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The dual resonance model (DRM) is used to estimate the cross sections and the background
for the production of narrow high-spin mesons in an idealized missing-mass pfM) experiment
a + b —c+MM, in which the par5cles a, b, and c are spinless and do not carry any internal
quantum numbers. The theoretical results are compared with the recent Northeastern-Stony
Brook (NU/SUNY) experiment. It is found that, whQe the calculated backgrounds agree rea-
sonably well, the 8, T, and U cross sections are substantially higher than their experimental
upper limits obtained from this experiment. In a mathematical appendjx we also present a
general method for calculating N-point dual amplitudes with two external particles of ar-
bitrary spin.

I. INTRODUCTION

The first indication of the presence of narrow
resonances in the high-mass region (&1.5 GeV)
of the meson spectrum came from the CERN
missing-mass spectrometer {CMMS) group, who

reported three narrow resonances —the R,(1630),
R,(1100), and R,(1748)—in the region of the R
enhancement (mass -1700 MeV)." The CMMS
group also observed the S(1929), T(2195), and
U(2382) mesons. ' The widths of all these reso-
nances were compatible with zero, and had upper
limits of 21, 30, 38, 35, 13, and 30 MeV for the
R„R„A„S,T, and U, respectively. A sub-
sequent experiment performed by the NU/SUNY

group, however, showed no evidence of the afore-
mentioned narrow-resonance structure. "

En a DBM with indefinitely rising linear Regge
trajectories, the existence of narrow mesons of
high mass (and, hence, of high spin) has been
explicitly demonstrated by Chan and Tsou. ' The
purpose of this paper is to use the DHM to esti-
mate (i) the production cross section for these
mesons, ' and (ii) the background in a simplified
MM reaction,

a+5-c+MM,

involving only scalar particles a, 5, and c, and
then to compare the predictions with the experi-
mental data of the NU/SUNY group. In addition,
a method is developed for calculating general
&-point dual amplitudes with two external spinning
particles. This is presented in the Appendix.

II. THE MODEI.

Consider, instead of (1), the siight1y more gen-
eral process

a + b - x( j) + anything,

in which x( j) represents a resonance of spin j.

X(», y, z) = x'+y'+ z' —2xy —2yz —2zx. (5)

Strictly speaking, dual amplitudes do not possess
any discontinuity"; however, on using the identifi-
cation

Disc ~T, = 2vfb(a(M') -(a(M'})}
x Residue Tz, (8)

a(g )=(a(g ))
where

a(M') =- a = a, + o. 'M' (7

(see Ref. 14) and fa(M')) denotes the integer part

Figure 1 illustrates the kinematics of the process;
the invariants of interest are

s =(P, +P,)', t=(P, —P„)',
M' = (P, + P —P,)' .

Restriction of M' in (3) to its lowest allowed value
m', ' so that only one other partiqle c is produced
besides x in the final state, yields the production
cross section of the spin-j resonance. For j=0
reaction (2) is identical to (1}, and most of the
contribution to the cross section at high M in the
DRM comes from the daughter resonances whose
degeneracy increases exponentially with M. Since
the daughters are also much broader than the
parents at the same M, ' this cross section pro-
vides the background in the missing-mass reaction
(1).

The generalized optical theorem' relates the
inclusive cross section for the process (2) to an
"appropriate" discontinuity" in the missing-mass
variable of the "forward*' elastic six-line ampli-
tude T(abx(j)-abX(j)} (Hef. 11):

4 0'at), 1
dtdM' 32»'A(s, m, ', m, ')

&& Disc „~T&(abx(j) —abx( j))
(see Ref. 12) where
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FIG. 1. Kinematics for the inclusive production of a
resonance x of spin j in ab collisions.

of the trajectory function a(M'), the average
differential cross section over (a') ' units of
M', from M' —1/2a' to M'+1/2a', becomes

d 0'~b 1
dfdM' 16vX(s, m, ', m, ')

& Residue T~(abX( j)—aha( j)),

a(M') be-ing a non-negative integer.
The problem is now reduced to cal,culating the

six-point amplitude T in the DBM. As is well
known, this has contributions from 60 distinct
diagrams, corresponding to the different permuta-
tions of the external lines. Of these only the 18
diagrams which have a, b, and x adjacent can
make a nonvanishing contribution to the discontin-
uity in the aha channel. For the purposes of a
crude estimate we have calculated the contribution

FIG. 2. One of the 18 dual diagrams which makes a
contribution to Disc &27.'~ .

to T from only one of these dual diagrams, and
then suitably adjusted the over-all normalization
constant as explained in the next section. This
diagram is shown in Fig. 2; all the particles are
considered incoming and the invariants of interest
are defined as follows:

s,b
= (P, +Pb)',

s„—= (P, +P„)', -
s„,—= (P, + P, +P~)', etc.

A general method for the calculation of Res -&T~
is given in the Appendix [Eqs. (A47) and (A52)].
Below we will simply quote two special cases of
the general formula which are of immediate
interest. The first case consists of taking x in
reaction (2) to be a spinless particle. Then we
obtain the following expression for the background
in the production of a spin-N resonance in a miss-
ing-mass experiment:

d2 C

R(e, p)R( f, q)R(g, r)R(h, s)
7j S)mb gamb b b

(b+ b+ r+ b -"N )

xB,(-a„-+q+s; —a„)B,(- a;, +r+s; —a,—;),

where K is a normalization constant, R(n, m) is an mth degree polynomial in n,

R(n m) = n(n+1) ~ ~ (n+m —1)

B,(u; e) is the usual Euler beta function, " and

8=+ba +I
y

abb ab bb t

bubba c b +bb ~

PE = Q„„-+Qbb —Qabb —Qbb —.

(12)

Qn the other hand, if we put +=0 in Res „Tz we obtain the production cross section of a, spin- j resonance:

GV K 1

df 16vX(s, m, ', mb') (2j —1)!!

X g g g(j+q)'(j q)'&*(j, q, f', P. -, pb)li'(j, q 4;P. , Pb)
~=-& ! =ol =o1 2

xBb(-abx + lgs —abb)Bb( aa x+ fbi a,—b ) ~
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in which p, and p, denote the three-vector parts of
&, and &„respectively,

4n' 1/2

(2k +I)(k + ) }(k - ) I
(15)

with F~(r) being a soIM spherical harmonic. .
In the numerical computation of Eqs. (10) and

(13) two problems arise: (a) The lack of a vacuum
trajectory with intercept 1 in the DHM implies
that, in the phase-space region of fixed missing
mass in reaction (2), the cross section does not
have the correct Begge behavior as s -~. In order
to simulate this behavior crudely me have mul-
tiplied all cross sections obtained from Eq. (8)
by the factor s' ' 0.' (b) The 8, factors have
poles whenever the trajectories a„and ar-,
assume non-negative integral values. This prob-
lem is avoided by giving these trajectories non-
hero imaginary parts. Since the precise discon-
tinuity in M' which is to be considered in Eq. (4)
is obtained by keeping s„fixed above and s;;
fixed below their respective cuts, " ~ the trajec-
tories a, and I;—must have phases of opposite
sign. We therefore give a„a positive imaginary
part and e;; a negative imaginary part. Ima„
may be roughly calculated by assuming that it
vanishes below the 3m threshold and then rises
linearly with s„through the A, resonance. Then
since

(15)

mhere I„,is the mass and I'„, is the width of the
A., meson, me obtain

Imceg —0.070 sej), , s~g &&9' ~ (17)

Imo.;;is assumed to be negative and of the same
magnitude as Ima„:

Imaf~ g
~ 0.0~@ sg g, spy &&9@i„ (18)

Vfe find that the cross sections evaluated from
Eqs. (10) and (13) are quite insensitive to the
exact value of the imaginary parts used for the
trajectories a,, and ar-, . The numerical results
of the next section are therefore only for the
values given in Eqs. (IV) and (18).

ffiin ( l e+ 4 -& )
yy(i, a I p. , p ) = g 0 -, .(p.)&.(p ),

n = max {-I,e-f+ l )

(14)

tion constant z. This is fixed by equating the total
cross section for the process a+5-c+x(j=2),
as obtained from Eq. (13), to that of A, production
in the reaction m' P-PA, at a center-of-mass
energy squared of s =30.92 GeV'." From CERN
compilations of n induced reactions"

o'(w P-PA, ) =0.18 mb, s =30.92 GeV'. (19)

(b) The NU/SUNY group has recently measured
the missing-mass spectrum of the reaction n +P- (MM) +P at various incident energies in the
interval 0.2- (f( &0.3 GeV'. The resulti of their
fits to the R region at a beam momentum of &

GeV/c, and to the S, T, and U regions at 11,
13.4, and 16 GeV/c, are summarized in Table L
The-S, T, and U data were generally compatible
with smooth backgrounds quadratic in M'; the
cross sections for these mesons listed in Table I
are upper limits determined from fits with quad-
ratic backgrounds plus resonances whose masses
were fixed at the CMMS values and mhose midths
were given by the CMMS upper-limit widths
(1 @=35, I'r=13, I'@=30 MeV).

The theoretical results are reported in Table II,
averaged over the t interval 0.2- Itl - 0.3 GeV'
to facilitate easier comparison with experiment.
The calculated cross section for the production of
the R meson is about twice as large as the exper-
imental cross section at s =15 GeV'. This dis-
crepancy increases to approximately a factor of
10 for the 8 meson at s = 20 GeV'. The situation
is even morse for the 7.' and U mesons. Exper-
imentally, the T and U cross sections are com-
patible mith zero, while theoretically, even at
s =30 GeV', these cross sections are predicted
to be 68 and 51 pb/GeV', respectively. However,
considering the crude mixture of'the calculation,
the agreement betmeen the experimental and the
calculated backgrounds is quite reasonable.

In spite of the several inherent difficulties
of the DBM the above analysis strongly suggests
a failure of the DBM to reproduce the experimen-
tally observed cross sections for the production
of the 8, T, and U mesons. In seeking an explana-
tion for this failure two speculations might be
suggested. The first is that, since a proper
vacuum trajectory is absent from the DHM, the
Pomeron couplings to high-spin states decrease
appreciably faster than meson couplings with in-
creasing spin. On the other hand, ;the discrepancy
might be avoided by revising the concept of indef-
initely rising linear trajectories.

(a) The trajectory slope a' is taken to be 1

GeV '. FoQoming Ref. V me have chosen the value
-0.2 for the intercept e~'9 The only other param-
eter in the calculation is the over-all normalisa-

ACKNOWLEDGMENTS

I am indebted to Dr. J. E. Paton for suggesting
this problem to me and for giving generously of



PRQD UCTIQN QF 8, T, AND U RESQNANCES IN. . .

I

e
8

LA CA

CO C-
I

LQ

CO

CA C7~
LC W 04

LO

CO

I

lA ~ CC

aA

QO CO CO

CO

C

Ch WC)CO
lO ~ C

Cg

04

8

Cf

8

9~
835i

m 4)
(L) e +

o
89 e~e

@ .~

~]i

t

N

8

e)

8

li

'I

CO

Vi

ll

VI

f AJ g

his time and advice at all stages of this work„and
to Dr. H. -M. Chan for several stimulating conver-
sations. Most of this work mas done mhile I mas
at the Department of Theoretical Physics, Univer-
sity of Oxford; I am grateful for the hospitality
of Professor Sir R. E. Peierls there. Dr. J. P.
Holden kindly read through the manuscript and
made several useful suggestions. The award of
a Rhodes Scholarship during most of the period
of this research is also thankful. ly acknomledged.

APPENDIX: DUAL AMPLITUDE FOR AN X-POINT

MULTIPERIPHERAL GRAPH PATH TYCHO

EXTERNAL SPINNING PARTKLES

We present below a general method for calculat-
ing &-point dual amplitudes in the tree configura-
tion with tmo external spinning particles. The
amplitude, A, of the diagram of Fig. 2 will appear
as a special ca,se. The calculation is performed
using the operator formalism of the Veneziano
model, "according to which BN, the &-point func-
tion mith only external scalar particles, is ex-
pressible in terms of an infinite set of creation
and annihilation operators which satisfy the com-
mutation relations

[g( ) s( )&] g (Al)

(see Ref 28) wh. ere p and v are Lorentz indices,
and sled& = ~~ 2~ ~ ~ . q

~.
Consider the multiperipheral configuration of

Fig. 3. This diagram does not involve any "twisted
propagators"; P~ P„.. . , P„„represent the four-
momenta of the external particles, and x„.. . , x~,
are the internal Chan variables. The wiggly lines
denote spinning particles on the leading trajectory.
For applications to inclusive reactions only the
case mhere the spins j and j' of the excited par-
ticles are equal is of interest. In the rest frame
in which both the spinning pa, rticles are simul-
taneously at rest the amplitude A( jm; N; j'm ') for
this diagram is given by

~(jm; Zr;~ m ) =(y(j m ), V(P, )D(~(s,))&(P,) ~ ~ .
x D(~(s„,))V(P„)y(jm)), (A2)

where P( jm} denotes the eigenvector of a particle
with angular momentum j and definite magnetic
quantum number m, and the "vertex" operator
V(P, ) and the "propagator" D(a(s, )}are defined
as folloms:

oo a (n) +
Q (n)

V(j),)=exp —Pj), ~ exp Qp, ~ ~n -'

(A3)

1

D(a(s, })= dx, x, ~'~)'" '(l - x,) "o ', (A4)
0
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TABLE G. 8, S, T, V, and X cross sections and background (theoretical).

Center-of-
mass e.nergy

squared
(GeV2)

Back- Back- Back- Back- Back-
(+0/tN ) c groundd (ff+/fN ) c groundd (ff/ ) c groundd ( +0/+& ) c groundd ~pa/ )c groundd

15
20
25
30

177
148
132
121

0,69
0.59
0.52
0.48

139
115
104
91

0.82
0.69
0.61
0.56

105
87

68

0.94
0.80
0.70
0.64

82
66
57
51

1.06
0.89
0.79
0.72

61
49
42
37

1.17
0.99
0.87
0.78

'For the t interval 0.2 —it i —0.3 Gevt.
Numbers in the column do not correspond exactly to experiment, but are sufficiently close to permit a useful com-

parison.
cIn units of p, b/GeV .
dIn units of mb/GeV4.

gg(n) 't, g{n}

n=l

8]= Pf

Q(s)) = Qo+ ps(

(see Ref. 24). The lemma"

~(p.)4, "&(p.)«(p, )

(A5)

(A f)

where

Xsf = X)Xg+ l
' Xf

N 1N} PN 1 ( IN) Pl)

and

(A9)

(A10)

P "!=p, +(X„)"p,+ ~ ~ ~ +(X,„}"p„

x g (1- )
la)& fNN

(AS) enables us to write

g(n) P a'"'
&(D,)()(a(s,)) ' '()(a(s, l))s(D ) =fDD „ezD —P D'"' s", exe

vn
(A12)

(see Ref. 25), where we have used the abbreviation

dp„„ to denote the integrand of the Bardakci-
Ruegg expression for the (N+2}-point function:

X(iD)t }= [(2j-1)' ']"'2'(})(jD)t ),
and the components of the vector d are

(A16}

-N 1

[J (1-x,,)-'1') .
l~)& f~ (A18)

d)=v 2v, ', d, =&2v ', d, =2v+v, (A17}

it appears profitable, in evaluating the matrix
element (A2}, to consider the scalar product

N = ((}) exp(dt' * ~ a ' )V exp(d(2& ~ a("t)q )

Q f D (s)x()sa) eeeg ea.'lD. =.
(see Ref. 27), where v=(v„v ) is an arbitrary
spinor,

(A14)

9+m~ f nt

[(q+st)!(j-m)!]"" (A15)

Further, since a generating function for the angu-
lar momentum eigenvectors, g( jm), is provided
by'

Calling
(A1S)

(A19)

xexp(-d"' P ). (A20)

and denoting the three-dimensional parts of the
four-vectors P and & by P and P, respec-
tively, we may write the expression for N as

&=exp(dt" P )'exp(x d'"* d"')
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P, , P2 N-I N d(" =v 2 (vP))'

d(&) ~2 (v(())a

d() 2 () ()
3 + ~ t

i=1, 2 (A23)

x

f( jm)

N-\ N+!

d(&)w .d(2) 2(v(&)+v(2))2 (A24)

FIG. 3. A particular (N +2) -point multiperipheral
graph with two external spinning particles and no "twisted
propagators. "

The last step involves the use of the foilovring two
identities: (1) For any two operators A and B
whose commutator [A, 8] is a c number,

and

(v(&) ev(2)) —v(1) wv(2) + v'f) l gv(2)

Q( &) q .Q(2)))
Q»„(v ")P,~( v") =

2~(2.)(
m=

so that, from Eqs. (A24) and (A26),

(A25)

(A26)

~A g e&~Ac[A, Bj,
t

and (2) for any four-vector f '"'
(A21}

exp gf'"' a'"' x" =x"exp Px"f'" a'"'

(A22)

Now, me make the following taro remarks:
(1}Since the vectors d'" and 3") are defined

in terms of the arbitrary spinors v(') = (v,'", v'")
and v"'=(v'„', v"'), respectively, by

exp(x cl ') + ~ d 2
) = Q Q 22"(2k —1)!!x,)!(

k=0 e= -k

x e,*,(v(")y.,(v"') . (A27)

(2) If Y'„(r) represents a solid spherical harmonic
including the factor r't then

k 4 1/2

exp(B r) = P P 2 (!)„(v)Y,(r) .
k=0 q= -k

(A28}
Then we obtain, upon substituting Eqs. (A2V) and
(A28) into (A20),

k =Op =-k k =0a =-k k =0e =-k
1 1 1 2 2 2 3

[(k, +k, +q, +q,)!(k, +k, —q, —q, )!(k, +k, +q, +q, )!(k, +k, —q2
—q,)!]"'

(k. +q.) '(k. —q2) '

(A29)

The definition of the 's is

4m

(2k+1)(k+q)! (k —q)!-
1/2

I;,(r) . (A30)

A trivial change in the summation indices in Eq. (A29} yields
oo j co j ~ iI max

=ZZ Z Z Z Z»-("")~-("'}
j=O e= -) 2'=0 e'= -4'k= max(0, j-)') e=eg.

,„( . „),, [(j+m)!(j—m)! (j'+m ')!(j' -m ')!]'"
( j+m —k —q)!(j—m —k + q)!

xS}', !,) ~ „(I' )'g„(-p ), (A31)

q =max[m -m'- (j' j+k), m —-(j-k), —k] (A32)

q,„=min[m -m'+ j' —j+k, m +j—k, k].
Furthermore, + may be alternatively expressed as
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1}a"d {A34}we obtain the amplitude A( jm; ¹ j'm '), which for j
becomes

A(jm;N; jm)= (2j-2k -1)!! (j+m)!(j-m)!
(2j —1)!! ( j+m —k - q)!(j-m —k +q)!

(A34)

d4~+2&&~' e P- ~ac -P- ~ (A35)

Note that the limits on q in Eq. (ASS) may be
changed to simply -4 ~ q ~ 4. Then the sum over
m of the amplitude A(jm; j/; jm) may be explicitly
performed, since

(j+m)!(j-m)!
(j +m —k —q)!(j -m —k +q)!

= (k +q)!{k—q)! ""C2|,„.(ASS)

eralized to include other multiperipheral graphs
like Fig. 3, in which some of the propagators are
"twisted. "

The amplitude of Fig. 2 (summed over m) cor-
responds to the special case N =4 of Eq. (A37}.
Identifying the momenta P„P„P„andP, with
&„&„&—„and &~, respectively, we have

Doing this sum and using the spherical harmonic
addition theorem give the result

= Pe + &i2pn+&xspa + &2.4Pa

P~ Pa ++34PQ + +24pgi ++14pa y

(ASS)

(ASS)

/+2 yÃ

where p, is the three-vector part of P„etc. The
conditions of "forward" scattering for th@ process
a+ t) +7-u+ 5+7,

(A40)

simplify Eqs. (ASS) and (A39) to

(A37)

~here P& is the usual Legendre polynomial. It is
clear that the above method can be readily gen-

P = (1 —x,x,x,)p, +x,(1 —x,)p„
P = -(1 —x,x,x,)p, —x,(1 —x,)p„

so that

(A41)

(A42)

yg (P Q„(-P-)= Q Q (1 —x,x,x,)" ' '2x, ' x,'2(1 —x,)' "~ W*(k, q, /„p„p, )W(k, q, /„p„p, ), (A43)

where we have adopted the abbreviation

min(l a+A-l)
W{k, q, /;p. , ps}= g Sa i .-.{p.)7/l. (pb}

g= max(-$, 0 k+ j)
and employed the identity

(A44)

Q„(r+s)= g W(k, q, l; r, s).

Then, from Eq. (A37)

(A45)

Ag
-=Q Aq( jm; 4; jm )

f 2k
= {2j+1)j!p p ( ) i( .

) i (k+q}!(k —q)! g p B(jk, l„ l ) W*(k, q, l„p„p)W(k, q, l„p„p ),
0=0 q= -0 5 =ot ~01 2

(A46)
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1 1 1

B,(j, la, l„ l, ) = dx,dxgx, x, "o*""'i "(1, —x,) aa '
0 0 0

XX2X a+j-k 1 i w-gyt»+ +» 1 + +~ k+»2 1 l i Ct
&

1(I -g2) bo 1 2 g3 tax iI-x )

x (1 —xzxa) ~aaa+ ~aa+ ~ aa (1 x x ) ~ aa r+ ~ ra + ~ aa

x(1 —x,x~,) aa "*r'"aaa ' aar'"-'i-' a

with &= &0+&'M, e„-=&0+a's„-, etc. The quantity 8, has poles in e whenever n j-k. Defining

~=&»r —&1- E2+&»

f= ~aaa - ~aa-~aat

(A48)

(A49)

g= &»)T»)a
—+a.»

—~a»» (A50)

+xx + ~ca —a~ca —n~~; —2k+ i, + I2

we see that the residue of B, at the pole a =N (N ~ j —0) is given by

(A51)

Res 8,(j, 0, l„ l,) =
a=g P a4f, »', 8sa0

tp+e+&+e=j)r -j+k)

ft(e, P)Z(f, q)Z(g, r)ft(1, s)

xBg( Qa~ +j —0+ li+tg+s~ —Q )aaqB( cr-+j —0+1 +r+si —ara) (A52)

where B,(x, y) is the Euler beta function, and

ft(n na) = n(n+1) ~ ~ ~ (n+na —1).I
mf

Combining Eqs. (A47) and (A52) we obtain the
final expression for the quantity of interest
Res -~Ay.
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