we see from (2.6)
that

AK,=(1=9B,d,) 'Be, dyBee(l+id, B,,) ™"
20. 3.5)

The effect of varying x is given by

dz _ -
== =[1+(KepdoK oe +3Ko d K \0)d.] "' Ko d K o[ 1+dg(KoodoK oo + XK gy d,K )] !

=BKgo[1+de(KyodoK oo + XK, d\K o) " doK g1 d\K (o[ 1+de(K oo doK o + XK o, d,K )", (3.6)

where the second term is the additional contribu-
tion coming from the nonvanishing elastic kernel.
Thus we may say that while the total cross section
increases as nondiffractively produced one -gap
states are introduced, the presence of the addi-
tional kernel can diminish the rate of increment.
As we have mentioned before, this extra kernel
may be regarded, for example, as the manifesta-
tion of the remaining nonplanar graphs that are not
included by the inelastic overlap functions of the
multiperipheral mechanism. Note that the pres-
ence of the diagonal kernel K, gives an absorptive
correction to the inelastic production.

b. The case K, =K ,=0. In this case, the terms
like K;1G,K e, KegGoK01G1K 1o, and K G, K 4G Ko,
are missing from the unitarity sum and all the

p
remaining terms are connected by the zero-gap
propagator G, at the end of the graphs because we
get from (2.9)

W,e =Ko(1 'GoKmGleo)_lGoKoe . (3.7

Then, insofar as the zero-gap intermediate state
can represent the bare-Pomeron exchange, the
situation may be called diffractive. In fact, the
one-gap states are produced basically through the
zero-gap intermediate states. For this reason,
one may group the contributions of the elastic and
one-gap intermediate states to the zero-gap tran-
sition operator together by introducing

U=Ko; GoKeo+K1G1K 1o+ (3.8)

Then the elastic amplitude can be written as
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Toe ={1+ Koo [Koo(1 = GoK,G K 1) 'GoK o) ™'}
XKgoll = GoU) *GoK e - (3.9)

As we are interested in the threshold properties of
the diffractive one-gap states, we can no longer
neglect the real part of G, which is negative-
definite below threshold in our convention. For
this reason, the real part of K, is also playing a

J

role. We give here the results on Z, for the two
interesting cases only, i.e., when K,, is pre-
dominantly imaginary and when it is real.

(1) K, is imaginary. Then it must be of the
form K, = - i{(AK,,) where AK,,>0 from (2.5). By
introducing further variables y and z to control
the strength of the real part of the one-gap prop-
agators and of the elastic propagators, respec-
tively, we obtain

Zp(dy, 2dg,xdy, YREG,AKpp)= (1 =2A Ko dy)K oo dy2(1 +A)~V3(1+ y2L2) "Y1 +A) Y24, 2K, + AK,,, (3.10)

where we denote

L(z,x)=(1+A)"'24,'?K, ReG,K ,,d,"*(1+A)~'/?

(3.11)
and
A(2,x)=dg"(2K 4o Koo + ¥K o, 4, K 1) do*/2.
(3.12)
We can see from (3.10) that the positivity of Z,
implies
1-2AK,d,20 (3.13)

unless AK,, is actually the dominant term of the
cross section. Provided that (3.13) holds, we
obtain the inequality of Ref. 2:

ET(dm dea dl! ReGu AK«) sET(do’ dn 0, 0’ AKu)
<Z,(d,,0,0,0,AK,)
(3.14)

so that Z; is a decreasing function of x, y, and z.

In addition, we note that
—

ET(dO)chy 0: 0, AKuc) = (K.o dOKOC +AK€¢)
X(1+2d,KoodoKoe)™",
(3.15)

which is still true even when (3.13) is not valid.
While it is a decreasing function of z, the cross
section is an increasing function of AK,, in the

absence of diffractive one-gap production.

The inequality (3.14) implies that the total cross
section is decreasing when the diffractively pro-
duced one -gap intermediate states are being pro-
duced. On the other hand, if experiments prove
that the increasing total cross section is indeed
due to the threshold phenomenon of producing
diffractive one-gap states, then it may mean within
the present formalism that (3.13) is no longer
valid and Z, must get the dominant contribution
from AK,,. Namely, the other nonplanar con-
tributions are more important since we then get

ZT(dO)de’dU ReGU AKGQ)BET(dO! dﬂ)OJO’AKee)'
(3.16)
(ti) K, is veal. In this case, we arrive at

Zpldy, 2dg, xd,, yReG |, K,,) =[Keodol/2(1 +A) V2 429K 0e Gg Ko dy'?(1+A) T 2L] (14 y2L7) (1 +A4)71/2 dy* Ko -

However, as we do not have any reason to prefer
a particular sign of K,, at this level of sophistica-
tion, we cannot make any definite statements
about the threshold behavior.

To sum up, the threshold properties concluded
in Ref. 2 for the nondiffractive as well as the
diffractive production are true so long as the
nonplanar graphs missing there play a minor
role in the total cross section. But if independent
evidence supports the view that the rising total
cross section is a local phenomenon due to the
threshold effect of producing the diffractive one-
gap states, then the formalism should be modified
to include more nonplanar diagrams, for example,
through nonvanishing diagonal kernels. In such

(3.17)

r

cases, the nondiffractive case is expected also to
give different behavior as we see from (2.5).
Finally, we add that the most thorough analysis
would be the one solving the 3 X3 matrix equation
including the elements T, and T,,. The situations
considered in Ref. 2 as well as in the present work
will be only special cases of such an ambitious
program.
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We have studied the effect of fragmentation and energy conservation in the eikonal-Regge
model. A generalized eikonal representation involving multi-impact parameters is given for
the elastic and inelastic amplitudes when fragmentation takes place. The generalized eiko-
nal function which describes a many-body potential depends on more than one impact para-
meter. In the strong-absorption model and at high energy, however, the elastic amplitude
can be approximated by a single-impact-parameter representation with an effective eikonal
function. As a result of the fragmentation, we find that although oz and oy still increase as
In%s, their ratio is no longer 1. Instead, it is the sum of the elastic and diffractive cross
sections which remains to be one half of the total cross section. To enforce the energy con-
servation, we propose a thermodynamic approach by introducing an impact-parameter-de-
pendent temperature. Using well-known thermodynamics relations, we obtain various cor-
rections to the naive eikonal-Regge model predictions due to energy conservation. Experi-

mental consequences are discussed.

1. INTRODUCTION

The eikonal model® for high-energy scattering of
hadrons offers a semiclassical picture for a very
complicated process. A most striking character-
istic of high-energy hadron collisions is the fact
that the number distributions in phase space are
very different in transverse and longitudinal mo-
mentum axes; they are rather limited in the for-
mer but apparently not in the latter. The impact-
parameter representation in the eikonal model is
ideal for describing this disparate situation. It
nicely separates the transverse degrees of free-
dom from the dynamics in the longitudinal space.

The main features of the eikonal approach are
that, on the one hand, the s-channel unitarity is
automatically enforced, and on the other, it can

incorporate any energy dependence of the total
cross sections consistent with unitarity by a proper
choice of the eikonal function. This is in distinc-
tion with the conventional Regge approach in which
the Pomeron is assumed to be a simple pole. The
upper bound for the total cross sections in this
case is a constant asymptotically. If the rise in
the pp total cross section® observed in recent
CERN ISR experiments continues to hold in the fu-
ture, the simple Regge-pole approach must be
abandoned. In that case the eikonal model may be
a simple alternative to organize the data. Assum-
ing this possibility to exist, we will reexamine
and explore further certain aspects in an eikonal
model with rising total cross sections.

The eikonal approximation has been studied most
thoroughly for the elastic amplitude at high ener-



