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Massive-muon-pair production at high energy
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A detailed analysis of the inclusive massive-p, -pair production process in high-energy proton-proton

collisions is presented based on the combined assumptions of light-cone {LC)expansions and multi-Regge

theory. The scaling limit is LC dominated and the assumed strongly convergent Regge theory leads to

dominance by the leading LC singularities. The resulting amplitude is expressed as a sum of two distinct

contributions, a "pionization" piece, which dominates at large dimuon mass N, and a "fragmentation" piece,
which dominates at smaller M. The result of the combination of these two contributions, each of fast

decrease in M, can produce a shoulder in the d cr/dM cross section, as seems to be present experimentally.

This requires a small, perhaps vanishing, Pomeron-particle-Pomeron coupling at t = 0. A phenomenological

model, which simply incorporates the derived behaviors of the scattering amplitude, is introduced to fit the

data quantitatively. A good fit to the d cr/dM data (at fixed energy) fixes the (five) parameters. The model

then is compared with the experimental curves for the transverse and longitudinal dimuon cross sections and

the total (energy-dependent) cross section. Good agreement is found. A comparison with the parton model is

also given.

I. INTRODUCTION

The last few years have seen a substantial de-
velopment in understanding the electromagnetic
and weak interactions of hadrons at very large
momentum transfers. It has become apparent
that configuration space is a most suitable frame-
work for the description of these processes. '2 In
fact, mhat invariably turn out to be of importance
here are Fourier transforms of products of local
operators that describe the interaction of a had-
ronic system mith an electromagnetic or a weak
current. These Fourier transforms are light-
cone-dominated when the mass of the currents be-
comes very large. ' The crucial point is then that
near and on the light cone x'= 0 a very important
simplification occurs in the description of the
product of tmo operators, in the form of operator-
product expansions near the light cone (LCOPE). '

We present in this paper an analysis, within
such a framework, of the BNL-Columbia p-pair
production process in high-energy proton-proton
scattering4; the basic ingredients of this analysis
have already been presented in Ref. 6. In this
process two particles, of momenta p and p',
collide to produce an observed lepton pair of mo-
mentum q and an unobserved hadronic final state.
(See Fig. 1.} The existing experimental data in-
volve the production of p, pairs in proton-proton
collisions, 4 and further experiments of this type
are in progress at the CERN Intersecting Storage
Rings (ISR) or being planned for the National Ac-
celerator Laboratory (NAL}.

Several aspects of the light-cone treatment of
the massive p, -pair production process have al-

ready been reported elsewhere. "' Notably, a
significant connection between the SLAC-MIT deep-
inelastic scattering experiment' and the BNL-
Columbia massive p, -pair production has been em-
phasized. This phenomenologieal connection is
simply a statement of light cone "universality, "
whereby a given LCQPE describes a variety of
different physical processes according to what
specific matrix elements of it are taken. Hence,
the light-cone expression measured in the SLAC-
MIT electroproduction experiments can be used
to describe the BNL-Columbia experiments.

The larger number of variables involved in the
lepton-pair process make it much more compli-
cated and difficult to analyze than the simpler
electroproduction process. This greater cornplex-
ity is, however, obviously a possible source of a
much greater insight into hadronic structure. All
of the physics of electroproduction, and much
more, is involved here. In addition to the lepton-
hadron interaction, me have here a rich back-
ground of purely hadronic reactions. We can ex-
pect a subtle interplay between the lepton-hadron
(structure-probing, scale-invariant) phenomena
and the hadron-hadron (Regge-behaved, non-scale-
invariant) phenomena. Compared with electro-
production, we have the additional possibility of
utilizing and exploring the nucleon-nucleon inter-
action, and, compared with purely hadronic single-
particle production, we have the additional possi-
bility of varying the mass of the produced particle.
Our analysis will make much use of all these pos-
sibilities.

Apart from spin complication, which will be
fully treated in the text, the amplitude under con-
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the A limit. If the LC behavior is

&p, p'lf(x}f(o)lp, p'} .—f( p, x p', s)
1

x2 ~0

+g(x p, x p', s)+ ~ ~

FIG. 1. The p-pair production kinematics.

sideration is

N'(s', s, , & fs *e="'',(p( I&(x)& '(0) I pp ). '

The variables are

s=(p+p'), v=p q, v'=p'q, (1.2)

and me have taken p'= p"= 1.
We consider the behavior of 8'in the generaliza-

tion of the scaling (A) limit in which each of the
four variables (1.2) becomes large with the three
ratios fixed:

A limit: q, s, v, v'-~,
with

s—fixed.q2 & q2 N q2

From phase arguments of the type used in electro-
production, ' the region of configuration space
which controls the behavior of 8'in the A limit is
again seen to be the light cone (LC)"":

(1.4)

In sI)ite of (1.4}, it does not follow in the present
case, contrary to the situation for electroproduc-
tion, that the leading LC singularity dominates in

W(q', s, v, v')~W„(q', s, v, v'),
A

(1.6)

where W„ is obtained from (1.1) by keeping only
the leading LC singularity [(1/x')f(x p, x p', s) in
the canonical case].

The result of the LC multi-Regge analysis is

(1.5)

the nonleading term g can be as important as the
leading term (1/x')f if it grows fast enough with s.

We mill see that in all presently known models
and, more generally, if multi-Regge theory de-
scribes the high-energy behavior, the leading
singularities do in fact dominate. (Actually, since
in the parton model the only configurations con-
sidered exclude those which contribute to the lead-
ing LC singularity, there it is the second leading
contribution which dominates. ) More generally,
any uniform bound on the large-s behavior at fixed
q', such as that provided by Regge theory, is suf-
ficient to ensure leading LC dominance. Strictly
speaking, such a bound mould only be relevant in
the Regge limit s-~ with q' fixed, but commuta-
tivity relations" make these bounds relevant in
the A limit as mell. ' Furthermore, in the LC
treatment the large q' and large-s dependencies
are effectively decoupled and only the behavior of
the five-point functions (pp'l 0„.. . „(0)l p, p') in
the 8 limit are relevant, provided the sum over n
is sufficiently convergent. "

It follows that under the quite general circum-
stances described above, the leading LC singular-
ity dominates the A limit and we have

1 ~l 1
W„~s"(lns) da dn dn' s ' s')1((ns', n's' ', a) 5(q'-2nv-2n'v'+nn's) 8(nn'-q'/s) „

A 0 -1 -1
(1.7)

where )1((P, P', a) is a rapidly decreasing function
of its first tmo arguments and is independent of
its third argument for a&a &1-e. [Here e= e(s} is
such that s'~' =2 GeV'. ] W„can therefore be con-
veniently decomposed into the sum of a "pioniza-
tion" piece W coming from &&a &1-e and a "frag-
mentation" piece 8'F coming from 0&a~a and
I-e«a «1 (see Fig. 6):

W =W +WF,A

4(p p'a)=~'(p p'}

and

e(p, p', a) =e'(p, p'), a & e or a & I-e. (I 10}

Note that since 4'(P, P') must be symmetric under
interchange of P and P' (v v' symmetry of W), we
can write

~(p p')=4( '(p p'), (pp')-'").

One integral in (1.7) can be done with the 5 func-
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tion and the others can be estimated if 4 is a suf-
ficiently smooth function of its arguments. The
result for 8'~ and 5'~ gives the expression

(1.13)

The interesting feature is the difference in the be-
havior of the sum variable. The sum (1.13) can
thus easily appear as the superposition of two dif-
ferent rapidly decreasing contributions, one,
(d(r/dq'), dominating at large q' and the other,
(dcr/dq'}, dominating at small q'. The result of
the combination of these two contributions can
produce a shoulder, as seems to be present ex-
perimentally.

When spin is correctly included, the result is
an expression of the form (1.7) with 4r replaced
by a sum over 4'„ i =1-4. To compare with ex-
periment, we take the simplest possible phenome-
enological model for the 4', 's. Vfe take

@ (p pr) pr &
a(8+ 8')- (1.14)

in the pionization limit with P and I3' both large,
and

(1.15)

in the fragmentation limit with P large and P'-1.
In (1.15) we have included a threshold factor ana-
logous to the one in electroproduction. With these
explicit forms, the integrals over a, n', and g
can be performed in the A. limit. The final result
is the sum of a P contribution, with an unknown

over-all coefficient P and an + contribution, with
another unknown over-all coefficient +. So, in
this simplest case, we obtain a representation in
terms of the five free parameters P, ~, h, k, and
n.

To compare with the experimental data, we
must integrate over phase space, respecting the
experimental cuts. We obtain expressions for
do/dvq, do/d(cos8) d(r/dqr~~r and o(Er) to be com-
pared with the experimental results. Our proce-
dure was to fix our five parameters by fitting the
do/dVq curve. A typical hand fit, with

P= 167, I' = 104, A, = 010, 0 20, n 4,
(1.16)

(1.12)

for the contributions of the pionization region,
(do/dq'}, and the fragmentation regions,
(dcr/dq'), to the cross section:

is seen to be quite good. The shoulder appears,
as expected, from the interference of the two ex-
ponentials and the final rapid decrease of the
curve is due to phase space. Using the same val-
ues (1.16), we obtain predictions for the other
curves. The agreement is seen to be very good
in all cases. It is possible to obtain still better
fits using more sophisticated fitting methods, but
this hardly seems warranted at present because
our assumed forms (1.14}and (1.15) are only
guesses and because of the crudity of the existing
data.

Accepting at least the gross features of the
present data, a few remarks about the signifi-
cance of the fit (1.16) are in order. The small
value -10 ' obtained for the ratio P,/I' suggests
that the Pomeron-particle-Pomeron coupling at
t=0 is very small and perhaps vanishes. This
must be the case if the Pomeron is an isolated
pole at o. (0}=1." The value n=4 for the thresh-
old-power decrease is similar to the value n= 3
found in electroproduction. We also obtain ac-
ceptable fits with n= 3. We finally note the smooth
experimental falloff of do/d(cos8). The behavior
is -e '~ ' "'e and we fit this nicely. This should
be compared to the behavior e " ' 'e~ which
one finds for hadronic single-particle production
in similar experimental conditions and which is
the parton-model prediction. "

Detailed derivations and discussions of these re-
sults are given in the following sections: Prelim-
inary information is collected in Sec. II. Light-
cone expansions are reviewed in Sec. IIA, the
kinematics and notations are given in Sec. II B,
and model calculations are reviewed in Sec. II C.
The behavior of the scalar amplitude (1.1) in the
Regge (Sec. IIIA) and scaling (Sec. III 8) limits is
given in Sec. III and the commutativity relation
is stated in Sec. IIIC. In Sec. III 8, LC dominance
is kinematically established but it is stressed that
this does nest imply leading LC dominance in this
case. In Sec. IV it is shown how strongly conver-
gent multi-Regge behavior at the five-point func-
tion level does give leading LC dominance. The
momentum-space form of this leading LC contri-
bution is given and discussed in Sec. V. The pion-
ization and fragmentation contributions to the am-
plitude are estimated in Sec. VI, assuming a cer-
tain amount of smoothness. In Sec. VII, the effect
of the photon spin is taken into account. The spe-
cific phenomenological model is treated in Sec.
VIII. The motivation is given in Sec. VIIIA, the
implications are deduced in Sec. VIII B, and the
resulting cross sections, respecting the experi-
mental cuts, are calculated in Sec. VIII C. The
model is compared with experiment in Sec. IX.
A fit to the experimental d(r/dVq curve is seen
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to provide good fits to the other measured cross
sections: do/dq~~, do/dcos8, and o(E). Section
X contains a general discussion of our assump-
tions and results.

A(x)a(0) E(x') x "ix "2 x "0~"& . . ..(0)

(2.1)

where LS denotes less singular terms. Here,
from the assumption that the leading LC singular-
ities are mass-independent, E(x') has the singu-
lar structure

E(x') ~ (x') 'A"a '0' '
x ~0

with

d„-=dim A(x), de
=- dim B(x)

(2.2}

dim 0'„"'„.. . , (x)-=n+ d, .
1 2

The value of LC expansions is that they consid-
erably simplify the structure of scattering ampli-
tudes in the kinematical limit where the LC dom-
inates.

Furthermore, it has been argued'" that Regge
behavior of current-hadron amplitudes plays an
essential role in establishing kinematical domin-
ance of the LC in the appropriate Bjorken limit.
We shall see later on that the Regge-behavior as-
sumption also plays a crucial role in establishing
dynamical LC dominance of the corresponding am-
plitudes, that is, in settling the question of
whether or not nonleading LC singularities contrib-
ute significantly to the Bjorken' limit. "

This connection between the Regge limit and the
LC-dominated Bjorken limit has been studied" in
some detail on the scattering amplitude T(q', v)
for

A(q)+ c(P)-A(q)+ c(P),

where A's are scalar currents of dimension two,
c's are on-shell scalar particles, and v=-P q. In

fact, if one assumes scaling and Regge pole be-
havior for T(q, v) in the corresponding limits,
one can show that for a large class of models de-
fined by DGS (Deser-Gilbert-Sudarshan) repre-

II. PRELIMINARIES

A. The light cone and Regge behavior

As is well known, a LC expansion is generally a
sum of terms constructed out of c-number func-
tions of x', singular on the LC, with bilocal op-
erator coefficients that can be expanded in in-
finite convergent series of local operators, '

sentations with suitable spectral functions, the
following symbolic commutativity relation holds":

lim lim T(q', v)= lim lim T(q', v).
&2/2 v 0 a2~ q2 ~00 tI-+oc

q /2p fixed 02 fixed

(2.3)

The content of (2.3) is that the forward intercept
of the Regge trajectory n(t) is given by the large-
(P x) behavior of the coefficient to the leading LC
singularity of the amplitude. It also follows from
(2.3) that the leading LC singularity determines
the large q' piece of the Regge residue functions

P (q')
These basic results, suitably generalized, will

be seen to play an essential role in the LC analy-
sis of the p, -pair production process and will be
discussed in some detail later on.

B. Kinematics

q-=q'+q =(q., i„q„),
with q'~0 and the direction with respect to which
the transversal and longitudinal components of q
are defined given by the proton momentum. Also,

s-=(p+p' }'; v=-p q; v'-=p'q;

p2 p
n 1. +2 -2 0

To first order in electromagnetism the center-
of-mass triple-differential cross section for the
scattering in which the final "anything" state is
not observed can be written as'

d (x" 4n 1
dq'dvdv' 3x' [s(s-4)J"' q's

xR v (q & & '+}&"(&}e"(q) (2.4)

Here e„'(q) describes the polarization v= 1'„T,
(transversal) or L (longitudinal) of the p pair and
(see Fig. 2}

w I,*,...",.)-=J.„"
&&. (P, P'li" (x)j'(0)l»p');„

(2.5)

Now that most of the relevant concepts have
been stated, we begin the LC analysis of the BNL-
Columbia experiments. The process of interest
is the high-energy reaction

proton(P)+proton(P')- p. '(q ')+ p. (q )+ anything,

where two protons, of momenta p and p', collide
to produce an observed muon pair of momenta q

'
and q, respectively, and an unobserved hadronic
final state.

Our notation will be
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FIG. 2. The forward three-to-three amplitude.

where j"(x) is the electromagnetic current. A

spin average is, here and everywhere, under-
stood and only the connected part of the matrix
element occurs. Notice also that because two
particles are present in the initial state, we must,
as indicated in (2.5), distinguish between (in) and

(out) states.
Using

set (q';s). Notice, parenthetically, that Eq. (2.8)
obtains quite immediately from the definition of
v and v'. Specifically, in the center-of-mass sys-
tem,

v (2s) (qo qadi) &

v'=(-,'s)' '(qo+q„)

when s becomes very large, and therefore

4vv =s(qo -qadi )

=s(q'+q, ').
From (2.8) and (2.9) it also follows that

.g~p +q

and the current conservation condition

0 ~q, ' &2v(1-q '/2 v)(1-2v/s )

for some given set (q', v, s). Alternatively,

(2.10)

q„q„W""(q', v, v';s)=0,

we obtain for the unpolarized triple-differential
cross section

d'o 4a' 1 1
dq'dvdv' 3w' fs(s-4)J'" q's

(2.6)

The physically accessible phase-space region
for the process in the center-of-mass frame at
fixed q', R,2, follows from

CL
0'

~
4 v

(2.11)

%'e shall find it useful sometimes to consider
q, ' and one of the subenergies, say, v', as in-
dependent variables rather than v and v'. Under
these conditions the phase space A, 2 reads (Fig.
4)

O~q, '~2v'(1-q'/2v ')(1-2v'/s) . (2.10')

The invariant-mass differential cross section do/
dq' is then given by

(P+P '-q)' -4; (2.7)

and the fact that for large values of s the trans-
verse momentum j, satisfies

0&q,' &(8-q')'/4s,

k(s+q')-([Hs-q')]*-q, '~
J
" (2.12)

4vv'= (q'+ q, ')s . (2 8) &2v'&-,'(s+q')+[[2(s-q')J'-q, 'sJ '~',

In fact, neglecting the proton mass squared com-
pared to the s-channeL energy, we get (see Fig. 3)

v+ v'~~(s+ q'}, VV'~ —,'(q'8), (2.9)

and, therefore, both v and v' are allowed to run

only over the finite interval (-,'q'; —,'s) for any given

Naturally, the corresponding (2v, q, ') phase space
is obtained by simply replacing v' with v.

q; S

q;S
S+q

2

S+q
+

2

S-q

2

q /2

0 q/2 sy2 X

S+q

2

f
(S-q )

4S

2S-q
2

q
2
J

FIG. 3. The physical region {B)in the v-v' plane. FIG. 4. The physical region {8)in the qJ -v' plane.
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The other two relevant cross sections, do/dq()
and do/d(cose), where e=-tan '(~q,

~ /q() )) are best
evaluated in the laboratory frame of P. Here

(' P 'q=q()=(q +q)( +q

and, since experimentally q)~2»q'+q, ', we use

C. Model caIculations

In this subsection, we will review the discus-
sion of the scalar amplitude

))=q„, ('=(q'+q„'tan'e)s/4q„, , (2.13)

to translate (2.6) from the center-of-mass frame
with the result that

given in Ref. 7 in the nonperturbative parton mod-
el." The contribution W', to W from the "annihila-
tion" diagram [Fig. 5(a)] is'"

dq dq„d(cose) 3v' [s(s-4)]')' q'scos2e

xW (q q )
cose;s). (2.14)

Hence,

da'
dq' d(cos e),„,(2.15)

d 0'

dq tl dq()d cos e

and similarly

d(cose) ~
') dq'dq„d(cose) '

cos 6

where a simple calculation gives

(2.16)

I

min q 2 I)i )

R,
+(

(cos6(l,

(2.17)

2 . ( 2( 2
q min (q ~ q maxq

2q
~(

2Q')~ 2q )(

1+q'/s+[(1-q'/s)'-4q' tan'e] '~'

2(-,' tan'e+ 1/s ) (2.18)

for q';„(q',g the minimal (maximal) value of q'
experimentally achieved, and

T= q'/s (2.20)

with

z( ) fd d ')"(=))"( ')&t '- ).
This is precisely the parton-model result" for
the scalar case. The contribution W, to 8' from
the "bremsstrahlung" diagram [Fig. 5(b)J is'

)((q) ,f~ -a."a"(
A

(2.21)

x5(q -2(d()-2(()'))'+(()())'s)

x e((()(()'-q /s). (2.22)

This is a special case of the general LC amplitude
we will study in detail in the following sections.
We note only that a comparison of (2.19) and (2.22)
is a dynamical question —either may, in principle,
dominate.

Unlike the application of this model to deep-in-
elastic scattering, " it is not possible in this case
to exclude the relevance of other contributions

)(' (e) f. ~--fd-'(-). (- )'(,=( =(),
(2.19)

and this gives the scaling behavior

+ ~ e ~

(b)

FIG. 5. Contributions to the p,-pair amplitude. Graph {a) corresponds to parton-antiparton annihilation and graph {b)
corresponds to parton bremsstrahlung.
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without further strong and as yet untested assump-
tions. ' For example, form-factor corrections to
the electromagnetic vertices in Fig. 5(a) may be
important here because the parton lines are nearly
on-shell, whereas they are far off-shell in the
corresponding deep-inelastic case." In view of
the lack of control over these other diagrams, and

also because of weaknesses of the model itself, ' a
model-independent approach is desirable. Our
attempts in this direction mill be the subject of the
following sections.

W(q', v, v'; s)~s "ii(vv'/q's; q'),
P

(3.2)

corresponds to the kinematical situation in which
the photon momentum q remains finite in the rest
system of p' while p becomes large. jFig. 6(c).J

(3) The v' fragmentation Regge limit (P') simply
follows from F upon interchanging v with v'. [Fig.
6(a). J

With these definitions, the Regge limits are (see
Fig. 5)

III. SCALING AND REGGE LIMITS
W(q, v, v';s)~s "P(v'; v/s; q ). (3.3)

%e shall now consider the amplitude
W""(q', v, v'; s) and analyze its behavior in the
appropriate scaling and Regge limits. In order to
render the analysis to follow as simple as possi-
ble, we temporarily remove the clouding compli-
cation due to the spin carried by the current j"(x).
In a later chapter spinology modifications will be
taken into account. %e shall, therefore, study the
amplitude

W(q', v, v';s)-=Jl d'xe "'"

~,(P,P'ij(x) j(0)iP,P'), ,
(3.1)

with j(x) a scalar current of dimension 2.

A. Regge limits

%e recall in this subsection the main results of
a multi-Regge analysis of amplitudes like
W(q', v, v';s). " Three different Regge limits
are defined as follows:

(1) The pionization Regge limit (P) inva. riantly
characterized as

v, v', s-~, q, vv'/s fixed,

corresponds to the kinematical situation in which

the photon momentum q remains finite in the

(P,P') center-of-mass system, while both P and
p' become large. IFig. 6(b). J

(2) The v fragmentation Regge limit (E) invari-
antly characterized as

v, s-~, q', v', v/s fixed,

Here the power a is expected to be the same as
occurs in the two-body process and, hence, is the
forward intercept of the relevant Regge trajectory,
presumably the Pomeron. Notice the scaling be-
havior displayed in (3.2) and (3.3), according to
which the residue functions P depend only on the
fixed ratios vv'/q s and v/s, respectively. It is
this scaling property that will presently allom us
to make the statement of commutativity between
the LC-dominated Bjorken limit and the Regge
limit a very simple one.

q', v, v';s-~, q'/2v, q'/2v', q'/s fixed.
(3.4)

%'e expect this limit to be LC-dominated, ' i.e., we
expect that only the region near and on the LC
x'=0 should contribute to (3.1) in the limit (3.4).
%e now show explicitly that this is indeed the case
if Regge behavior for W(q', v, v'; s) at large values
of v, v', s and fixed q' is assumed.

Consider the following representation for
W(q', v, v'; s):

))')q', , '; )= IJ)l
' jd' n (q*, , '; )

where

(p O'I j(x)j(0)lp p');„

(3.5)

B. Scaling 1imit

We consider next the scaling limit (A) for the
amplitude W(q', v, v'; s) defined to be the following
generalized Bjorken limit:

(a) (b) (c)

FIG. 6. Regge-pole contributions to the three-to-three amplitude. {a) and {c)correspond to fragmentation and {b)
corresponds to pionization.
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(q2 v v&. X) &(nv+n'v')dQ dQ

2w 27t

x &s((x-(xp-o'p'}'; q'),

k'(('; e'i—:Jk'ke"'e(k)k(k, '-e'),
R

Thus we see that Regge behavior in the fixed-q'
limit indeed ensures LC dominance for the p. -pair
production processes. This Regge "smoothness"
turns out to be necessary to derive LC dominance
in the Bjorken limit for a general process. %e
therefore expect that the region of configuration
space which controls the behavior of Win the A
limit is the LC:

a(k:kp, kp ')
(J(g y vyv )=

(+()&+~& +((} ( k2=e) k&e u)kv='=v'

with the region of integration in A„(P; q') speci-
fied by

fl: 0&lkl&
2vs (3.5)

Now let q' and s approach infinity with fixed
ratio q'/s. In this limit R becomes all space and

the ordinary free-field Wightman function. Cor-
respondingly, the us(q', v, v'; x} function becomes

i(nv+n u )l k(( p epr)2. qk)
dQ dQ'
27T 2''

with support in

(3.7}

l(x-~p-~ 'P ')' I-1/q'

If v and v' become large, the support of (3.7) is
modified by

n &1/v, a'&I/v',

and reads

lx'-3px/v- 3p x/v + s/vv
I

I/q'.
It therefore follows that the LC dominates the x
integration in (3.1) for

q', v, v'; s-~; s/vv'-0, q'/s fixed.

The desired result now follows, provided (px) and
(p'x)«v, v', from the simple observation that
s/vv' approaches zero in the scaling limit (3.4).

The contribution from the potentially dangerous
region (p x)-O(v), (p'x)-O(v') can, however,
be analyzed by noting that for q' fixed and v, v', s
large (i.e. , the Regge region), the amplitude
W(q', v, v'; s) receives a contribution from the x-
space region: lxl'~0, and (p x)-O(v), (p'x)
-O(v'). By requiring W to have Regge behavior
we can obtain, by a simple Fourier transforma-
tion, the behavior of 8'in the relevant region of
configuration space. It is then straightforward
to show that the contribution from this region is
exponentially falling for q'- ~.

As mentioned in Sec. I, this does not automati-
cally imply that the leading LC singularity dom-
inates the A limit of g (q', v, v", s). To see why,
assume for the moment canonical singularities so
that

(P, P'lj(x) j(o)IP, P') , f(x P—, x P', s)
x2 ~0

+g(x p, x p', s)+ ~

(3 3)

where we have exhibited the leading and first non-
leading contributions. Because of (1.4), the con-
tribution of f will be a power of q' greater than
the contribution of g. If, however, the large-s
behavior of g is greater than that of f by a power
(or more}, then the contribution of g will be the
same as (or greater than) that of f since q'/s is
fixed in the A limit. For example, if f-s but
g-s"'", then the contribution of f is (1/q')s" and
that of g is (1/q )s '" which dominates if k&1. An-
other way of posing the problem is to note that if
the difference of dimension of f and g is contained
in an (internal) mass factor m', then f will dom-
inate [f- (1/q')s, g -(1/q')s m'], but if the dif-
ference comes from a factor of s, then the con-
tribution of f and of g will be comparable
[f-(1/q')s, g-(1/q')s"']. In other words, if
the x' dependence of (p, p'I j(x)j(0) Ip, p')-=M is
scaled by m' [M-M(x'm. ')], then the leading LC
singularities will dominate, whereas if it is
scaled by s [M-M(x's)], then nonleading LC sin-
gularities will also be important. Of course, scal-
ing by factors like s'/m' would make things even
worse.

It thus becomes a dynamical question whether or
not the leading LC singularity dominates. It turns
out that in all presently known models (multi-pe-
ripheral, ' parton, " Feynman diagrams, "non-per-
turbative parton') the above possibilities for ruin-
ing leading LC dominance do not occur. (Actually,
since in the parton model the only configurations
[Fig. 5(b)] considered exclude those which con-
tribute to the leading LC singularity, there it is
the second leading contribution g(A. , A', s) which
dominates. )
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j(x)j(0) ~ (x' fax,-) 'Qx &x"2 x

and obtain

xo~„")„.. . „(o)+Ls,
1 2

(3 9)

w(a*, , ';s) Jd'* "') *-"ex,) '
A

xf(p x'p' ~ x s)

where

(3.10)

f(p x p' x;s)=g Qf„((s)(p x)'(p'x)"-'
n=0 f ~O

(3.11)

C. Commutativity

The LC-dominated A limit

W(q', s, v, v') ~W„(q', s, v, v'),

and the pionization limit (3.2)

More generally, any uniform bound on the large-
s behavior at fixed q', such as that provided by
Regge theory, is sufficient to ensure leading LC
dominance. Strictly speaking, such a bound would
only be relevant in the Regge limit s-~ with q'

fixed, but commutativity relations of the type dis-
cussed in Secs. I and II make these bounds rele-
vant in the A limit as well. This will be discussed
in Sec. IIIC. Furthermore, in the LC treatment
the large-q' and large-s dependencies are effec-
tively decoupled and only the behavior of the five-
point functions (p, p'IO~. . . (0)lp, p') in the ff
limit is relevant, provided the sum over n is suf-
ficiently well convergent. This will be seen in
Sec. IV.

The final result of this discussion is that we
can now replace j(x)j(0) in (3.1) with the LC ex-
pansion

(2.3) valid in deep-inelastic scattering. The ap-
propriate relation is

lim s "P(rl, q') =
fixed

f) fixed

lim W„(q, s) v, v'),
s Iq2, v/q2, v'f'q2

(3.12)

where we have introduced the scaling variable

(3.13)

IV. FIVE-POINT FUNCTION ANALYSIS

A. Light-cone dominance

To arrive at (3.10), only the leading LC singu-
larity in the expression (3.9) has been kept. As
we showed in Sec. IIIB, the dominance of this
leading LC contribution is a dynamical question.
We will see here how uniform Regge behavior at
the five-point function level answers this question
in the affirmative.

To render these purely hadronic arguments use-
ful in establishing the validity of (3.10), we now

make the assumption that the power series (3.11)
is uniformly convergent in s so that the limit s-~
can be taken termwise. We can then concentrate
our attention only on the matrix elements

.(0)lp, p'&,„
and analyze their behavior in the relevant Regge
limit. Notice, however, that the asymptotic be-
havior under consideration for the (in-in) ampli-
tudes follows from the behavior of the correspond-
ing (in-out) production amplitudes

.„,(p, p'I o'."'..." .(0) Ip.p'&,„

Equation (3.12) can be derived from an integral re-
presentation for W just as (2.3) can be derived
from an integral representation for the deep-in-
elastic amplitude. '

are related by a commutativity relation of the sort
in the same limit.

In fact,

. &p p'Io'."',.. .(o)lp, p') = &p'It. (p)o'."'. .(o) Ip, p'&,„

=.„,(p'll (p)o'"'. (0)
I p, p'&

.(0) lp, p'),„

+.„,& p'I [& (p) o'."'. .(0)-t.„,(p) o'."'. . . ..(o)l I p, p'&,„,
and standard reduction techniques give
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.&p, p Io'."'„.. ..(o)Ip, p&. =,&p, p IO." „.. ..(o)Ip, p') -i d'xU(x}31, .„,&p'I+(x)o'."'. .„(o)Ip,p') .

(4.1)

The content of (4.1}is simply that the (in-in) ma-
trix elements of the LC operators 0'„"'„.. . (0)
differ from the (in-out) ones only by an s-channel
absorptive part. Therefore, the (in-in) amplitudes
will have the asymptotic behavior of the corres-
ponding (in-out) production amplitudes.

The uniform Regge bound, seen earlier to be
sufficient in establishing leading LC dominance,
is now simply provided by the assumption that the
(in-out) production amplitudes have the pure
Regge-pole behavior for large values of s.

We shall, therefore, take it that under the quite
general circumstances discussed above, (3.10) is
valid as written and proceed to use our Regge as-
sumption in determining the high-s behavior of the
five-point function f(p x, p' x; s}. Further dis-
cussion will be given in Sec. X.

B. High-energy behavior

It follows from multi-Regge theory that the as-
ymptotic behavior is

f (s) "(lnsjf da . ( )(—.) (, .)
(4 2)

where n is the /=0 intercept of the leading ex-
changed Regge pole in the configuration of Fig.
7, presumably the Pomeron with a=I. The re-
sult (4.2) ean be visualized in the usual helicity
formalism if we give to 0~"I. . . (0) a small four-
momentum k„ to be taken to zero at the end. The
integration over a in (4.2) then corresponds to the
various ways of having the subenergies E=p k/(k)' '
-s' and E'=P" k/(k)'~'- 's' comprise the energy
s-EE', and powers i and n-i correspond to the
usual helicity-flip factors in (3.11).

A significant restriction is placed on (4.2) by the
requirement of hadronic scaling: a (a} is inde-
pendent of a for a away from the end points 0 and
1. These central a values corresponds to "pion-
ization" for the five-point function [Fig. 7(b)]. A
strong a dependence of a,.„(a) can, however, be

present near the end points, corresponding to frag-
mentation [Figs. 7(a), 7(c)]. Numerically, the
pionization piece is from a's satisfying e(s) &a
&l-e(s), with a(s) such that s" =N=2 GeV' is the
energy at which Regge behavior is expected. Thus
e(s)=lnN/Ins. The fragmentation piece comes
from 0&a&a(s} and I-&(s) &a&1.

Another way of understanding (4.2) is to consider
the five-point function

& p, p'I o. . (o) I p, p'&.

= gf (s)p . p p' ~ p' +(g s terms)
1 g k+1 n

as being constructed out of a six-point function

.&p, p'I e(0) s. " s.„e(y)l p, p'&.

by bringing together the two external P legs (this
corresponds to setting y-0). If this six-point
function has the usual multi-Regge behavior (pion-
ization and fragmentation} then (4.2) will result
[with a,(a) independent of a in the pionization re-
gion].

We should mention that it is not really necessary
for us to use this scaling at the five-point function
level. We could allow a (a) to be arbitrary now
and in our final expression for 8'„ invoke commut-
ativity with the six-point I' and I' limits to con-
clude from the six-point scaling behavior the same
a independence. '

V. MOMENTUM -SPACE REPRESENTATION

Now that the large-s behavior of the five-point
function f( p x, p' x; s) has been ascertained, we
shall proceed with the I C analysis of the ampli-
tude W(q', v, v', s). Combining (4.2) and (3.11)
gives

1 ~ x ' ~ xf(P x, P' x;s) s '" dar P,
S~vo 0 S S

Oaf".C

P

FIG. 7. Regge-pole contributions to the bvo-to-three amplitude. (a) and (c) correspond to fragmentation and (b)
corresponds to pionization.
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where
n

F(p g)) Qg & pm' sn m- {5.2)

where

Q—= q-nP-n'P' . (5 6)

Equation (3.10) therefore becomes

»'(q*, v, ", s) s'"f daf d '"'*(x'-' *,)-'
A 0

P P

We want to express the support properties em-
bodied in the 6(-qo) 5(q'} product in a more con-
venient form. To do so, we use the Sudakov'

par ametr ization

q= XP+X'P'+ t,

(5.3)

We introduce next the double Fourier transform
of F(p x/s', p'x/s' ') according to

*~» A
@&L(~P «)!& +(o'P' ~ «}/~ ]

S S 2'll' 2w

where p f=p' t= 9; $ = -q

q= (X-n)p+ (X'-a ')p'+ f,
and the 6 function condition requires

(X n)(-&'-n')=q, '/s, (5.9)

x4(o, o')

and change variables to

n = cr/s', n— '= o'/s' ':—
(5.4) if one ignores the mass terms. Combining (5.9)

with

qo=()).-n)p»+(X'-n')p' &0

P X P X dA dQ t1 ~ tt )(f)(P+ 0)JPs }I & y-a 2 2
s s 8

xq(as', n's' '). (5.5)

gives the inequalities

Invariance under the interchange of P and P' gives
Hence

4'(as', n's' ')=q(n's' ', as'}. (5.6)
+

+cy' «lX'=
s

Now that the x dependence of I has been fully
disentangled, we can proceed with the x integra-
tion in (5.3) and obtain nn' &q'/s, (5.10)

W(q, v, v', s)~ s "('l da — s's2 f» a(0) && «a i-a
2' 2m

x4'(as', n's' '}

x e(-q, ) 5(q'),

(5.7}

and 9(-q,) can be replaced by 6(an'-q'/s). Note

that

A+ A. '= 2(v+ v')/s ~1+q'/s

imposes no restrictions on the n, n' integration
as o.+e' ~X+X'. We finally have

j.

W(q', v, v', s)~s+ l da — s's' ')p(ns', n's' ')8( n'a- '
qs/) (5'q- 2nv 2'nv+s-na).

2m 2r
{5.11)

Here the o. , n' integration extends only over the
square

s:

To see this, first notice that the spectral pro-
perties of the LC amplitude require the Fourier
transform of f(p ~ x, p'x; s) to vanish outside S.
Then, using the entirety of f(p ~ x, p'x; s) one can
show" that, apart from nonleading terms in 1/s.
sq(as', n's' ') is the Fourier transform of
F((p x)/s', (p"x)/s' ') over the same S.

A most important consectuence of (4.2) and the

support properties discussed above, is that
4'(ns', n's' ') is a function of fast decrease in its
variables. In fact, the entirety of F, as displayed
in (5.2), implies the existence of all integrals

dPQP'+ P, P' P"P'

over the domain

which becomes unbounded for s-~, thus requir-
ing 4(P, (3') to vanish faster than any power when
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p pl

In view of the strength of this result, we should
discuss its origin and its limitations more amply.
The fast decrease of 4'(p, p') is a consequence of
the combined assumptions of Regge behavior for
the five-point functions and spectral constraints
on W(q', v, v', s), provided the assumption is made
that (3.11) is uniformly convergent for s- ~.

Although a natural assumption, the extent of its
validity in general is not known. It is, however,
true in the model calculation of Sec. DC, and our
treatment will fully characterize the LC behavior
of the class of models which show such a uniform-
ity.

give the dominant contribution when v»v' or
v'»v, respectively, and therefore the end-point
contributions to the amplitude shall be called
"fragmentation" contributions.

B. Pionization contribution

We begin by analyzing the pionization contribu-
tion to the amplitude. Performing the n' integra-
tion in (5.11), we display the symmetry properties
of 4 (ns', n's' ') in the general form

2v Q -q'/2v
' s o-2v'/s

where

VI. PIONIZATION AND FRAGMENTATION

A. Decomposition
1, 2 v oq'/2-v

a =- — a s'+- S
2 s o.-2v'/s (6.1}

Equation (5.11), when supplemented with the
fast-decrease property of 4(as', o. 's' '} as dis-
cussed above, is our main result. Obviously, as
it stands, (5.11) is of no use in explicitly evaluat-
ing W(q', v, v', s) as long as 4 (as', n 's' ') is not
known. Nevertheless, assuming a certain amount
of smoothness, we can stili extract from (5.11)
substantial information about the amplitude, as
we now proceed to show. Since we shall repeat-
edly invoke the mean-value theorem throughout
this section, the assumption will be made that
4(ns', o. 's' ') does not change sign within the re-
relevant domains of integration. In support of
this assumption we recall the observed precocious
onset of light-cone dominance, according to which
4(ns', o. 's' ') should already have achieved its
nonoscillating asymptotic behavior when the ar-
guments span the integration ranges indicated in

(5.11).
To continue our discussion, we shall find it con-

venient to decompose the amplitude into two
pieces by cutting the a integration in (5.11) at c(s)
and l-e(s), where s'i'~N is the energy at which

Regge behavior is expected. The contribution to
W(q', v, v', s) from all a's satisfying

e(s) &a&1-~(s)

will be called the "pionization" contribution as it
will become apparent that this region of integra-
tion gives the dominant piece of W(q', v, v', s)
when v- v'. Correspondingly, the integration re-
gions

0&a&a(s), 1 e(s)&a&l-

o-q'/2v
7l= 2v

2 I/ o! (6.2)

implies

d4/da= (s4/so}do/da .

Therefore, d4/da vanishes for

-= 1 n q'/2v 1-a=a-=ln 2v .';i. —.) (6.3)

is positive for a& n [because &4/so & 0 for 4 a
rapidly decreasing function in o], and remains
negative for a&a. It is not difficult to show that

6~+a~+ 1-&

for all values of n within the n-integration range
and for all physically accessible values of (v, v').
We can therefore split the pionization a integral
into two parts according to

1-8 a 1-e
da= da + da,

and use the mean-value theorem for monotonic
functions to obtain

The intervals over which 4(ns', o's' ') is a mono-
tonic function in the variable a, important in es-
timating the a integral via the mean-value theo-
rem, follow from the observation that m is inde-
pendent of a. In fact,

dw/da= 0

1+ CX(0)
Wp =S d cy O' Qs +

(»'~, )i, , i».&pi, »y, ~
o.'-2v'/s „s o.-2v'/s ' u-2v, s

where

(6.4)
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e &X, &a; a &k, & l-e.
Putting in the known value of a, we obtain

1+0{0)
p —8

n q-'/2v "'
2

n-q'/2v
S'/S)(i-22/22'Mi-22/S)

(6.6)

The same technique can be applied to evaluating
the a integral. The possibility of doing so follows
from the observation that o and ~'" are now equal.
We then have

d + e+ a+ dg '~'

dot 80' 8g I dCl

and 14'/d(2 vanishes for

W - s"""4'[(q2+2q 2'+ 2[q~'(q'+q ')] "2}"'same]

for

q'+ q. '+ lq. '(q'+ q. ')]"'

«2vt « S

l+[q.'/(q'+q. '}]'" '

a=a= i+ (6.6)

having the opposite sign of d2('~2/dn for a above
or below a because for

~2 2 2 lj2~P 1+a(0) @
& + O'S gX

2v' l-2v'/s

(6.V)ei
a(r Bm '"

Unfortunately the regions of monotonicity implied
by this argument are strongly dependent on (v, v').
A simple but lengthy analysis in the (q2, 2, v ') phase
space (Fig. 8) yields the following behaviors:

2 1/2
rgP 1+ct(0)~-s 4 2v+ ~ 2)/, , same

for

-'(s +q')-([-,'(s-q')]'-q, 's j '"
-2v'- q'+q. '+[q.'(q'+qi')l'"

S
l +[qi'/(q'+ qi')] '"

-2v'--', (s+q')+([2(s-q')]'-q2's)' '.
For convenience, various multiplicative factors in
(6.7) have been neglected as they are characteris-
tic only of the no-spin model that we are investigat-
ing in this section.

Next we proceed to an evaluation of various cross
sections based on the result we have obtained for
the amplitude W (q', v, v'; s). Consider first the
pionization contribution to the invariant-mass
differential cross section:

(
(s 22) 2/ss -(2 +22)/2+ ((s-s ) 2/4-222 2) / d(2v~)

W (q', v', qi', s) .
dq s o (s+e )9-t:(s"a 2) 2/&-ej. 2s) lI2 2 V'

For what follows, we shall find it convenient to write the above expression in the form

(6.6)

c
(s+2 )/2 d(2vl) 22 (2 2 /2v )( 1 22 Is)

$' 2v

s d 2p t 2vg1-y2/2y')(1-2v'/)'s)

t
(s+ 2)/2 2~ 0

dq2'W {q',v', q, ', s), (6.9)

and split both q~' integrals into two pieces that
integrate W (q', v', q, '; s) over the regions in the
(2v', q2 ) plane which proved to be relevant in the
previous discussion of 8'". Once again, for each
region in turn we analyze the monotonicity of
W (q', v', q, ', s) in the variables q2 ', 2v' succes-
sively and then use the mean-value theorem for
monotonic functions to perform the integrations.

Thus with reference to Fig. 9, for

q' &2v'& —,'(s+q'),
{2v'-q')'0- q2'-

the amplitude

Wv-s"~(s) q [(q'+ 2q '

+ 2[qs'(q'+q, ')] "")'";same]
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2v

pv
0

ffl

2l- /zv'

l -2V/s

the amplitude

1/2-s" ('~4 2v'+. . . ; same1- (q'+qi') /2 v'

is a monotonically decreasing function of q~', so
that the q~' integration is easily done to give

Syq
2

2v'= q +q +, q (q +q )/
2 2 2 2 2

2v =

(S+a//a
a(o) d(2v')4'[(4v' —q')'~' same]

q2

x (1 -q'/2v'} (1 —2v'/s) .

{s-q )

4s

q~)+
q2+ q2

q

FIG. 8. Relation between q~2-v' phase space and e
space.

Hence, after having performed the 2 v' integral,
this piece of the cross section must again have
the behavior of (6.10). Similar arguments show

that the remaining pieces integrate to the same
form that the pieces already discussed have.
Therefore, we can conclude that apart from in-
essential factors,

is evidently a monotonically decreasing function of
q~' and, therefore, the mean-value theorem for
the q&' integration gives essentially

(,) (~ ~) ('")~' d(2v'} (2v'-q')'

do ~ -s" (o)e(vq vq }.

Similarly, we find

(6.11)

(6.12}

s" (') 4'( v q, v q ) .

Next, for

q' & 2 v' & t( s +q'),

(6.10)

~ q~2~2vl 1-
4 v'- q' 2v

Now the 2v' integral is trivial and the correspond-
ing piece of the cross section must have the
behavior of

C. Fragmentation contribution

The technique developed above for analyzing
the pionization contribution fails in general in
the fragmentation regions a = 0, 1 as there is no
a integration to provide for the key property
whereby 0 and m' ' are equal. Correspondingly,
less general statements can be made about the
fragmentation amplitude ))'v(q', v', q';s). We can
still evaluate the amplitude when either of 84'/
Bo» BC/2s'~', 84'/8 w

~' » 84/Bo holds and then

2v
2

S+q
q ~2vl~

2
2v' S+q

2
~ 2v'& s

S

2
S+q

2
S+q

2

q 2
I q

t

(2v'-q )
2 2

4v'-q

q

0
2

I 2
I q

~2v'( ~- /sv&)(~- /s)
(s-2v')

4v~-s

FIG. S. Structure of the q~ -v' phase space.
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proceed to a determination of (der/dq')s. We find

for each of these cases that

do F

dq
s1+a(o) @(q2.~q) (6.13)

%'e now show that although one cannot establish
this result in general by integrating the fragmen-
tation amplitude, (6.13) is nevertheless generally
true. In fact, if one imagines having performed
all integrations by the mean-value theorem, one
expects

i+a 0
—,

-s""("[P4 (v q; v'q~) + F4 (q' v q )l (6 16)

such that the experimentally observed4 shoulder
in the invariant-mass differential cross section
at vq -3.1 GeV/c' is reproduced by our theory.
Naturally, the values of P and E required here
cannot be obtained unless some choice for 4 (o;s'+)
is made (Sec. VIII), but it should already be evi-
dent that E is much larger than P, perhaps with
a ratio of as much as 10'-10'.

We finally quote our result for the transverse
momentum differential cross section:

where n is the z integration take-out point evalu-
ated at 2v'=2v' and q'=i@, the corresponding 2v'
and q' integration take-out points. Because d((/
da=0, we must have

7((II) =q',

and therefore

(6.14)

(6.1 t}

with P' = const xp'and E'= constx E. Since qA' never
gets large, the shoulder feature of (6.16) is un-
important here. In fact, for E'»P', we expect
to obtain a good representation of the data by
simply using

(6.18)

where (v—= q'/2v; ('-=2v'/s. It follows from (6.14),
however, that an o, exists if and only if (d =$, i.e.,
if f'=0. Then

o. =$', o(' =$,

providing for the same variable

Notice, that while the condition (6.14) has fixed
the q' take-out point, it has left 2T' and, corres-
pondingly, 2v free. We shall now fix them by the
requirement that v be minimal. It is then easy to
see that

2v' = s, 2v =q',

with

o(o) =q'+O(q's),

and (6.13) follows. We also find, that

VII. ANALYSIS KITH VECTOR CURRENTS

The analysis of Sec. VI shows that the LC theory
of the p, -pair production process, when supple-
mented with multi-Regge arguments, can account
for the main features of the experimental data.
Thus, a shoulder in the invariant-mass differen-
tial cross section do/dq' can be provided by the
change in slope from the fragmentation to the pion-
ization regions, while the transverse-momentum
differential cross section da'/dqA' in the laboratory
system is predicted to have the behavior of a
function of fast decrease in qA'.

Ne now want to proceed to a more quantitative
phenomenological stage of the theory and eventually
show that our expressions can nicely fit the data,
To that end, we first determine the form of the
triple-differential cross section in the presence of
spin. The LC expansion to be inserted in (2.15) is
now given by'

F
-4 (q, ',v'q„') .

J
(6.15)

-g"'Ss 9")O„s(x) „

D. General properties

Notice that for small values of q' the fragmen-
tation contribution to do /dq' is more important
than the pionization contribution, while for large
q' the importance of the two contributions gets
interchanged. Consequently, as long as the sum
variable a in %(o; s'~') is at least as important
as the product variable m, we can choose the mix-
ing factors P and E in

O s(x) =- ln(x' —isx, )Qx"~ " x2 x ~

dimo'"' =n+ 2, ( t.2}

(7.3)0"(x) =0.
The five-point function now has the form
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. (p, p [0.,(x)[p, p ). -=In(x'- iex, ) [g.,f,(p. x,p"x;s)+p.p,f,(p x, p x;s)

+k(p„ps+p~s) f, (p x, p' x;s)+p~,'f, (p x, p' x;s)],
and the trace condition (7.3) implies

4f, +f, =0.

(7.4)

An analysis similar to the one given in Sec. IIIB and Sec. IV gives for the scalar amplitudes f,. (p ~ x, p x;s)
the forms

f (P'x, P' 'x;s)=sa '~ dah, (s;a) — sa ' a+ (nsa n~ ' ~ )ei' '+' i' ~adQ

0 S

where all 4', (ns'; n's' ' } are rapidly decreasing
functions of their variables, and where

h, (s; a) =-1; h, (s; a) -=s ";
(7.7)

h, (s; a) -=s '; h, (s; a) =-s "' ' ' .

We then find for the trace of W"'(q', v, v'; s)

where

i=0
(7 ~ 8)

Q:—g —QP —Q P

&!(Q') -=d@,[ &(-Q.)~(Q')] (7.10)

w, -=2/'; w, =2(p Q)'

w. =-2(p Q)(p'0); w, =2(p'0)'.
Notice that here we have kept only the leading con-
tribution of the leading LC piece and dropped
terms of the type

ln(x' —isx,)s"a "f,(p x, p'x; s),
&"f,(P x,P'x; s)&'ln(x' —iex,),
g"'f, (P x,P'x; s) ~In(x' i~x,),

and so on. In fact, these terms were introduced
in (7.1) only to make the expansion manifestly cur-
rent-conserving and they correspond to nonleading
contributions.

VIII. PHENOMENOLOGICAL MODEL

A. Model

We are now ready to choose some reasonable
model for the 4',.(ns'; n' s' '). Specifically we

W, -=s ' ' da h, (s; a} — s's' '6fQ dQ

0 S 2F 2'
&&4,.(ns'; n' s' ')I, P,'(Q'),

(7.9)

with21

take the following:
(I) All 4', 's are only functions of the sum vari-

able a = —,'(ns'+ n's' ').
(2) In the pionization region (e «a «1 e}
(nSa. ns, l-a) -paaa -p~'al-a

(3) In the fragmentation region (0 «a «e)
4,.(Qs',' Q's' ') -e " '(1 —Q)".

(4) In the fragmentation region (1 —e «a «1)
4, (ns'; n's' ') -e '~(I —n')".

The requirement (1) can be made transparent if
one recalls the discussion at the end of Sec. VIC.
In fact, we have noticed there that only the sum
variable dependence has the virtue of providing
the shoulder structure of the experimental data on
da/dq'. It is, then, only a matter of convenience
to drop the dependence on ~ =- QQ's. Naturally the
choice of exponential falloff for the 4, (ns'; n's"-'},
as displayed in (2)-(4), is by no means the oniy
one possible, although it is no doubt a reasonable
one. Nevertheless, we have made this particular
choice on the grounds that we expect to fit the
data on dc/dq„', knowntohave exponential behav-
ior, ' by (6.18) alone. Finally, we have incorpo-
rated the SLAC-NIT-like threshold behavior' we

expect for 4,.(ns'; n's' ') in the fragmentation
region when either Q or Q ' are near 1.

8. General results

We shall now explicitly evaluate the triple-
differential cross section W"„(q', v, v'; s), in terms
of the five phenomenolog'. cal parameters, later to
be fitted to the data, P, h, g, k, and n.'

(1) Consider the expression for Wiv. With

h, (s; a) =s ", we ha,ve
I-e

dQ dQdQ
Bm'

S

x ——Q' —Q a' (q~) .

(8.1)

The integration over a can now be done rather
easily to obtain
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dn dn'K (2h(nn's}'")As' d
4n' dq' 0

where

x ——n' —n 6} nn' —— gp

x5(q' —2nv —2n'v' +san'),

(8.2)
dA,

4h' dip
(8.11)

where d/d@2 has been taken outside the n, n' in-
tegral as a derivative with respect to q' at fixed
(v, v', s), and where the 85 product has been re-
arranged in accordance with Sec. V. %e shall
find it convenient to write

R„=-K„(h[1}'"+ (1) —6)'"J )

x K„(h[q,'" —(1i, —~)'"] j . (8.12)

p A, s dJ
4w' dq' '

where

d =—s dn dn'Ko(2h(an's) ) ——n'2 2v 2v
s s

(8.3)

2

~ 8 nn'- —5 q -2nv —2n'v'+san').
s

(8.4)
Introducing

g=—nv+a v
y

'g=nn sy

and performing the ( integration with the 5 func-
tion, we can rewrite J as

Notice that, while exact when (1), -1T,)- ~1 the
above expressions for the W~ are unnecessarily
complicated to work with. However, since
(q, '/q')'" is small in the A limit, it will be suf-
ficient to keep Wv only to first order in (q, '/q')"
and thereby simplify the calculation of the cross
sections. To leading order in 1/q' one can then
show, after some lengthy algebra, that

W~ =Wv- ', —,K,(h[1i '"+(1i —n)'/2]),

(8.13)

while 8', and 8'2 have the logarithmic singularity
of 80 when q, '- D:

K,(2h(x'+ 2},)'/2)
(8.5) (8.14)

where

4[ 2(q2 q 2)]1/2 (8.6} The apparent singularity at q, '- 0 is not really
present if one recalls (1.5),

q, -=q'+2q, '+2[q, '(q'+q, ')]'",
1-q'/2v

2 /

(8.7)

4A +A, =O.

The singularity in Wp now exactly cancels the one
in 8'2 and w'e have

K,(2h (x'+ 1},)'"j
q/.

(
2 n )1/2 (8.8)

Now the x integration can be performed to give

2K (h[1l 1/2+
(/} g)1/2] )

xK,(h[2i, '/2 —(2},-n)'/2] j. (8.9)

Notice that in the A limit qp- ~ as q' and there-
fore 4 is not very sensitive to the value of the up-
per limit (1), -1),}. Correspondingly, we can take

(Wt) - AsK2(h[1j2'/ + (qo —6)'/ ] ), (8.15)

where A -=1/41/' (-', A, +-,' A, ). This is our main re-
sult for the pionization contribution.

(2) We next discuss the fragmentation contribu-
tion to I'4'„"(q2, v, v'; s). For a-0, only W, contrib-
utes sensibly, as dictated by the helicity factors
h, (s; a), while for a-1 only W, contributes. Con-
sider then

Bs' d I
1 8+2 dq2 y

w~=0 4 2 py
A,s dL

3 4~2 dq2 (8.10)

Similar methods can be employed to reduce Wp~,

S', and 8', to quadratures. %e give here only the
result:

where

x5(q' —2av —2n' v'+sna') . (8.17)

2 2

dn da'e " ' ——n' (1 —n)"(9 nn'-—
s S
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Changing variables to

x:G —2v/s «y: at —2v /s «

and performing the y integration with the 5 func-
tion, we obtain

2
N(l u. g) = dxe-«sx e-&a« /sx x

2

Notice that N(l, u; ~) has been chosen such that

X-2 lI/S 2ve-y2u dxe ""x 1—
s {q 2/s) / {j.-21I'/s) S SX

l.

(8.18)

1I=—e ""Q . p" ' ,—N(l,usa)

(8.20)
Define next

q, '/s
1 —2v'/s ' u—= 1 —2v/s, p =1 —2v'/s,

(8.19)

thus reducing I to an evaluation of N(l, u; A.).
N(l, u; X) itself can be integrated rather straight-
forwardly by use of Laplace-transform methods.
When this is done, (8.20) gives for I

n 2

I= (1/ks-')e " Q (-1)'(",) p" ' ' (ksu)'"+(j+ ll j+1I ksu)
L)=O sQ

rl 2

+2 Q(-1)'(",) p" ' q' (ksu)" 4(j+1Ij I
ksu)

j=O sQ
n 2

+2 g(-1}~(&}p"~ (ksu}~«k(j+1I j—llksu)
sQ

+(1/ks')e ""e "'p" P(-1)'(",)(ksl)'"0'(j+ll j+ll ksl)+2+(-1)'(&)(ksl)~"0'(j+ll jl ksl)

ft

+2 P(-1}'(",)(ksl)'0'(j+ll j-1Iksl)
j=O

(8.21)

Here 4(al c
I x) stands for the Tricomi confluent

hypergeometric function. ' It is again useful to
simplify the rather complicated, but exact, ex-
pression for 8', . To this end, we notice that ac-
cording to our general discussion of Sec. VID, the
fragmentation piece is expected to contribute im-
portantly over the pionization one only at the
small-q' end of the dimuon mass spectrum. For
these values of q', the momentum cut present
experimentally (2qs & 24) restricts 2v to values
much larger than q' and therefore q'/2v«1. Then
sl- q~2 and for small q~2 it will suffice to keep 8',
only in the limit ksl- 0. Note that the last assump-
tion is more restrictive than the (q,'/q')'"-small
assumption needed in estimating the pionization
contribution. We are, nevertheless, willing to
make it both on the grounds that the angle cut
present in the experiment (cos '8~ 0.998) does not
allow q,' to get very large and that the rapid fall-
off displayed by da/dq, ' with q, ' favors events
with q, ' near zero. Finally, the upper-limit con-
tribution becomes relatively important only for
2v - s and, hence, we can also take ksu to be
small.

Under these conditions, and using the small-x
behavior of the Tricomi functions 4'(alcl x),"we
find

x~e "—exp -«(S ~ e',
)

(8.22)

8'3 -Bg

2
~ e-"- exp -k 2v +

1 —2v/s

where

8=nB, /8v k—
(W~)F =WF+WF.

(8.23)

This is our main result for the fragmentation con-
tribution to W„"(q «v, v'; s).

C. Experimental restrictions

We are now in a position to integrate the triple-
differential cross section

d a o 1 1 ~~q)mw(
dq'dq dq

'= 3v' q' q
' ~q II q q s qll
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over the experimentally accessible phase space,
and obtain the various measured cross sections.

The experimental phase space associated vrith

these cross sections obtains by implementing the
experimental cuts, '

~- ~gp q(i~@ii y

for 8„' = 4 x 10 ', Q ~~

= 12 GeV/c over the kinemati-
cally accessible phase space at fixed q', q~~ or
cos8, correspondingly (Sec. IIB).

Consider first dc/dq'. At fixed q', kinematics
alone requires

0 «q, ' «2q!( 1 — 1—

The angle cut, now given by the constraint

q, ' - (2q„)'-,' e„',
intersects the boundary of the kinematical phase

space at

1+q'/s + [(1—q'/s)' —q'e„'] '"
2(-,' es'+ 1/s)

'q J. (2qtl ) o 4
the corresponding minus solution having been
ruled out by the momentum-cut contraint.

Notice also that since (1 —q'/s)' —q'8„' ~ 0 for
all q' «36.7 and since the intersection coordinate
2q)~ is always above the cut, the experimental-
angle cut remains effective for the entire mea-
sured range of dimuon invariant-mass-squared
1.1 «q2 «24.

Finally, the two experimental cuts intersect at
the q'-independent point (2Q„; (2Q,~)'-,'8„') imply-
ing that the 2q~~ range gets affected only by the mo-
mentum cut below q, ' = (2Q „) —,

' 8„' and only by the
angle cut above that. With all this information
incorporated, the fixed-q' experimental phase
space becomes (Fig. 10)

r
0 q (2Q i) es 2Qii 2qti a(s+q )+ f [-'(s —q )) —q sj'

2 2 2 2 2 2 2

L a.
(

(2Q„)'-, 8 «q„1 2 2 ~N 1+ ——q + 1+— 1-——q g
q 2

8(-,' 8„'+1/s)' s 2 hl

1/2

«2q„» —,'(s+q')+ $[-,'(s —q']' —q, 's)'".

1/2

Correspondingly, the cross section is

dc n' 1 ~ d(2qi, ) (gyp)mod(
d ' 3m' q's 2q

A simple calculation further gives (Figs. 11, 12)

1.1 «q 2q(( —
~ q

0 q~ (2q, () oem'

(8.24)

(2a '8 8'
1 —2qii/s 4

0 q, ' 2q (I —2qll/s)(1 —q'/2q„),

24 2q,
,

(2q„)-, 1.21-q' 2q„-,

(2qii) 2qi (2qii)+ ~
1 21 q 24

(2q„)' tan'8
(2q, ()+ 2q)( s I 1 21 q 2q))

where (2q„)' are given by

1+q'/s ~ [(1—q'/s)' —4q' tan'8]"'
2(-,' tan'8+ 1/s)

at q' =24. Therefore,
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Av Q 1 mod 2.dq, , (W"„) (q, q~~, q, ; s),
dql, n' q lS q

qil

dv 2Q 1

d(cosg) 2 2 cos26 qil qII 2 ( p)
cos 6

, do.
o(s) = dq'd, .

IX. COMPARISON WITH EXPERIMENT

We are now left with the problem of choosing the
set of five parameters which our analysis cannot
fix (A, k, 8, k, and n) such that, upon numerical
integration of (8.24), as close a fit as possible to
the experimental data on dc/duq' is obtained. To
accomplish this, a set of initial values for the
free parameters was chosen in accordance with
the following few simple observations:

(1) For q' ~ 10, the fragmentation contribution,
seen earlier to have the behavior of e ", can be
neglected compared to the pionization contribution

-~ (a') '"
e "' ' . Therefore, a two-parameter fit to the
high-q' end of the data is sufficient to give

-(2w)"'A, =2.5; k, =0.15 (GeV/c) '. (S.l)

(2) A simple calculation, in which complications
due to the complexity of the experimental phase

2q„

( 2q~i ) eg/4

k, = 1 (GeV/c) '. (S 2)

(3) A similar calculation for da F/dq„shows
that a maximum exists at a ql satisfying

2q~, Ei(k/1. 21/2q„)=(s/n)(l —2q„/s)e ~~' ""i~ .

(S.4)

Taking 2q~~ 20 GeV/c as the data indicate, a. first
estimate for n is given by

Plp 3 s (9.5)

This nicely corresponds to the threshold behavior
of the SLAC data on deep-inelastic ep scattering
in which one probes the LC behavior of the same
product of two electromagnetic currents that one
does in the p, -pair production experiments. The
contribution from the pionization piece does not
essentially change the value of n, since do~/dq,
is only a slowly varying function of 2qll Now Bo
follows simply from normalization on do/d(q')"'.

Varying the free parameters around these initial

space are neglected, provides for do~/d(cos6) the
behavior

-k (s /4sO) ( &-cos 6)e

corresponding to an experimental decrease of
e ' " "'sI, while dop/d(cose) turns out to be a.

constant. We therefore choose

2
„Q

2s+q ~
2

2QI

2

-q =2q I ——
I - ---—2

il 2g II

0 S-g
-

q

FIG. 10. The experimental q ll-q~ phase space.
FIG. 11. The experimental q~ -q phase space. {q~

and q in GeV/c. )
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(zq„),
IO

fo

P= i.67
h ~0. IO
F= IO4
k =2.0
n =4.0

C

b

FIG. 12. The experimental q ~~-q phase space. (q t~

and q in GeV/c. )

values, the best arrangement is found to corre-
spond to (See Figs. 13, 14, 15, 16)

-(»)'"A= 1.6'I A =0.1 (GeV/c) '

B=10' k =2.0 (GeV/c) '; n=4. (9.6)

It is perhaps worth noticing that the fit to the
data breaks down for q' ~ 19 (GeV/c)'. Such a
breakdown is probably accounted for by the Fermi
motion of the target proton in the U nucleus which
has not been compensated for either in our calcula-
tion or in the experimental data." As we do not
know exactly how such a compensation should be
handled quantitatively, we can say little about the
improvement that such calculation could provide.
It is nevertheless clear that at least qualitatively,
the correction does go in the right direction.

our hand-fitting couM be improved somewhat by
performing a least-squares fit to the data on do/
d(q'P", but since the error bars do not fully in-
clude all of the systematic errors encountered in
the experiment, this is hardly warranted.

In any case, the smallness of the ratio A/B
-10 ' is strongly indicative of the fact that the
Pomeron-particle-Pomeron vertex contributing
only to the pionization piece should be very small
[Fig. 7(b)]. This must be the case if the Pomeron
is an isolated pole at J=1." Furthermore, the
strong experimental drop of do/dqp when qp ap-
proaches its kinematical limit —,s is seen to be
easily accounted for by the threshold behavior
(I-x}",where our fit indicates n=4. Our numer-

4. I 4.9

FIG. 13. The experimental results for dojdVq (in
cm GeV) and the fit given by the parameters in-Eq. (9.6).
(m in GeV.)

ical analysis shows, however, that a value of n =3,
suggested by the SLAC-NIT data, still provides a
satisfactory result for all. cross sections. Finally,
as mentioned earlier, the dc/d(cos8) cross section
we obtain is well represented by the rather slow
experimental fall e ' "'~ . It is interesting tp
note that in these experimental conditions for a
hadron one would have expected, rather,
e ~' ' ~' ." This shows that the highly virtual
photon is much "thinner" than a hadron.

X. DISCUSSION

%e have seen how the combined assumptions of
LCOPE's and (strongly convergent) multi-Regge
theory (4.2) lead to strong restrictions on the. form
of the p, -pair production amplitude (1.1). These
assumptions lead to the general form (1.7) with
the spectral function 4(P, 13') a rapidly decreasing
function of its arguments. This general form is
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l0— I05—

P * l.67
h 8 O. IO
F8 IO4

k *2.0
n 84.0

Cgj

Io'

b

e
O

= lo-'

be

lo' I I I I

l 0.9996 0,9992 0.9988 0.9984
cos 8

FIG. 15. The experimental results for do/dcos6) (in
cm2) and the fit given by the parameters in Eq. (9.6).

hl

29
q II

FIG. 14. The experimental results for do/dq j( [in cm /
GeV/ct and the fit given by the parameters in Eq. {9.6).

function 4, (P, P') falls (exponentially) sufficiently
slowly. This is obviously no problem since in-
clusion of this, or any similar, term will not
change the basic form of (1.7). We expect, how-

ever, on the basis of the general kinematical anal-
ysis and of the obtained Regge behavior [plus com-
mutativity (3.12)], that the leading singularity
will, in fact, dominate. One easily sees, more-
over, that replacing j(x)j(0) in (1.1) by x'j(x)j(0)
gives a less leading contribution provided 4'(P, P' )
falls slower than exp[-(J1+P') ].'4 It is interesting
that the requirement of LC dominance can place
such a strong restriction on 4'.

already sufficient to predict the gross features of
the amplitude: fast decrease with increasing q'
and q, ', slow increase with increasing s, and a
break between the pionization and fragmentation
dominance regimes. With further smoothness
assumptions (precocious asymptopia) the much
more specific results of Sec. VI can be obtained.
Finally, the five-parameter model introduced in
Sec. VIII leads to precise expressions for the am-
plitudes which embody the general features of the
exact expressions but which can be directly used
in a phenomenological analysis.

To achieve these results, we had to invoke
strong assumptions. Our general results are,
however, rather insensitive to most of these as-
sumptions. For example, we can inquire about
the validity of our use of the leading LC singular-
ity. Actually, the contribution of a nonleading
singularity [e.g. , (x')'ln x'j will be more impor-
tant than that of (3.8) if the associated spectral

l0—

20
I

22
I

24 28 28 30

FIG. 16. The experimental results for 0.(E) (in cm )
and the fit given by the parameters in Eq. (9.6). (E& in
GeV.)
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For similar reasons, it should be clear that our
use of canonical LC singularities is inessential.
Allowing an arbitrary singularity mould only
change the form of our result by a polynomially
bounded function. Conversely, this means that p. -
pair. production is not going to check the hypothesis
of canonical dimensions.

The assumptions we employed are valid in a
large number of models: Feynman diagrams, "
multiperipheral, "partons, "nonperturbative par-
ton. ' our model-independent treatment incorpo-
rates the general features of these models without
the commitment to a specific model. This is de-
sirable since none of the models is totally satis-
factory from other points of view.

It is particularly important to compare our
analysis with that of the parton model. " A de-
tailed comparison has been given in Refs. 7 and
10 and the conclusions are as follows: The con-
tribution (2,22) of the bremsstrahlung diagrams
[Fig. 6(b)] has our general form (1.V) with spec-
tral functions

The contribution (2.20) of the annihilation dia-
grams [ Fig. 6(a)] does not have the form (1.7) be-
cause these diagrams do not have leading Regge
behavior at the five-point function level. They
correspond to a Kronecker delta at J=O in the
complex J plane. If further diagrams do not can-
cel this effect, then (2.20) should be added on to
(1.7). lt is, however, quite possible that the effect
will be canceled. For example, the form-factor
corrections mentioned in Sec. IIC mill accomplish

this if they are such that the total form factor is
a rapidly decreasing function. Then the form-
factor-corrected annihilation diagrams do have the
form (1.7).' This must be the case since the form-
factor-corrected annihilation diagrams do satisfy
the five-point function Regge behavior. It should
also be noted that, even without form-factor cor-
rections, the parton-model result (2.20) is a spe-
cial case of (1.7) if the fast decrease of 4' is given
up.

We have seen how amplitudes of our (LC-domi-
nated multi-Regge) form lead to very good agree-
ment with the existing experimental data. This in-
dicates that the parton-model Kronecker delta con-
tribution is not present. Of course, the real test
of our results and of the parton model will be the
comparison with the future data. Preliminary
experimental results already indicate that the
parton-model expression for dv/dq' does not fall
fast enough at the larger q' values. "

An amusing consequence of our fit to the data is
the small value (-10 ) obtained for the PjF ratio.
This smallness of the Pomeron-particle-Pomeron
ratio has been theoretically anticipated" and such
matters have recently been the subject of con-
siderable interest. " One may speculate that this
provides an empirical indication of the decoupling
theorem.

As we have said, the present data are not suf-
ficient to determine the correctness of our as-
sumptions or of other approaches such as the par-
ton model. The future data shouM settle this
question and should indicate the way in which lep-
tonic and hadronic physics merge in nature.

*This work supported in part by funds from the National
Science Foundation.

)Present address: Center for Naval Analysis, 1401
Wilson Boulevard, Arlington, Virginia 22209.

)Present address: Istituto di Fisica, Universita di
Roma, Boma, Italy.

~K. Wilson, Phys. Rev. 179, 1499 (1969); J. D. Bjorken,
Phys. Rev. 179, 1547 (1969).

2R. A. Brandt, Phys. Rev. Lett. 23, 1260 {1969); Phys.
Rev. D ~1 2808 (1970); B. L. Ioffe, Phys. Lett. 30B,
123 {1969).

3R. A. Brandt and G. Preparata, Nucl. Phys. B27, 541
(1971).

4J. H. Christenson, G. S. Hicks, L. M. Ledex~e~, P. Z.
Limon, B. G. Pope, and E. Zavattini, Phys. Rev.
Lett. 25, 1523 {1970); Phys. Rev. D 8, 2016 (1973).

~G. Altarelli, R. A. Brandt, and G. Preparata, Phys.
Rev. Lett. ~26 42 {1971).

6B. A. Brandt and G. Preparata, Phys. Rev. D ~6 619
(1972).

~B. A. Bx'andt, in px oceedings of the 1972 International
Summer School of Physics "Ettore Majorana, " Erice,

Italy (unpublished) .
SH. Kendall, in Proceedings of the 1972 International

Symposium on Electron and Photon Interactions at
High Energies, edited by N. B. Mistry (Laboratory of
Nuclear Studies, CorneD University, Ithaca, N. Y.,
1972), p. 247, and references therein.

SR. A. Brandt and G. Preparata, in Broken Scale
Invariance and the Light Cone, edited by M. Gell-Mann
and K. %'ilson (Gordon and Breach, New York, 1971),
p. 43.
K. Wilson, in Proceedings of the 2971 International
Symposi2fm on Electron and Photon Interactions at
High Energies, edited by N. B. Mistry (Laboratoxy of
Nuclear Studies, Cornell University, Ithaca, New York,
1972).

~~S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 25, 316
{1970); Ann. Phys. (N.Y.) 66, 578 (1971).

~2B. A. Brandt, Phys. Bev. Lett. 22, 1149 (1969); Phys.
Rev. D 1, 2808 (1970); D 4, 444 (1971).

~3See, for example, A. H. Nueller, in Proceedings of the
XVI International Conference on High Energy Physics,
Chicago-Batavia, 8/. , 197Z, edited by J. D. Jackson



10 MASSIVE-MUON-PAIR PRODUCTION AT HIGH ENE RGY

and A. Roberts (NAL, Batavia, , Ill. , 1973), Vol. 1,
p. 347, and references therein.

~4G. Preparata, in proceedings of the 1972 International
Summer School of Physics "Ettore Majorana, " Erice,
Italy |unpublished) .

~50r generalization thereof.
~6See Ref. 12 and references therein.
~~See, for example, P. V. Landshoff, J. C. Polkinghorne,

and R. D. Short, Nucl. Phys. 328, 225 (1971}.
SA. H. Mueller, Phys. Bev. D ~2 2963 (1970).

~9H. C. Baker, Phys. Rev. D 6, 1120 (1972); i@4.
8, 3470 (1973); H. C. Baker, E. Y. C. Lu, and
E. Schrauner, Phys. Lett. 38B, 110 (1972).
V. V. Sudakov, Zh. Eksp. Teor. Fiz. 30, 87 (1956) [Sov.
Phys. —JETP 3, 65 (1956)]; V. N. Gribov, Zh. Eksp.

Teor. Fiz. 53, 654 (1967) [Sov. Phys. —JETP 26, 414
{1968}l.

2~Although the distribution 5'(Q 2) is not well defined, the
expression (7.9) is unambiguous in the limit of interest.
Higher Transcendental Functions {Bateman Manuscript
Project), edited by A. Erdelyi (McGraw-Hill, New
York, 1953), Vol. 1.

2 J. Christenson, private communication.
24See Bef. 7 for further discussion.
2~L. Lederman, private communication.

See, for example, Ref. 13, F. E. Low [in Proceedings
of the XVI International Conference on High Energy
Physics, Chicago-Bataz~ia, Ill. , 1972, edited by J. D.
Jackson and A. Roberts (NAL, Batavia, Ill. , 1973),
Vol. 3, p. 459], and V. N. Gribov [ibid. , Vol. 3, p. 491].


