Charmed pseudoscalar-meson masses in broken SU(4) \times SU(4) symmetry*

S. C. Prasad[†]

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (Received 21 January 1974)

In the broken $SU(4) \times SU(4)$ model the possibility that the charmed pseudoscalar mesons can acquire heavy masses compared to the known particles is investigated. Solution for a symmetry-breaking parameter crucial to the model is obtained. It is shown that the masses of the charmed pseudoscalar mesons are of the order of 1 GeV if both SU(3) and SU(2) \times SU(2) are good symmetries of the Hamiltonian.

Progress toward unified gauge theories of leptons and hadrons during the last two years has renewed interest in $SU(4) \times SU(4)$ as an approximate symmetry of hadrons.^{1,2} In a recent paper³ spectral-function sum rules for scalar and pseudoscalar densities were studied within the framework of broken $SU(4) \times SU(4)$ symmetry. The constraints imposed on the symmetry-breaking parameters of the theory by the exact and other approximate sum rules, derived under the assumption of octet-type breaking of SU(3) symmetry at $q^2 = 0$ and $q^2 = \infty$, were investigated. It was shown that the $q^2 = 0$ sum rule rules out any solution for the symmetry-breaking parameters where SU(2) \times SU(2) is a good symmetry of the Hamiltonian of hadrons when the vacuum is approximately SU(3)invariant. On the other hand, it was shown that the $q^2 = \infty$ sum rules are consistent with a solution where $SU(2) \times SU(2)$ is a good symmetry of the Hamiltonian with the vacuum approximately SU(3)invariant. In particular, the $q^2 = \infty$ sum rules were shown to be consistent with the solution of Gell-Mann, Oakes, and Renner⁴ (GMOR). The asymptotic sum rules also enabled us to derive a mass formula for the charmed pseudoscalar mesons in terms of a single symmetry-breaking parameter e (see below). The charmed pseudoscalar mesons acquire heavy masses (~5 GeV) only when the value of the parameter e is very close to -1.

Since such heavy particles are yet to be detected experimentally, the credibility of the SU(4) \times SU(4) model depends crucially on the value of the parameter *e*. It is, therefore, a matter of considerable interest, from a theoretical point of view, to examine possible solutions for *e* to see if the value of this parameter can indeed be close to -1. Dittner, Eliezer, and Kuo have obtained a solution⁵ for *e* using a lepton-hadron analogy. They find e^{\sim} -0.99. Apart from obtaining heavy masses (~5 GeV) for the charmed mesons, the other attractive feature of their solution is that both SU(3) and SU(2)×SU(2) are good symmetries of the Hamiltonian in their scheme. A solution for e has also been sought by Dicus and Mathur⁶ from a study of the spectral-function sum rules for the current densities and the η -X mixing problem in chiral SU(4) theory. Assuming that SU(3)-breaking effects appear only through the η -X mixing angle, Dicus and Mathur have shown⁶ that the value of e closest to -1 which is acceptable is $e \simeq -0.58$. This value of e yields masses of the order of 1 GeV for the charmed pseudoscalar mesons and is in conflict with the results of Dittner, Eliezer, and Kuo. An independent evaluation of e is, therefore, called for.

The purpose of the present paper is to seek an independent solution for the parameter e on the basis of the sum rules derived in Ref. 3. A new constraint on the parameter e is obtained by solving the exact and the asymptotic sum rules of Ref. 3 in the pole-dominance approximation for the spectral weights and by neglecting those terms which are of second order in SU(3) breaking. The result of our investigation is that parameter e must assume values in a remarkably narrow range, that is, $-0.58 \le e \le -0.53$. For values of e lying in this range we find that the charmed pseudoscalar mesons can acquire masses of the order of 1 GeV only.

In the model under consideration the Hamiltonian density is taken to be of the form

$$H(x) = H_0(x) + \epsilon_0 u^0(x) + \epsilon_8 u^8(x) + \epsilon_{15} u^{15}(x), \qquad (1)$$

where $H_0(x)$ is invariant under SU(4)×SU(4). The scalar densities $u^j(x)$ $(j=0,1,\ldots,15)$ together with the pseudoscalar densities $v^j(x)$ $(j=0,1,\ldots,15)$ transform according to the $(4,4^*)+(4^*,4)$ representation of chiral SU(4). In what follows we shall use the notation of Ref. 3 and transmit only those equations which are essential to the present development. As shown in Ref. 3, given Eq. (1), the following exact sum rules can be derived:

$$P_{33} = \eta \, \frac{1+b+f}{1+a+e} \,, \tag{2a}$$

10

1350

(2f)

$$P_{44} = \eta \, \frac{1 - \frac{1}{2}b + f}{1 - \frac{1}{2}a + e},\tag{2b}$$

$$P_{99} = \eta \, \frac{1 + \frac{1}{2}b - f}{1 + \frac{1}{2}a - e},\tag{2c}$$

$$P_{13\,13} = \eta \, \frac{1 - b - f}{1 - a - e} \,, \tag{2d}$$

$$\sqrt{6}eP_{00} + aP_{08} + \sqrt{2}(1-2e)P_{015} = \sqrt{6}\eta f, \qquad (2e)$$

$$\sqrt{6eP_{015} + aP_{815} + \sqrt{2(1 - 2e)P_{1515}}} = \sqrt{2\eta(1 - 2f)},$$

where

$$P_{jk} = \int \frac{dm^2}{m^2} \rho_{jk}(m^2, v),$$

with

$$\rho_{jk}(m^2, v) = (2\pi)^3 \sum_n \langle 0 | v^j(0) | n \rangle$$
$$\times \langle n | v^k(0) | 0 \rangle \, \delta^4(p_n - p),$$

 $p^2+m^2=0,$

and

$$a \equiv \left(\frac{2}{3}\right)^{1/2} \frac{\epsilon_{9}}{\epsilon_{0}}, \quad b \equiv \left(\frac{2}{3}\right)^{1/2} \frac{\lambda_{9}}{\lambda_{0}},$$

$$e \equiv \frac{1}{\sqrt{3}} \frac{\epsilon_{15}}{\epsilon_{0}}, \quad f \equiv \frac{1}{\sqrt{3}} \frac{\lambda_{15}}{\lambda_{0}},$$

$$\eta \equiv -\frac{\lambda_{0}}{\epsilon_{0}},$$
(3)

with

 $\lambda_m = \langle 0 | u^m(0) | 0 \rangle, \quad m = 0, 8, 15.$

Note that Eq. (2f) is an additional relation, not displayed in Ref. 3, among the six quantities P_{jk} (j, k = 0, 8, 15). Only five of these six relations among P_{jk} (j, k = 0, 8, 15) are linearly independent, however.

We generate an extra relation valid to first order in SU(3) breaking in the pole-dominance approximation. To do so, we notice that to first order in SU(3) the spectral weights in P_{00} , P_{015} , and P_{1515} get contributions from the X meson alone (we ignore the E meson in the present discussion; its spin assignment is not yet experimentally conclusive). This immediately implies the relation

$$P_{00}P_{15\,15} = (P_{0\,15})^2 \ . \tag{4}$$

Consistent with the approximation under which Eq. (4) is valid, we neglect a P_{08} and a P_{815} in Eqs. (2e) and (2f) which are of second order in SU(3) breaking. Thus, to first order in SU(3) breaking we have the following two relations, in addition to Eq. (4), between P_{00} , P_{015} , and P_{1515} :

$$\sqrt{6} e P_{00} + \sqrt{2} (1 - 2e) P_{015} = \sqrt{6} \eta f , \qquad (5a)$$

$$\sqrt{6} e P_{015} + \sqrt{2} (1 - 2e) P_{1515} = \sqrt{2} \eta (1 - 2f) .$$
 (5b)

Solving Eqs. (4), (5a), and (5b), we get

$$P_{00} = 3\eta \frac{f^2}{(1 - 2e - 2f + 7ef)},$$
 (6a)

$$P_{0\,15} = \sqrt{3} \,\eta \,\frac{f(1-2f)}{(1-2e-2f+7ef)} \,, \tag{6b}$$

$$P_{15\,15} = \eta \, \frac{(1-2f)^2}{(1-2e-2f+7ef)} \,. \tag{6c}$$

In order to constrain the parameter e in terms of known masses and decay constants we next appeal to the asymptotic sum rules derived in Ref. 3. The assumption of octet-type breaking of SU(3) at $q^2 = \infty$ for the two-point functions of pseudoscalar density gives the following sum rules³:

$$R_{33} - R_{44} - R_{99} + R_{13\ 13} = 0 \quad , \tag{7a}$$

$$2R_{44} - 5R_{33} + 9R_{99} - 6R_{15\,15} = 0 \quad , \tag{7b}$$

where

$$R_{jk} \equiv \int dm^2 \rho_{jk} (m^2, v) \; .$$

It is convenient to replace the parameters a, b, and η by α , β , and γ , where

$$\alpha = \frac{a}{1+e} , \quad \beta = \frac{b}{1+f} , \quad \gamma = \eta \frac{1+f}{1+e} . \tag{8}$$

In what follows we shall assume that the GMOR mass formula holds, which in our notation reads³

$$m_{\pi}^{2} = (1 + \alpha)m_{8}^{2}$$
, (9a)

$$m_{\kappa}^{2} = (1 - \frac{1}{2}\alpha)m_{8}^{2}$$
, (9b)

$$m_{\eta}^{2} = (1 - \alpha)m_{8}^{2}$$
, (9c)

$$m_{9}^{2} = \left(1 + \frac{\alpha}{2} \frac{1+e}{1-e}\right) m_{3}^{2}$$
, (9d)

$$m_{13}^{2} = \left(1 - \frac{\alpha}{2} \frac{1+e}{1-e}\right) m_{3}^{2}$$
, (9e)

where $m_{\rm B}$ and $m_{\rm 3}$ are the masses of the uncharmed octet and the charmed triplet of pseudoscalar mesons, respectively, in the SU(3) limit. The sum rule (7a) gives the following mass formula:

$$m_3^2 = \left(\frac{1-e}{1+e}\right) \frac{(m_{\pi}^2 + 2m_K^2)}{3} .$$
 (10)

Before we proceed to investigate the consequences of the sum rule (7b), we first estimate the parameter β which measures the invariance of the vacuum under SU(3). β can be expressed in terms of F_{π} and F_{K} , the pion and the kaon decay constants, if we use pole dominance on the sum rules (2a), (2b) and use Eqs. (8), (9a), and (9b). We get

(12)

$$\beta = \frac{2(1 - F_K^2 / F_\pi^2)}{(2F_K^2 / F_\pi^2 + 1)} \quad . \tag{11}$$

Experimentally, $F_K/F_{\pi}f_+(0) = 1.28$; since $f_+(0)$ is expected to be close to unity,⁷ β must be small. The value $F_K/F_{\pi} = 1.13$ gives $\beta = -0.15$. An accurate numerical estimate of the parameter β is not important for the purposes of the present investigation, we therefore use $\beta = -0.15$ in what follows.

If we dominate the spectral weights in Eqs. (2a)-(2c), (6c), and (7b) by single-particle states and use Eqs. (8), (9a), (9b), (9d), and (10), we get

$$e = \frac{4(1-2f)^2(3M^2-2m^2-1)+\beta(1+f)(1-2f)(2m^2+1)}{(2m^2+1)(7f-2)[4(1-2f)-\beta(1+f)]-12M^2(1-2f)^2},$$

where

$$M = m_X/m_{\pi}$$

and

 $m = m_{\kappa}/m_{\pi}$.

Equation (12) is the key relation which can be plotted in the (e, f) plane to see if the allowed value of e can indeed be close to -1. The allowed domains of the parameters e and f when α and β lie between -1 and 0 have been studied previously⁶ by Dicus and Mathur from the positivity requirements of the spectral weights. These allowed domains are shown in Fig. 1, when $\alpha = -0.89$, $\beta = -0.15$, by the shaded regions in the (e, f) plane. We have also plotted the curve given by Eq. (12) in Fig. 1. We find⁸ that the constraint of Eq. (12) requires the parameter e to lie between -0.58 and -0.53 in the allowed region. Thus, e is determined to within a

- *Work supported in part by the U. S. Atomic Energy Commission.
- [†]Address after 1 September 1974: Department of Radiology, University of Colorado School of Medicine, Denver, Colorado 80220.
- ¹B. W. Lee, in Proceedings of the XVI International Conference on High Energy Physics, Chicago-Batavia, Ill., 1972, edited by J. D. Jackson and A. Roberts (NAL, Batavia, Ill., 1973), Vol. 4, p. 249.
- ²P. Dittner and S. Eliezer, Phys. Rev. D <u>8</u>, 1929 (1973). See also Z. Maki, T. Maskawa, and I. Umemura, Prog. Theor. Phys. <u>47</u>, 1682 (1972).
- ³S. C. Prasad, Phys. Rev. D 9, 1017 (1974).
- ⁴M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev.

remarkably narrow range of values. The smallest allowed value of e is e = -0.58. The masses of the charmed pseudoscalar mesons can be calculated from Eqs. (9d), (9e), and (10) for this value of e. We get $m_9 \simeq 742$ MeV and $m_{13} \simeq 882$ MeV.

The allowed range of the parameter e is quite insensitive to the value of the parameter β . For $-0.3 \le \beta \le 0$ we get $-0.60 \le e \le -0.53$. The charmed pseudoscalar mesons thus acquire masses of the order of 1 GeV only. Our results are in good agreement with that of Dicus and Mathur⁶ and do not confirm the results⁵ of Dittner, Eliezer, and Kuo, who obtain masses of the order of 5 GeV for the charmed mesons.

I am thankful to Professor V. S. Mathur for discussion.

FIG. 1. The allowed domains of the parameters e and f are indicated by the shaded regions when $\alpha = -0.89$ and $\beta = -0.15$. The plotted curve is the constraint imposed by Eq. (12) on the physical values of the parameters e and f.

 $\frac{175}{Rev.}$ 2195 (1968); S. Glashow and S. Weinberg, Phys. Rev. Lett. 20, 244 (1968).

- ⁵P. Dittner, S. Eliezer, and T. K. Kuo, Phys. Rev. Lett. <u>30</u>, 1274 (1973). A solution for *e* previously obtained in Ref. 2 has been shown to be unacceptable in Refs. 6 and 3
- ⁶D. A. Dicus and V. S. Mathur, Phys. Rev. D <u>9</u>, 1003 (1974).
- ⁷M. Ademollo and R. Gatto, Phys. Rev. Lett. <u>13</u>, 264 (1965).
- ⁸Note that for each value of e there are two solutions for the parameter f in Eq. (12). For e < 0, the other solution lies in the forbidden region and is therefore not plotted in Fig. 1.