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Large transverse-momentum scaling as Fdo.ld'p = p~ 'f(x~, hajj) is first discussed in terms of models
of parton-parton scattering. %e review explicitly the equivalence of this approach to the multiperipheral
and field-theory approaches, and we find the parton distribution function that fits the recent CERN
ISR and NAL data. Then the deviations from scaling at nonasymptotic energies due to internal and

external masses are examined by an exact numerical calculation of the general peripheral structure for
the single-particle spectrum, which includes the parton models. This provides good fits to the
single-particle spectra at all p~ and explains the observed deviations from scaling at small p~. The rise
of the central plateau, secondary trajectories, and particle ratios at large p~ are also discussed.

I. INTRODUCf ION

A general peripheral formulation for the single-
particle spectra has been successful in describing
features of particle production at small transverse
momentum P~.' We have recently shown' that the
power-law p~

' behavior at fixed P~ at asymptotic
energy results from power-law internal damping
in momentum transfers in a general peripheral
structure, Fig. 1, and that the large-p~ behavior
joins smoothly onto the small-P~ central plateau.
In addition Amati, Caneschi, and Testa' (ACT)
have shown that large-transverse-momentum scal-
ing results from the ABFST' (Amati, Bertocchi,
Fubini, Stanghellini, and Tonin) multiperipheral
models; that is, in the limit s —~ with «~ =2P~/
s' ' and «

~,
=2P ~~/s'~' fixed, the single-particle

spectrum behaves as

4' 1
n f(«JP«ll).

P PJ.

This large-transverse-momentum or fixed-x, scal-
ing had previously been found from parton-parton
scattering models (Fig. 2), including quark-quark
scattering with vector exchange (I=4) by Berman,
Bjorken, and Kogut' (BBK), from quark inter-
change (n= 8) by Blankenbecler, Brodsky, and
Gunion' (BBG), and from vector exchange to pions
with form factors (n =8) by Bander, Barnett, and
Silverman' (BBS).

Landshoff and Polkinghornes 9 have shown that
the covariant field-theory method of calculation is
equivalent to the infinite-momentum method results
of BBG and to the multiperipheral ABFST diagram
of Fig. 1 as used by ACT' and ourselves. ' A com-
parison of the I andshoff-Polkinghorne result, Eq.
(3.4) of Ref. 8, and Eq. (3.54) of BBK' shows that
in general all of these approaches agree with the
BBK parton-parton scattering method. The as-
sumptions of the quantum numbers of the partons
and their interactions with hadrons are then the

main differences of the above papers, other than
the methods used to calculate diagrams of the
same structure.

In Sec. II we explicitly use the BBK method of
parton-parton scattering, Fig. 2, applied for
simplicity to spinless partons, and show that it
yields precisely the same scaling form as results
from the ABFST multiperipheral approach' or the
field-theory approach ' and may be considered a
simple derivation of the result. The spinless-par-
ton model leads naturally to the power-law result
(n=8)

(1.2)

that is in agreement with recent ISR data. " In
parton models with other spins present, form fac-
tors are or can be included to give the observed
P, ' behavior. The difference is then only in the
angular dependence of the parton-parton scattering
cross section, which is rather washed out by the
integration to obtain the inclusive spectra. " BBG
have also noted that the simplification of neglecting
spin does not alter general dynamical features.

In this rather general formulation we then find
the parton momentum-distribution function that
fits the observed x, dependence at xj, =0. We also
find the cos8=«~~/(«~~ +«~ )' ' angular dependence
of the inclusive cross section which can be used to
compare various models. In Appendix A we show
explicitly for this simplified spinless case the con-
nection between the parton-parton approach (Fig.
2) and the general peripheral approach (Fig. 1).

In Sec. III we examine the deviations from fixed
x, scaling that occur at finite energy due to in-
ternal and external masses. We do this by an ex-
act numerical calculation of the general peripheral
structure for the single-particle spectrum, Fig. 1.
We emphasize that these results do not depend on
any particular choice of parton model, but apply
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t =q2 X2Pb

FIG. 1. Peripheral production diagram for the single-
particle spectrum.

I IC. 2. Parton of momentum fraction x& elastically
scattering from parton of fraction x2 at large I, with

cross section de/dt.

to any model with internal damping that yields p~
scaling, Eq. (1.2), as considered necessary to fit
the present data. "'" The finite-energy effects
occur at low p~, where internal exchanged masses
affect the low-momentum-transfer region.

We use Bjorken scaling functions for the ab-
sorptive parts A, and A„ for incoming momentum
transfers t„ t„and for the left and right moving
missing masses s,' and s„' in Fig. 1. Bjorken scal-
ing is known to result from a multiperipheral
structurexe„zc or from parton models. We find
the Bjorken-scaling functions that fit the fixed-x,
scaling spectra. Then by introducing an internal
mass parameter we can fit the data over the en-
tire p~ range at finite energies. The deviations
from scaling at small x~ at NAL and CERN ISR
energies are also well fitted by the finite-energy
calculation.

The dependence on the center-of-mass angle is
calculated for a future experimental test and com-
parison with other models. The effect of second-
ary Regge trajectories was investigated and found
not to change significantly the shape of the fixed-
x, scaling spectra.

With these fits we found that the height of the
central plateau, der/dy, in the equivalent of the
double-Pomeron-exchange Mueller diagram,
showed a rising approach to the asymptotic con-
stant value. This is the same conclusion as ob-
tained by Caneschi, "and is important in consider-
ing the experimentally observed rise.

The K'/v' ratio was also calculated at finite
energy and was found to differ little from the in-
finite-energy, finite-p~ results reported previous-
ly 17

In Sec. II, the parton-parton scattering approach
is presented. The numerical calculation of the ap-
proach to scaling at finite energy and its experi-
mental effects are presented in Sec. III. Appendix
A contains a calculation of the relation between the
approaches of Secs. II and III„ thereby allowing a
quantitative justification of the approximations
used in proving scaling. Appendix 8 contains kine-
matical details of the general peripheral approach
of Sec. III.

II. SCALING AT FIXED r, ,

In this section we show that the fixed-x~ scaling
result for multiperipheral models (ACT) (see Fig.
1}can be derived using the parton-scattering me-
thods of Herman, Bjorken, and Kogut. "~ For the
simplified case of spinless partons the resulting
scal1ng law 18

(2.l)

k, =x,pb=x, ,'s"'(l, -—2). (2.2)

The observed momentum in terms of scaling vari-
ables is

p = -'s't'((x '+ x ')'~' x x )

where x, =2p~/s'~' denotes a. two-dimensional
transverse vector. Also

q=-2s' '((x,'+x„')' ' —x„x„x„—x, ) . (2.4)

The cross section for the graph' in Fig. 2 is the
probability for partons at fractions x, and x, scat-
tering by the elastic cross section do/dt:

der =P(x, )dx,P(x, )dx, „—dt .
4v

(2.5)

The elastic scattering takes place with an invari-
ant energy

Since this scaling is consistent with the data. „we
also find the parton distribution function P(x) and
the resultant f(x„x„) that fit the data.

An incoming particle of momentum p, is viewed
as a collection of partons with fractional momen-
tum x,p, distributed by the probability P(x, ). A

parton from particle a and another from 6 then
suffer a hard elastic collision by exchange of an-
other particle or a constituent interchange with a
differential cross section (do/dt)(s, t) at large
momentum transfer t=q'=O(s), Fig. 2. One of
the scattered particles is then observed at mo-
mentum p. For s»(mass)', we may write the
parton momenta k„k, as

k x~P x sl(l z
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s = (tt. + }t,}'= sx, x,
and a momentum transfer

t=q'=-2p k, =-sx,x

(2.6)

where we define the convenient scaled "light cone"
variables

(2.1)] in terms of x+, x or x~, x „is also explicit.
The form of Eq. (2.14) agrees with thatof Landshoff
and Polkinghorne' derived from Fig. 2 by field-
theoretic methods.

We now show the relation of this approach to the
ABFST multiperipheral model. "By changing the
integration variable to

xy 2[(xJ +xN } k x(f] p

1x+x +xJ e

(2.6) (u=(1-y)/x =1/x, ,

with

(2.15)

For a relatively free parton, k, ' will be small,
and 2k, q'=-q' yields the restriction (2.16)

xj x~
XQ=

xg x+
(2.9)

we obtain

do o.'m x &' "+&~"- 1-x ao

The relation of the phase space in Eq. (2.5) to that
of the observed particle in the single-particle
spectrum is then

dQ 1 ax dP
'2v s (x, -x)' E (2.10)

The elastic cross section for the scattering of
spinless partons by a spinless exchange in the
limit s, (t~»(mass} is

da' lTQ tÃ~

dt s~t2 (2.11)

where am' = (gm} /4x and (gm) is the vertex cou-
pling strength with dimensions of mass. Models
with partons or exchanges having spin give du/dt
~ s 'k(t/s), to which one must add a form factor
squared P'(t)~m'/t' to agree with the p~

' scal-
ing. These models then only differ by their angu-
lar dependence h(t/9}.

We note from Eqs. (2, t), (2.9), and (2.10) that
x„x,occur in the ratios

x+ —x-]
xg XR

(2.12)

P(x) will have a pionisation distribution P(x) -1/x
as x~0. Therefore we can define

P(x) =P(x)/x . (2.12)

Then using Eqs. (2.5) and (2.10}-(2.12) we have
the single-particle spectrum as an integral over
xg or/:

+(x, —x ) (2.14)

The crossed graph where the other particle is de-
tected is included in Eq. (2.14) by interchanging
x+ and x„. This result shows explicitly the p~ '
behavior resulting from the dimensioned coupling
constant for spinless vertices or from form fac-
tors. The scaling behavior of p '(Edo/d'p) [Eq.

xg((u)(1-x (u)'(u .
(2.17}

This agrees precisely with the result of ACT' if
applied to spinless particles. ACT started from
the equation for the single-particle spectrum in
the ABFST multiperipheral model' with power-law
damping in momentum transfer and evaluated it in
the fixed-x„x~~ scaling limit. (The evaluation of
theflxed-x xi~ scaling limit for exponential damp-
ing was previously performed by Silverman and
Tan. "). Thus, the parton-scattering approach of
BBK' is equivalent to the ABFST multiperipheral
approach.

While the p~
' behavior follows from the above

considerations, the actual distribution function
P(x}for the partons has to be phenomenologically
fitted to the scaling distribution f(x„x~, ). The
presently available data can be fitted with the par-
ton distribution

P(x) = (1 - x)'/x . (2.18)

The comparison with the x „=0 CERN ISR scaling
data" over a range of energies is shown in Fig. 3.
In Fig. 4 we show the comparison with the MAL
data" out to larger x~. The drop of the data and
nonscaling for small x~ is due to the nonasymptotic
energies as explained in Sec. IG. Finally, in Fig.
5 the data' at 60' c.m. at the CERN ISRare plotted;
the calculated result with this approach is very
close to that of Sec. III, shown in Fig. 5.

The angular dependence of the cross section is
also of great experimental and theoretical interest.
Theoretically, since the scattered partons in Fig.
2 are not always alike, the distribution functions
P, (x,) and P,(x,) are expected to be different.
These can only be isolated by separately varying
x, and x in Eq. (2.14). Experimentally, the data
is limited by the event rate at large p, . However,
one can also stay at fixed radius r=(x,'+x~~')' '
in the x~ x,

~
phase space and vary the angle z
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FIG. 3. The single-particle spectrum times p~s at
x~»= 0 forpp ~+Xas a function of x~=2P~/s 2. The
data are from Ref. 10 and sample error bars are shown.

The dashed line is the fit of Sec. II and the solid line is
that of Sec. III with s~~2 = 52.7 GeV.

FIG. 4. The single-particle spectrum timesPJ at
x

~i
= 0 for pP x+ X as a function of x~. The data are

from Ref. 12 with the normalization decreased by a fac-
tor of two for consistency with the data of Ref. 10 at
the same energy. The dashed line is the fit of Sec. II
and the solid line is that of Sec. III with s~~2 = 23.6 GeV
and a~ = 0.3g GeV2.

=cos6. The dependence on z, as illustrated in
Sec. III is much slower than that of the 888 model
and may be used to distinguish various models
even at the present event rate." Io ',-

III. APPROACH TO SCALING

A. Formulation

%e now examine the effects at finite energy which
modify scaling due to the presence of thr'esholds
and internal masses in form factors and propa-
gators. In order to calculate at finite energy and
for both small and large transverse momentum,
we use the general peripheral approach to the
single-particle spectrum, Fig. 1. This single-par-
ticle spectrum has been formulated in Ref. 19 and
can be expressed as

8, = — dP' d4k'54{P'+k'+P)der 1
d'p s

&& p, '(t, )p, '(t, )

x",(s,', t,)~,(s„', '„), {3.l)

where P, and P„contain the yroyagators of the ex-
changes and the central-vertex form factors, when

necessary, and A, and A„ are the off-sheii ab-
sorptive parts from the inclusively summed par-

IO
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l I I

3.O
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FIG. 5. The single-particle spectrum at 8,~.= 59.4
for pP n+ X'. The line is the result from Sec. III for
s 2= 53 GeV. The data are from Ref. 20.
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ticles.
To illustrate general effects of the approach to

scaling, we work with models with sufficient damp-
ing in t „t „to yield a p, ' scaling law, Eq. (1.2).
It is apparent that for power-law damping, when
p~' is large, the largest contribution results when
one but not both of t, and t „=O(p~ ), as is the case
in parton-parton scattering (see Sec. II).

The proper powers for p~
' result naturally from

all spin-zero partons (P' model), while for most
models which involve spin- -quark exchange, "
constituent interchange, ' or vector gluons" the
additional needed powers of t„t„are put in as
form factors. The difference in calculating these
models, when adapted top~ ' scaling, will only be
in the angular dependence of the parton-parton
cross section for the spina involved, which would
show up in Eq. (3.1) as a modifying polynomial in
t/s, where

8„/8+ gxg
s s„'/s+ x,

For illustrating the effects at finite energy we can

neglect these differences in Eq. (3.1).
Defining

s
g

+11 (3.2)

with a mass parameter a, we assume the off-
shell absorptive parts obey Bjorken scaling,

1
Ai(si, t, ) =

2 t ui X(&i),a -tr (8.3)

and are Pomeron-dominated for fixed t, with s,'
-~, i.e.,

X(~i)

Vfe take the propagators as

(3.4)

(3.5)
1

pr(t, ) =
a

and the symmetrical forms are assumed for
~„,A„, P„also. While the breakup, Eq. (3.3) and
(3.5), is natural to a P' theory, the product P,'A,
will be the same for any p~

' scaling theory as
discussed above.

The resultant integrations from Eq. (3.1) are"

(3.6)

where the Jacobian and the limits are defined in
Appendix B. This general form (but with arbitrary
power damping) was approximated at s-~ by ACT'
and shown to lead to fixed-x~ sealing, giving the
result Eq. (2.1V) for the case of p~

' scaling.

B. General results

(1 —x)'
(8 7)

with the same threshold behavior as electropro-
duction, gives a good fit to the x~ distribution.

Doing the integrations in Eq. (3.6) numerically
with a' =0.89 GeV', the above form in Eq. (3.6)
gives a good fit (Fig. 6; see Refs. 21 and 22) to
the entire p range of CERN ISR data, 0.2 GeV/c
& p~ & 9.0 GeV/c, at x,~

=0 and s't~ = 52.V GeV.
The data at other CERN ISR energies can be ex-

amined in a scaling plot of P~'Edo/d'p versus x,
(Fig. 3), and the fit with the above form [Eq. (8.7)]
and value of a' is shown. Taking another view of
these data, we fitted the rise of the spectra at

%e find that the Bjorken-scaling form for parton
distributions in the proton (with x= 1/~),

(a) —1)'
(oX(u&) = (u

do 12.Ve'-""i'
dsp (p '+0.57) (3.8)

p 'E =].2.ge' ""&' 1+ ' mboey'der , 4(0.57}
d'p sxg

(3.9)

The peak of this curve, Eq. (3.9), is given by

52(0.5V) 32(0.57)13+ 2
=

3Sx~ 8xg
(3.10)

fixed p~ with increasing s.
At small p„ the effects of exchanged mass a'

and external masses become significant. Since
these occur for a given p~ range independent of
energy, the region of small x, where they are
significant decreases with increasing energy.
These deviations from a scaling curve do not ap-
pear in Fig. 3 since all data were taken for p~&1.5
GeV/c. In Fig. 4 we show the NAL data" and the
experimental deviation from the scaling curve for
x~ &0.2 (s't' =23.6 GeV), along with our calcula-
tions.

%e can determine the value of x~ at which the
data for P~'Edcr/d'P turn over and deviate from
scaling by noting that a good parametrimation of
the data for x, &0.3 (see Fig. 6 for s't'=52. 7 GeV)
is



SCALING AND THE APPROACH TO SCALING AT LARGE. . . 1515

p {GeV/c)

0.4 0.6 0.8 I 4 6 8 IO
I I I f ~

IQ

0 2
IO

E
IQ

CL

IQ

IO

.02 O.l I.Q'

p~ +rn {GeV )

IO IOO

Fgo. 6. The single-particle spectrum ate~, =o forpp ~+%for large and small transverse momentum. The solid
line is our result from Sec. QI for 8 ~ =52.7 GeV and a =0.39 GeV; the dashed line is for s ~. The normalization of
the data of different groups appears slightly different, and we have moved the data of Befs. 21 and 22 up by a factor of
1.3.

Neglecting the second term on the left-hand side,
we obtain for the turnover point

x, =1.1/s~' .
%'e can also compare to data" away from 90' such

as those shown in Fig. 5 which are at 8,„„=60. In
Fig. 'l our predictions for other angles are shown
for r= (x,'+x~~')'~'=0. 1,-0.5, and 0.9. This angular
dependence might be a good means of differentiating
between different models. The predictions of the
BBS model, ' for example, rise considerably above
those of this model as z = cosmic~. increases, espe-
cially for large r.

C. Variation with energy of the height of the central

plateau from double-Pomeron exchange

Small transverse momenta determine the height
of the central plateau do/dy or the coefficient of
lns in (q). With the assumption that the absorptive
amplitudes A, and + are Pomeron-dominated, our
results indicate a rise of do/dy(y =0) with energy
over the range of energies at the CERN ISR which
is in agreement with experimental findings. At
lower energies (Ebs=20 GeV), our calculations of
double-Pomeron exchange fall below the data. The
rise of the calculated double-Pomeron contribution
by a factor of 2.3 from s =4V to 2800 GeV' must be
taken into account before the non-Pomeron contri-
butions can be discussed. These results are simi-

lar to those obtained. by Caneschi, "but now in-
clude power-law damping and Bjorken-scaling
functions.

D. Secondary trajectories

The Pomeron is present through the factor ~ in
A~ rex(u&). The effect of secondary trajectories
will appear in the form sF~'X'(&u) since the Bjorken-
scaling behavior is independent of the Regge inter-
cept. '3'~ To examine only the effect of second-
aries we took y' =X and computed with (to+ ~~')
&& X(~)

To obtain a similar fit to that in Fig. 6 it was
necessary to change a' only from 0.39 to 0.34
GeV'. Since only the dependence on ~ was
changed, the energy dependence, including second-
ary trajectories, is still s ' in the fixed-x, scaling
region.

E. E/F and E+ /E production ratios

As x~ increases away from zero, the dominant
contribution comes from the region where s,' and
s„' are near threshold. As a result the thresholds
s, and s, and dynamical behavior in the threshold
region become very important.

Their role is particularly evident in the pro-
duced particle ratios. For pp -n+ s, =s,
=(m~+m, )', but for PP-E'a, s, (or s, ) =(mA+m„)',
and for pp —K X, s, (or s,) =(m~+mx)'. In a pre-
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L IQ

(gm)'P(x, ) = (-t, )A(s'„ t, ),
where

st 1
~ +1

l

Also in this region, we find the t, integration limits
from Eq. (84) using u, =—-sx, u„=- -sx„and M'
=—s(l -x, —x ):

(A3)

The absorptive parts have t, =-t approximately
fixed at this value of O(s}, and the integration be-
comes approximately

0.1

0
I ) I ) I ) I )

0.2 0.4 0.6 0.8
z = cos e~~

I.O
Tr

s(1 -x )
FIG. 7. The angular dependence of the scaling func-

tion E{x,z) =p~sE do/dap for pp m+ X predicted in
Sec. III for s = 52.7 GeV.

vious work" we examined the K/s ratio at s -~
with y(ao) = (~ —1)/&o. The results obtained here
for K'/v' are very similar, but are now in com-
plete agreement with the data at large p~ and a
little closer to the data at small P,.

Since the K threshold is higher than the K'
threshold, the K /K' ratio will be less than one
and decreases as x~ increases. The lack of reso-
nances in the exotic channel K+P relative to K P
would be reflected in A(s,', t, ) and further contrib-
ute to the shrinking K /K ' ratio.
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APPENDIX A: RELATION OF GENERAL PERIPHERAL

APPROACH TO PARTON APPROACH

The general peripheral approach of Sec. ID can
be related to the results of Sec. II by performing
the t„ t„, and s„' integrations and converting the
s', integral to an x, integration. This is the pro-
cedure followed by ACT' in proving scaling, but
here we generalize to include absorptive parts
which are not sojutions to a multiperipheral inte-
gral equation. For t„s', becoming O(s) and s„', t„
damped independent of s, we have for the effective
incoming parton distribution

With this approximation of neglecting external
masses we have from Eq. (3.6) in this region
[s„=-(p+p„} j

dc w(gm)'
d'p s'(1 -x,)

d s', ' dt„
-t „„(a'—t„)'

t„s„/t
x ds,'A(s„', t„) t, P(x, ) .

0

Changing variables to

:=(-"")'

assuming scaling

(-t„)A(s„', t„)=P(x', )(gm)',

x2 =- +12 t

x+ x- =—+ —=1, t=-sx~x
xg x2

(A9)

Introducing y = x, /x, and P(x, ) = E(x,)/x„P(x, }
=P(x,)/x„we have as in Eq. (2.14)

Z&~= +, lf yPd(—') P( )
(1 —y)'1 .

(A10)

In Sec. III we have used the scaling functions to fit
the data:

and then performing the t„ integration gives for the
bracketed quantity in (A5)

P(x, ) 1 ' „,P(x,')
2 t2

x2 0 „„x2
The kinematics gives
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( )
(I -x,}' (,)

(1 -x,')'
Px~ —,P x~-

j. 2

(All�)
where (note that f„ f~ and f, are not functions of
the variables of integration)

putting P(xs) in EQ. (AS) gives the result

P(x,}= [(1 —x,)(1 —Sx, —2x,')
2xp

+Sxs ln(1/xs)]. (A12)

f, =(M -u, -s„),
f, = (M' + s', —s„'),

f, =(M'-u, +m, s),

f, = (M' —u„+m,'),
f, -(s —m, -m, ),

a„=t (M', u„m,*),
(as)

APPENDIX 8' DEFINIONS FOR
QUANTITKS IN EQ. (3.6)

The limits of integration except the thresholds
s, and s, (which are discussed in Sec. III E) are
tound by solving a, ~ 0 [from e(-&) in Eg. (3.5)].
The results are

s, =(m, +m, )', s, =(m, +m, )',
s, =(M —s,"s)', s, =(M-s„"')',

(al)
(a2)

t, , =
2 [f,f, -2M'f, v ts, ~'ts'~'(hP, s,', s'„)], .

1

The calculation of the cross section by Eg. (A10}
using the above forms (All) and (A12) for P(x, )
and P(xs) agrees to within 20% with the exact cal-
culation in Sec. III using the precursor P(x,') fram
Eq. (All). This justifies the approximations in
Eq. (A3) and the neglect of masses used in deriving
scaling. Also, the geometric mean of P(x, ) and

P(xs) is close to P(x)=(1 —x)4/xas found in sec.
0 to fit the ISR data.

with

h(a, h, c) =- a '+ hs+ c s —2ab - 2ac —2bc .
For the definition of t, and t~ we have

Ps = (sI ™1')As—~ (fsfs - ~fs) -flfsfs
+2M'fsfs -fdsfs+2ms'fA

P, = 2[-M'a(s, m, ', m, ') -m, sf,' —m, 'f,'
+fÃfs]' '

x[-M t„+t„(fsf —2Mf, ) Mf-s

ms fs —s'I s+fsfsfs]

For the following, see Fig. 1:

M = (p. +p, -p)'

=(pi+p, }'
2 4s 2= 8 + Q) + Qq —SCI —Sl~ P.

ui =(p. -p}'
=ms + p, —(s+my ms }E/s

+p i
d,"'(s, m, ', m, ')/s"'

(av)

(aS)

(alo)

s 4 (Ps +Ps)/+s

»'r fs
f, 2M

sg tg +my fs
fs+ t. fs

S& —t&+ Bl~

f4
2 IWQ

fs

(a4)

fi+ t.
fs

fs
2m2'

(a5)

, =(p, -p)'
= m, '+ }ss —(s —m, '+mss)E/s'~s

-p ~r ~'(s, m, ', m, ')/Ps . (all)

p. , E, and p, ] are the mass, energy, and parallel
momentum of the produced particle in the center-
of-mass system. m„m, are the masses of the left
and right incoming particles.
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