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We discuss the precession of the orbit of a satellite due to the rotation of the central body and

express these results in terms of the longitude of the ascending node, Q', the argument of the perihelion,
co', and the inclination of the orbit, i', measured in the central body's equatorial system. We find that
the precession of the perihelion (the Runge-Lenz vector) has a component in the plane of the orbit

equal to 2/3 of the precession of the argument of the perihelion, so that the apparent discrepancy in

the results of Kalitzin and Bogorodskii is resolved. In addition, we show how the precession of the

longitude of the perihelion (which was originally obtained by Lense and Thirring) is related to the
results of Kalitzin and Bogorodsloi. We also find the precession of the normal to the orbit to be
consistent with the original result of Lense and Thirring, which is twice the result recently given by
8reen.

l. INTRODUCTION

In a paper' which discussed the gravitational in-
teraction of two spinning bodies we presented gen-
eral expressions for the precession of the orbit of
a satellite about a central body. We took into ac-
count the quadrupole moment of the central body,
in addition to general-relativistic terms (including
spin effects). We also showed how these results
could be expressed in terms of the angles the as-
tronomers use, viz. , the longitude of the ascend-
ing node, 0', the argument of the perihelion, ~',
and the inclination of the orbit, i, measured in
the central body's equatorial system. '

In this paper me wish to discuss further the ef-
fects of the spin of the central body on the orbit
of a satellite, for there exists much confusion and
disagreement in the literature on these results.
These results were first given by Lense and
Thirring' and later a discrepancy (a factor of
cosi' instead of a factor of [1-3sin'(i'/2)]) was
found in part of this work by Kalitzin. ~ Bogorod-
skii' found the same discrepancy but expressed
his results in a different form from that of Kalit-
zin, so that there then seemed to be another dis-
crepancy of a factor of -', . Bogorodskii' gives the
precession of the argument of the perihelion while
Kalitzin' gives the precession of the perihelion in

the plane of the orbit. We shall show how these
two results are related and thus account for the
factor of -', . Furthermore, it turns out that the
result obtained by Lense and Thirring is actually
the precession of the longitude of the perihelion,
d&G'/dt, and this accounts for the three different
results. Recently Breen' calculated the precession
of the normal to the orbit and obtained a result
one-half of that of Lense and Thirring. ' We show
that the result of Breen is incorrect and that the
original result of Lense and Thirring' is correct
in this respect. Our method of approach' is dif-
ferent from all of the above authors ' in that we
work with the Runge-Lenz vector and this results
in a simplified and transparent treatment of the
problem.

II. PRECESSION OF THE ORBIT

Letl and 8 denote the mass and spin angular
momentum of the central body, respectively, while
m and L denote the mass and orbital angular mo-
mentum of the satellite. The effect of the rotation
of the central body on the orbit of the satellite is
that the orbit will precess as a whole with an an-
gular velocity, e, such that"
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where

(3)

and A, a, and e are the Runge-Lenz vector, semi-
major axis, and eccentricity, respectively, for
the orbit. The quantities G and c are the gravita-
tional constant and the speed of light, respectively,
and (d L/at},„and (d A/dt), „are the average of
dL/dt and dA/dh over one orbital period. We
also note the relation'

f,/m Gm '"
g2(1 e2)1/2 a3 T

where T is the orbital period.
We can write + in the form that astronomers

use as

(u = 0'8+ a' L+ i '(S x I)/~Sx L~,

where 0'-, cu', and i' denote the longitude of the
ascending node, the argument of the perihelion,
and the inclination of the orbit, respectively, in
the central body's equatorial system, and a dot
denotes differentiation with respect to time."
We thus obtain from Eqs. (3) and (5)
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c2 g3(1 e 2)3/2
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(5)

—6GS cosi'
),/, = —3Q'cosi',

c 0 (1-g

i'=0, (6)

(4)y 0' sini ' sinu' + i ' cos~
0

~2 = Q' sini' cos(d' —i' since',

N3 =0 cosi + ~

(10)

(11)

(12)

It should be noted that 0', i', &' are just the Euler-
ian angles P, 6, g respectively and &„~„(d3are

which agree with the results of Bogorodskii. ' We
wish to emphasize the fact that, in general, the
unit vectors used in Eq. (5) are not orthogonal
(orthogonality occurs only in the case of polar
orbits) because it seems that confusion on this
point has led to errors in the past.

We now proceed by writing ~ in terms of three
orthogonal unit vectors as

&u = u, A+ u&2(LxA)+ +3L,
where

which is the precession of the perihelion —not to
be confused with &', the precession of the argu-
ment of the perihelion. It follows that the com-
ponent of (dA/dh}, „ in the plane of the orbit is I313.

From Eqs. (7) and (12) we obtain

vs=-2Q cosi

which agrees with the result of Kalitzin' and
Breen. ' In other words, the component of the
precession of the perihelion in the plane of the
orbit is -', of the precession of the argument of
the perihelion. Kalitzin' noted that the result of
Lense and Thirring' had a factor [1-3 sin3(i '/2) J

instead of the factor cosi' appearing in the center
of Eq. (14). However, the result presented by
Lense and Thirring was actually chal'/di, where

is the longitude of the perihelion, i.e.,
(d =0 +(d

Explicitly, we have from Eqs. (7) and (15)

du'
dt

= 0'(1 —3 cos i ')

= —2h' [1- 3 sin2(i '/2)] .

(15)

(16)

Let us now consider the precession of the normal
to the orbit. Prom Eqs. (1), (3), and (6) we get

= ~ x L =0' sini '(S x X)/~S x g .
dt av

Thus the precession of the normal to the orbit is
consistent with the original result of Lense and
Thirring, which is twice the result recently giv-
en by Breen. '

III. CONCLUSION

We have analyzed the effect of the spin of the
central body on the orbit of a satellite and have
clarified the discrepancies (both real and apparent)
that exist in the literature on this problem. The
use of the Runge-Lenz vector results in a simpli-
fied and transparent treatment of the problem.

We have shown that the basic results from which
all others are derived are given by Eqs. (1)-(3).
The derived quantities which are most used from
the point of view of comparison with observations
are given by Eqs. (6)-(8).

the components of the angular velocity in the or-
bit or "body" system. ' Thus from Eqs. (2) and (9)
we obta n

?
dA A A

= (g xA = —u)2 L + (g3(f xA ),dt av
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The lowest-order radiative correction to the electron propagation function in homogeneous
magnetic fields is calculated exactly, using an explicit forxn of the electron propagation func-
tion obtained by Schwinger in 1951.

Recently, the lowest-order radiative correction
to the inverse electron propagation function (usu-
ally referred to as the mass operator or the re-
normalized proper-self-energy part) in homoge-
neous magnetic fields has been calculated exactly
by Schwinger, ' ' using a proper-time method. ~

From this mass operator, we can compute""
the energy shift, the anomalous magnetic moment,
the decay rate, the power spectrum of synchrotron
radiation, and the radiative polarization of an
electron in the magnetic field. Besides, it is also
a building stone in calculating higher-order pro-
cesses. ' ' Owing to its great importance and the
fact that this is one of the few problems in quantum
electrodynamics that can be solved exactly, we of-
fer here another method to compute it.

Our method is particularly simple if we know the
Green's function of an electron in homogeneous
magnetic fields. Fortunately this task was carried
out more than two decades ago by Schwinger. ' The
details of the calculation are illustrated quite
clearly in Ref. 4; here we only quote the result
(specialized to the pure magnetic field situation,
with F» =-F» =H)

C(x', x") = C (x', x")S(x' —x"),
where

et. ', *")=exp t qf Atbd',

ab =-a'b'+a, b» ab, =a,b, +n, b»

z =s,eH, ( =qo (4)

G(x', x") =C (x', x"),e"" * '&(I ), (5)

where

tanz
Else exp, -is, m +p~~ + pi

i lz

~pi ~p J.

In the absence of external fields (H =0), Eg. (6)
reduces to

1e(p}-
m+yp '

We find it is more convenient to cast Eg. (2) in the
momentum representation, and to rewrite Eq. (I)
in the form

9(x) =
),

dsl -is m2 ~ i gze ~ . e
sinz

&&exp (x,,
'+e cotzx, ')

4s,
1

x m- yx, + . e '~*yx~, (2)2s, sam

as is to be expected.
Before we proceed, we remark that, in obtaining

Eq. (1}or Eq. (5}, two basic quantities have to be
IIevaluated: (x'~e "" (x") and (x','e "" II (x",'.

Schwinger used the proper-time method to evalu-
ate them and obtained (in the momentum represen-
tation}


