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The total weak AS = 0 hadronic current is usually split into CP-odd and CP-even, or first- and
second-class currents. It is postulated that these currents obey an (SU(2) ® SU(2)) ®(SU(2) @ SU(2))
algebra. This implies a set of Adler-Weisberger relations which, in particular, indicate the coupling of
weak leptonic 1 — wlv decay as being of order one. It is possible to consider the strong interactions
approximately invariant under the group generated by all these currents by introducing an additional
set of scalar Goldstone bosons as well as C-odd pseudoscalar mesons. Since the latter seem not to
exist, one has an alternative realization by CP doublets. As a special example, a generalized oo model
is discussed. Further consequences are partial conservation of the second-class vector current and
Goldberger-Treiman-type equations. Finally, the extension of the full algebra to leptons is discussed,
which suggests the interesting fact that electrons and muons are CP partners of each other and the
separate conservation of electron and muon numbers is a consequence of CP conservation.

I. INTRODUCTION

In the last three years a great search for so-
called second-class currents' has been conducted.
The experiments performed by Wilkinson and col-
laborators?®:3 tested in detail the mirror asymmetry
in nuclear g decay. The main contribution to the
mirror asymmetry is expected from a so-called
pseudotensor term in the axial-vector-current ma-
trix element of the decaying nucleon. The situa-
tion is of course complicated by nuclear effects,
but the result of the analysis gave the pseudotensor
term compatible with zero.*

Another sensitive test of a pseudotensor term
would be the spin-correlation coefficients in the
leptonic decay of polarized hyperons. From the
analysis of the electron and neutrino asymmetry
in the decays A ~pev (Ref. 5) and =~ - nev (Ref. 6)
one can derive definitely nonzero values of the
pseudotensor term.”® These values are larger
than expected from a first-order symmetry -break -
ing calculation based on dispersion theory.® If one
is willing to accept this analysis, one can conclude
the presence of a second-class current (SCC) con-
tribution.

The most sensitive test of a SCC would be a
measurement of the leptonic decay n—-mnev, as dis-
cussed in detail by Singer.'® Since the transition
from 7 to 7 is a pure vector SCC, the value of the
decay constant is not determined by conservation
of vector current (CVC). In particular, the
branching ratio of this decay via SCC (assuming
the strength of the SCC to be as large as the usual
first-class current) to the decay by electromag-
netic corrections via - (7°) - 7ev is predicted to
be 10* so one expects a definitive result.

From the theoretical point of view, there is no
reason why such currents should not be there.

10

Lipkin'! has given a detailed mechanism of me-
sonic contributions to 3 decay which are pure SCC.
This ansatz of Lipkin has been generalized by
Pietschmann and Rupertsberger'? to the full octet
current:

ASO(x) =gid; ym*()pl(x)  (i=1,...,8), (1)

where 7*(x) (k=0,1, ..., 8) is the pseudoscalar-
meson nonet, p}(x) is the vector-meson nonet, g
is some coupling constant, and d,,,=(3)"25,,. We
can simply generalize this formula for the SC-
vector current:

ViSO(x) = g'id;, (e, (x) (G=1,...,8), (2)

where a, is the nonet of axial-vector mesons.
From formula (1) or, better, from the (w7) con-
tribution, the pseudotensor term for nuclear 3 de-
cay has been calculated* and found to be of the
same order as the other “first-class” form fac-
tors.

The usual SU(3) ® SU(3) algebra of currents pro-
posed by Gell-Mann'® ignores the SCC completely.
The charges generating the algebra are integrals
of the first-class currents, because only the first-
class current has the right behavior under charge
conjugation to be combined with the well-known
electromagnetic current to a multiplet (CVC).**

If we accept the SCC as being present—and that is
our point of view—we have to worry about putting
it into this scheme. Oehme'® discussed this prob-
lem without enlarging the charge algebra, by
postulating that the SCC have no charge. If one
restricts oneself to the realization of currents by
quarks, the above statement is true because the
only SCC built of quarks contains derivatives, i.e.,
VJ(SC) = “iau (‘I'%)\#P) ’ (3)

A;:-(SC) =~19, (Eiouuysé)\ilp) »
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where y(x) is the quark field. However, this is
not true for mesonic currents as in Egs. (1) and
(2). But if the charges of the SCC are not zero, do
they satisfy some commutation relations? If so,
is there any meaning of this higher algebra of cur-
rents as generating a fundamental symmetry of
our hadronic world?

It is the purpose of this work to discuss such
questions, irrespective of whether or not one finds
pseudotensor terms. We assume that the second-
class vector and axial-vector currents satisfy an
algebra similar to that of the usual currents.

First a definition of the Hermitian charges of the
SCC and their transformation under C, P, and 7T
must be given, and then we define an
(SU(3)®SU(3))®(SU(3) ®SU(3)) algebra of all
charges. A generalization of G parity to strange-
ness-changing weak currents was proposed by
Wolfenstein,'® but because of the large breaking
effects in SU(3) and because a higher number of
nonexisting mesons would be involved, we restrict
ourselves in this paper to (SU(2) ®SU(2))
®(SU(2) ®SU(2)), which we write as [SU(2)]* for
shorthand.

The idea of constructing an [SU(2)[* algebra of
weak currents is a straightforward generalization
of a similar idea proposed by Maiani,'” who wanted
to include CP-violating effects in chiral symmetry.
(The idea of SCC being responsible for CP viola-
tion has been proposed by Cabibbo.!®) Maiani had
already defined the commutator between two axial-
vector SCC’s to give back the usual vector cur-
rent, but avoided introducing a second-class vec-
tor current and therefore enlarging the group.
Nevertheless, he derived Weinberg sum rules for
the spectral functions and, by saturating them with
the only known B(1235) resonance, obtained the
relation yz=v,, which we also find in Sec. V. Ob-
viously, the immediate consequence of such a cur-
rent algebra is a set of Adler-Weisberger rela-
tions, which can be further improved if one uses
partial conservation of vector current (PCVC).'®
This PCVC or, better, PCSCVC (partially con-
served second-class vector current) concept states
that the nonconserved part of the vector current,
which is the SCC, is dominated by the scalar me-
son 7, (or 8), which has been found to be a 950-
MeV (nr) resonance.

One can go one step further and ask if there is
an approximate symmetry of strong interactions
corresponding to this enlarged current algebra,
as is the case in chiral SU(2)®SU(2). Since there
is no larger multiplet structure in strong inter-
actions, we expect such a symmetry to be real-
ized, if at all, through Nambu-Goldstone bosons.?°
In addition to the massless pion, we need two other
bosons, namely a scalar meson with I¢JF=1"0"

and a pseudoscalar meson with odd C parity, I6J%
=170". In the first case, the above-mentioned
m,(950) is a candidate, whereas in the second case
the meson has not been found but can be repre-
sented by a (wr,) bound state. As has been dis-
cussed in detail by Dashen® and Dashen and Wein-
stein,? in the case of chiral symmetry such a
scheme automatically gives PCAC and, in our
case, also PCSCVC, which show the behavior of
matrix elements in the symmetry limit. Since the
third meson is not found experimentally, we have
no PCAC relation in this case. From such a
scheme, we can derive a set of Goldberger-Trei-
man-type equations which, together with our cur-
rent algebra, give some predictions about form
factors. Of course, such a symmetry, if it exists,
is badly broken because we should have to deal
with a massless scalar meson in the symmetry
limit, whereas the mass is actually about 950 MeV.
One may ask if such a badly broken symmetry is
useful at all, In fact, it turns out that most of the
results follow from current algebra plus PCSCVC
alone. The reason for discussing this scheme is,
therefore, more or less an aesthetic one. The
beauty of the scheme of chiral symmetry in strong
interactions lies in the fact that the charges of the
weak currents are the generators of a symmetry
of the Hamiltonian. Therefore, the weak currents
act as “probes” of strong interaction. In our ex-
tended current algebra, where SCC’s have the
same ‘“‘privileges” as first-class currents, we
must discuss the possibility that they are also
“probes” of the strong Hamiltonian. In addition,
we automatically get a verification of PCSCVC
from [SU(2)]* symmetry of strong interactions.

The last problem with which we have to deal is
the implication of our current algebra for leptonic
currents. As can be shown, the [SU(2)}* algebra
of currents satisfies the concept of hadron-lepton
universality, as stated by Gell-Mann and Ne’e-
man.?® On the other hand, there is no direct ana-
log of the SCC in the case of leptons. One way out,
which is highly speculative, is to assign a negative
CP value to the electron-muon system. In this
case the lepton-number-violating currents §,, T,
would have even CP and, therefore, the same
transformation properties as SCC’s. Although we
have no evidence for this hypothesis, it would ex-
plain why we really need two different types of
leptons.

The plan of this paper is as follows. In Sec. I
we briefly repeat the definitions of first- and sec-
ond-class currents and define their algebra. In
Sec. III we discuss a generalized o model of
[SU(2)]* as an example of a higher symmetry in
strong interactions. Section IV deals with the pos-
sibility of having the strong interactions approxi-
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mately invariant under this group. In Sec. V we
give applications of both the current algebra and
the higher symmetry to derive sum rules. Finally,
in Sec. VI, the problems of leptons and weak in-
teractions are discussed.

II. THE [SU(2)]* ALGEBRA OF WEAK CURRENTS

In this section we first repeat the definitions of
first- and second-class Hermitian and anti-Hermi-
tian weak currents. For simplicity, we are deal-
ing only with AS=0 currents and therefore we need
only SU(2).

The Hamiltonian for semileptonic weak interac-
tions can be written as

¥y = %(J;l*w H.c.), (4)

where the structure of the lepton current A
=P (1 +y6)y,, is well known. We have chosen the
conventional current X current interaction; nothing
in our discussion changes if we assume the weak
interaction to be mediated by an intermediate bo-
son. The hadronic current J; and its Hermitian
conjugate, J5=(J3)", can be split into the follow-
ing parts:

(i) vector and axial-vector currents, correspon-
ding to PJ(x, Pt =+e (AW ,(-x, £), where €A)=gx);

(ii) regular and irregular currents,'® whether or
not the relation

CPJ (%, t)(CP) ™ =Fe AW (=x,t) (5)

holds with the plus or minus sign; according to
CP T, this definition is equivalent to

T (%, DT " =+e MW \(x, =1) ; (6)

(iii) first- and second-class currents, corre-
sponding to GPJ,(GP)™'=x€(u)J,, where G
=Cexp(inl,);

(iv) Hermitian or anti-Hermitian currents,
whether or not the neutral current

JS==3[1_,J3] )

is equal to its Hermitian conjugate
IS =31, J7] (8)

with a plus or minus sign.

The definitions (iii) and (iv) both use isospin as
exact symmetry and are not independent of each
other. In fact, any regular first-class current is
always generated from a Hermitian neutral cur-
rent operator, and a second-class current from
an anti-Hermitian one. For irregular currents
the opposite is true. In general, the full hadronic
current is assumed to be a sum of all possible

contributions. If we know the behavior of the cur-
rent under CP, then the splitting into Hermitian
and anti-Hermitian parts is unique. We therefore
write our current as the sum of two parts

JR=j R HikS 9)

where both j § and £ are Hermitian operators.
The weak currents J) and J; are defined through

Iry==[1,5%+ik] ,
Jr=[1,j% =ik],

(10)

so that both parts, j § and £, can be measured in
principle.

In the future we shall restrict ourselves to reg-
ular currents, since CP-violating effects seem to
be coupled only to AS=2 transitions,?® which do
not appear in our game. In this case j, will be
pure first-class and &, will be second-class. This
can easily be seen from the definition

CPj(CcP)t=-eM)j g,
CPR(CP) ™ =+eM)R} .

(11)

Since both (53,7 %,7%) and (&5, B}, #5) form an iso-
spin triplet, their behavior under rotations in iso-
space is the same, and, therefore, their G parities
are opposite. The fact that &, has opposite CP
need not give rise to any CP-violating effects.
Actually, one measures matrix elements of V{50
=ik,, which must fulfill certain reality conditions.
It is now convenient to introduce Cartesian co-
ordinates in isospin space and separate the matrix
elements into vector and axial-vector currents:

ji=vi+al, Ri=kK+E, (=1,23), (12)

where all the currents are now Hermitian. [In Eq.
(12) we used the expression &, twice, for the
whole current and for its vector part; henceforth
we shall use it solely for the vector part. |

If we wish to have commutation relations for the
full weak currents, they must also include k and
ks. It is this feature which leads us to a higher
current algebra. First, let us define the,
“charges”:

Q‘=fd3xv:;(x, 0,
HOE [d“xaé(x, t,
) (13)

Ki(t)=fd3.vké(x, ),

K;(t):stxkf,s(x, 0.

Since the SCC’s as well as the axial-vector current
af, are generally not conserved, the charges are
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not constants of motion. Now, according to the
well-known current algebra of Gell-Mann, we have
the equal-time commutators (ETC)

(@, @ |=i€; @ ,
[@, Q1] =ie; QL) , (14)
[QF (1), QD] =i€;., Q" .

Moreover, according to CVC, @;=/; and @, are
the generators of SU(2) ®SU(2), under which the
strong interactions are, at least approximately,
invariant. For the K* we get

(@ K5 ()] =ie, K (D),
(@, K&(D)] =ie, K (D),
[QL(8), K*(2)] = i€, KL(L) ,
[QL(0), K&(B)] = i€, K (2) .

The first two equations follow automatically from
our definition of the SCC, whereas the last two are
not trivial. They state that in the chiral limit K*
and K transform as a D(1, 0) @ D(0, 1) representa-
tion of SU(2) ® SU(2).

We close our algebra by defining

(15)

[K(), K*()] =ie;,@"
(K0, K5(0)] =ie 0 Q5(0) (16)
[Ki), K&t =ie; @ .

Equations (14)-(16) define the algebra of
(SU(2) ®SU(2))® (SU(2)® SU(2)). This can be
seen by constructing the quantities
M* =3[Q + Qs (K +K™)] ,
1)

N 4@ - Qs (K - k)] .

Each of these quantities forms an SU(2) algebra,
and they commute with each other. They are re-
lated by parity and G parity:

PMUP-t=Ni*,  GM*G =N, (18)

which follow from the well-known P and G proper-
ties of the currents. According to Eq. (17) we
label our representation by D(j,;j’,7”,j"). Repre-
sentations which contain multiplets including P and
G must be even under the exchange of the oper-
ations defined in (18).

To get an idea of what these K operators are, we
look for the matrix element of K between states
of the same isospin multiplet:

(alK(0)| @ =fd3x<a1koa<x, Ha .

Since K® is a scalar operator, the dynamics of the
matrix element simply give (27)32E8* (B’ -P) times

a number, which depends only on the isospin.
From the T -abnormal behavior of K* we find that
this number is pure imaginary; from Hermiticity
it follows that it is real; therefore it is zero.
Using invariance under isospin rotations we final -
ly have

(alK*la) =0, (19)

which holds for any isospin multiplet. Similar
considerations, using the current, can be shown
for the axial SCC. It is this feature which makes
it so difficult to measure form factors of SCC’s;
within transitions of an isomultiplet, they are
never of the “charge” type but always of the “mo-
ment” type, and their contribution vanishes for
zero momentum transfer.?® In this connection, it
should be noted that the neutral SCC £3(x, ), which
is even under charge conjugation,

ChY(x DCr =+ E(x, 1), (20)

has properties similar to the “anomalous” electro-
magnetic current introduced by Bernstein, Fein-
berg, and Lee.?” They use two different C oper-
ators in their discussion, Csuong and C,, and, ob-
viously our C operator corresponds to Csuong -2°

From the charge algebra in Eqs. (14)-(16) it is
very easy to use the well-known highly developed
machinery of current algebra?®:* to derive sum
rules, low-energy theorems, or mass relations.
This will be done in Sec. V. First we shall look
for a field-theoretic model where we can explicitly
verify the extended current algebra, and discuss
some possible connections with strong interac-
tions.

III. GENERALIZED 0 MODEL

In the usual quark model the full symmetry of
Egs. (14)-(16) cannot be realized because, in
taking the only SCC’s which can be constructed
from them,

ik} (x) = -8, [7(x)37,9(x)] ,
. (21)
ikLs(X) = —iau[a(x)iouu')’s%'riq(x” s

we get zero charges and therefore our algebra is
wrong. This is a fact we have already mentioned
in Sec. I. We could repair this, of course, by in-
troducing another set of quarks, which have op-
posite CP with respect to the usual quarks. In-
stead of doing this, we study the features of
[SU(2)]* in a linear o model® which has been use-
ful in discussing chiral symmetries and their
breaking mechanism.

We start with a set of eight mesons, transform-
ing as a D(3, 0, 0, 3)® D(0, 3, 5, 0) of [SU(2)]*. These
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are the pion 7,(x), the sigma o(x), a scalar pion
s;(x) with 1¢=1-, JP=0%, and the pseudoscalar

singlet n(x). We define the (infinitesimal) trans-
formations (for details, see Ref. 32) as follows:

om; = —ia,[*, m;]
= =€ 0y
0S; = —€,,,0,8;, 060=0, 6n=0;
6°m; = ~iay[QF m|=ajo, &°s;=an,
0°0 = —a;m,, 0°n=-ais, ; (22)
6'm; = —iB[K* m;|=8m, 0's;=B0,
6'0==BySy, 0N==Pm, ;
6%, = —iBy[ K3, m;]= ~€;uBis,
6'%s; = =€, uBem,, 0% =0, 6°n=0.

A Lagrangian which is invariant under these trans-
formations is

£=3{(8,0)* + (8, ) + (8,7, + (3,5, ?]

A+ +m 2452 = cF —alon+ms,)? .
(23)

The corresponding Noether currents can easily be
found to be

i
Vi = €Myt + 5,8,81)

Ay =100 =03, T, + 8,81 —10,S; ,

i (24)
ky=m;0,M =Noym; +5;0,0 —09,S; ,

Fius = €My sy + 5,8,m,)

The currents are all conserved and, by the
known transformation laws of the fields, have the
right P and G properties. One can easily verify
that they fulfill the extended current algebra of
Egs. (14)-(16) by using the canonical commutation
rules of the fields.

The Langrangian is analogous to that used in
chiral symmetries, apart from the term
alon +m;s;)?, whose significance will soon be clear.
The features of the Lagrangian, when one treats
it as a function of classical fields, are well known
and are not changed by this term. For ¢<0, we
have the state with lowest energy for c=n=7,=s;
=0, which all have a common (mass)?=-4cx2. The
interesting case is ¢>0, where we find the mini-
mum of the potential energy for o=-V¢, m;=s;
=n=0, and introduce a new field 0’=0+vV¢. In
this case, the masses of the 7; and s; become
zero, while we have m .2 =8\%c and m ,? =2ac.
This is well known as the Goldstone solution.
There are no [SU(2)}* multiplets, but there still
are SU(2) ®SU(2) multiplets plus =; and s; as Gold-
stone bosons. The SU(2) ®SU(2) which is left in

this case is not the usual chiral symmetry but a
symmetry which connects states with different CP.
This can be seen by operating with our generators
on the vacuum:

Q0 =10,

Q;I()):'”iJQu:O) s
(25)
Kii()):lsi’qu:o) s

Kioy=]0") .

This means that the vacuum splits up into two
parts which have opposite parity but the same C
parity. Therefore, all particles must appear as
CP doublets; a fact which has already been dis-
cussed in the literature in connection with y in-
variance.® In our case, m;, S; and o, n are such
doublets. If we are to couple our mesons to
quarks, we shall also need a CP doublet, as stated
at the beginning of this section. For nucleons, the
CP partner can be found in the following way. As-
suming the baryons are made up of three quarks,
the usual nucleon is a 2S,,, state.** [tg partner
would be a 4P1/z state, which has opposite CP with
respect to it. [One candidate may be the N*(1700)

=34, JP=4" resonance.®®|

We assume that the appearance of CP doublets
is a special feature of our o model, which should
be modified for the real world. This we discuss
in Sec. IV. Let us first come back to the other
features of our Lagrangian. The term a(on +7;s;)?
has now shown its significance: It is necessary
for giving n a mass. Since 7 is not a Goldstone
boson (at least not in the [SU(2)]* model), there is
no reason why it should not have a mass. If one
is to avoid destroying the symmetry, this mass
can only be introduced through such a term or,
generally, through a function F((on +m;s;)?).

Let us now introduce symmetry breaking. The
conventional term £ = m 0 breaks chiral in-
variance and automatically produces PCAC and
PCSCVC, but the SU(2) ®SU(2) of first- and sec-
ond-class currents remains unchanged. Since we
have no a priori reason to break this symmetry in
a specific way, we simply introduce a mass term
—3u%(m® +s, %), which gives the s; particle a mass
different from the 7;. Explicitly, we have

L=L™ — 1M +s2) +f om0 . (26)

In the customary way, we define ¢’ =0 ~(0),, to
eliminate the “tadpole graphs,”®® which means all
terms linear in o’ must vanish. With this, all
parameters A% ¢, 1% a can be expressed in terms
of the physical masses m 2, m % m? m?, yielding
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1
)‘2=§}."§(m02_m1r2) y
m

c=f.? r;'tdzz--Sm,,2 ’
My~ =m,
27
(@Do=fr Bi=(m2-m,?, @7
a= —.—2(mn2—m52) .
S
Furthermore, we have the currents
a'vl =0,
auaL =f1rm1r2n:' ’
(28)

otk =f mg2s; +(mg% =m )(s;0' =mm),
aHpi 2 2
0" ks = (m, -m, FWER I

The two parameters characterizing the symmetry
breaking are € @m % which is responsible for the
chiral breaking, and 6= (m,%-m,?), which is re-
sponsible for the breaking within the CP doublets.
PCAC is automatically implied, but we get cor-
rections to PCSCVC due to a more complicated
operator which has no simple interpretation. For
kl;s we can find a PCAC relation if there exists a
state &; =€,,,5,m,, which is a bound state dominat-
ing the (s7) system. Such a state with quantum
numbers /¢=1", JF=0", C,=-1is a “forbidden
C state”; it cannot be constructed of two quarks
or couple to the NN system. Decays are only
possible into nam, pp, etc.® Until now there have
been no significant experimental data.

It is very straightforward to derive a nonlinear
o model of [SU(2)]* by keeping only =, and s; fields.
But since there is no new physics contained in
such a model, there is no need to discuss it here.

IV. REALIZATION OF THE FULL SYMMETRY
IN STRONG INTERACTIONS

Although we need not take the ¢ model too seri-
ously, it gives a useful picture of the possible
realization of a higher symmetry in actual nature.
As is well known, a symmetry can be realized
either through particle multiplets or through Gold
stone bosons, in which case one refers to them as
“spontaneously broken” symmetries. Obviously
this will be the case in our model.

Let us imagine that we can write the total Ham-
iltonian in the following form:

H=H,+€H, +5H, . (29)

H, is assumed to be invariant under a group §’
=[SU(2)]%, generated by a set of charges

{Q¥, @Y, K", Kl'}, which have the same trans-
formation laws under C and P as the corresponding
weak “charges” in Sec. II. We divide this group in-

to three subgroups: the chiral group $; generated
by {@*', @i}, the SU(2) ®SU(2) subgroup ¢ gen-
erated by {Q‘', K''}, and the SU(2) ®SU(2) sub-
group §; generated by {Q*', K.'}. Suppose further
that H, is invariant only under §;, whereas H, is
invariant only under the chiral §;. With this, the
full Hamiltonian is invariant only under an SU(2)
group generated by {Q*'}, which we define to be
the isospin group.

The problem is that such a decomposition is
physically useful only if both € and 6 are suitably
small, so that one can use perturbation theory
around € =6=0. In a recent work on chiral pertur-
bation theory by Langacker and Pagels,®” it was
shown that the actual dimensionless parameter one
uses is m 2A327%f ,%)~0.006. We therefore expect
the strength of the perturbation 6H, to be charac-
terized by m %/327%f,2=0.29. Here, m, and f, are
mass and decay constants of the corresponding
scalar particle, which we have chosen to be m
=m, =975 MeV, f ~f,. Therefore [SU(2)]* is even
worse than chiral SU(3) ®SU(3) and we can expect
only qualitative but not quantitative features by
going to the symmetry limit. Nevertheless, let us
be optimistic and discuss an ideal world with € =6
=0.

The discussion of this case is completely anal-
ogous to that of chiral symmetries. The Hamil-
tonian is invariant under the full group ¢, where-
as the vacuum is invariant only under the SU(2)
subgroup. Therefore, we have

Q;'|0)=|7ri,(q“=0)) ,
KV|0) = s;/(g,=0) , (30)
KV|0)=&;.(g,=0) .

According to the transformation laws of the gen-
erators, n; has IJ¥=1",0", s, has I°J?=170",
and ¢; has /%7F=170". From these quantum num-
bers we can see that one of these states, for ex-
ample §;, can be regarded as a system of the
other two: &, =¢€,,,m,5,. Since all three states have
mass zero, it is completely academic to discuss
which one is the more fundamental. The question
of which of them are “elementary” particles can
be answered only in the case of broken symme-
tries, where they pick up different masses.

Before going into symmetry breaking, we should
like to make one more statement. We assume that
the generators of our group §’, {Q@*, @i, K, Ki'},
are identical to the charges of the weak first- and
second-class currents {@', @i, K, K{}. For the
isospin generators Q° this is a well-known fact.'®
This statement is not trivial, because the gener-
ators generally should only be related by some
unitary transformation.® Since we have no idea of
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how this transformation should look, although there
are several models in the literature,3® we shall re-
strict ourselves to the simpler case.

Let us now introduce symmetry breaking. It is
well known that the Goldstone bosons pick up a
mass. In addition, the theory will now satisfy the
usual kind of PCAC-like relations, which show the
behavior of the matrix elements in the limit €,6=0.
It has been shown? that these PCAC relations are
independent of the form of the symmetry-breaking
interaction. Therefore, we get

<77,‘|5“a,;1(0)|0> =m *f10ix
<S,-f6“k'f‘(0)lo> =m52f55u¢ ’ (31)
(€;(0"k5(0)[0) =m (*f 6y -

Going back to our Hamiltonian we see that m ,?
=0(e), m *=0(5), whereas m %=0(5, €). Let us
discuss in detail the consequences on different pro-
cesses.

The idea that the nonconserved part of the vector
current is dominated by a scalar meson (PCVC) is
discussed extensively in the literature,'® mainly in
connection with electromagnetic corrections.
Eliezer and Singer®® first used this concept with an
independent second-class vector current (PCSCVC)
and derived a series of Goldberger-Treiman rela-
tions for baryon matrix elements. We briefly dis-
cuss PCSCVC in connection with our symmetry.

For the SCC, assuming CP conservation, we get
(vl =iky)

<Si(‘1)lb‘:xl"|0> =fsqub;,
and (32)
<s,'(q)lauvfll"lo>=ifsms25il ‘

(Note that due to the C properties of the SCC, the
decay constant of s*is V2 f,, whereas that of s~
is =VZ f.)

For nucleons, neglecting electromagnetic effects,
we have

(NP HO)N(p ) =7lp Vg, 37;u(p)F4(a)
. (33)
(N(p )" vl H(0)[N(p ) =du(p)zTu(p)d(g?) ,
where d(¢?)=¢q%F4(¢?%), q,=p. -p,. Using the same
procedure as Dashen and Weinstein,?* we write a
dispersion relation for Fg:

2y _JSs& dd’p(d®) |
Fslq )—E’sfqu-g +f——a2_q2 ; (34)
similarly for d(g?), using Eq. (32), we write
d(q2)=imf—é-’§¢'f;l’§i +d(q?) . (35)

Therefore, we have

2 2 =fg q° 2f da®p(a?)
qu(Q) ﬁlq—z_'*q az_qz

- Layu 3(g) 38)

ms
or
- da®p(a?
fsgsNN=_d(q2)+qu;§—_Q(q_§'—) , (37

irrespective of the value of m . The main point is
that d(¢?), as a matrix element of a divergence,
is of the order of (3, €) of our symmetry-breaking
Hamiltonian. Letting ¢2~0, we see that

fsgsNN=O(69 6) . (38)

Since f, is a fundamental constant, independent
of whether or not the symmetry is broken, we con-
clude that the coupling of the scalar meson to nu-
cleons is of the order of the breaking of [SU(2)]*
(which may be large). Similar considerations with
matrix elements of other baryons as well as me-
sons show that g,,,+=0(6, €) if a, o’ belong to
members of the same isomultiplet. This is a di-
rect consequence of the fact, mentioned in Sec. II,
that the matrix elements of SCC’s between iso-
multiplets are always of the “derivative” type,
proportional to the momentum transfer. Eliezer
and Singer,*° who use exact PCSCVC and hence
=¢ =0, obtain the result that either f, or g, are
of the order of the electromagnetic mass differ -
ences, whichwe have ignored. Therefore, calculating
g« from the decay width I'(7,(1016 MeV) — KK),
they get a very small value, f's =2.5 MeV, which is
not compatible with our scheme, since we expect
something like f,~f, (this, in fact, is shown in
Sec. V). On the other hand, the value of g, ,z°/47
=0.41 GeV? shows how far we are in reality from
the symmetry limit.

Another interesting case is the leptonic n - nlv
decay.!® We have

Mol 0)m (PN =6, L F Lp" +P)u+f (" =Pp)y].
(39)

Similar considerations lead to the Goldberger-
Treiman relation

FAOYm 2 =m ?) = gen, =d(0)
=0(6,€) . (40)

In this case, as we have seen from the ¢ model,
since 7 is not a Goldstone boson for [SU(2)[*, there
is no reason for m,,2 to vanish in the symmetry
limit. [It should be noted that n must be replaced
by the unitary singlet in the case of SU(3).] There-
fore, we find in this case that g, is finite even
in the symmetry limit.
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We have seen from Eq. (32) that we can give a
verification of PCSCVC and derive Goldberger -
Treiman relations if we are willing to identify the
scalar Goldstone boson s; by the 7,(975) (n7) reso-
nance. If we wish to do the same for the axial-
vector SCC, we will have difficulties because no
particle with the quantum numbers of the &, state,
I°J¥=170", C,=-1, has been seen and therefore
we cannot write a PCAC relation. There are sev-
eral possible explanations for this: Since the &;
cannot be constructed of two quarks it may show
up with very high mass as a ¢qgg excitation, or it
may actually have a very low mass and therefore
lie beyond the 47 threshold, or this Goldstone bo-
son may not show up as a particle at all, but as a
Regge trajectory®! whose intercept with a=0 lies
in negative (mass)® values. None of these possi-
bilities is very convincing and so we are faced
with an open problem.

Another way out of this difficulty is the assump-
tion that the vacuum possesses a higher symmetry
than SU(2), i.e., it is invariant under the group §;
generated by {@'’, K{}. This is essentially the
case we had in the ¢ model. In this instance, how-
ever, one still has the Goldstone bosons 7; and s,
which give rise to PCAC and PCSCVC if symmetry
breaking is turned on, but the existence of a §;
state is not necessary. Instead, all particles must
appear in SU(2) ® SU(2) multiplets, which mix states
with different CP transformations. For the non-
strange mesons, we can find a series of examples:
7 and 7,(975), p and B(1235), and A,(1310) and
A4(1640), which transform as a (1, 0)® (0, 1) rep-
resentation. The partner of the A4,(1070) axial-
vector meson is found to be the w(784) singlet;
they form a (3, 3) representation. Furthermore,
there are some singlets, such as 1, which have as
a partner the vacuum (or the o, if it exists). For
nucleons we have, as already mentioned, N and
N*(1700) as a member of a (3, 0)® (0, ) represen-
tation.

In this section we have seen that a realization of
[SU(2)]* in strong interactions is possible if we are
willing to accept the following:

(i) the my(975) in addition to the pion as would-be
Goldstone bosons;

(ii) some reason for the absence of the £; bosons
in real nature, for instance, the existence of a
corresponding Regge trajectory; or as an alterna-
tive

(iii) the existence of CP-doubled multiplets.

As a result we get a justification of PCSCVC and

of some Goldberger -Treiman relations. As we
have seen, the symmetry-breaking effects are
quite large, so we cannot expect very detailed
quantitiative results. Nevertheless, in the author’s

personal opinion, we have learned a new way of
thinking about strong interactions.

V. APPLICATIONS

We we shall see, most of our applications use
only the current algebra and PCSCVC, and not ex-
plicitly the symmetry of strong interactions. On
the other hand, PCSCVC can be understood only
within the framework of this symmetry, as seen in
Sec. IV.

We begin with the commutator

[K*, K~ |=2Q% K*'=K'1iK?

which we sandwich between pions. After separating
the 1 contribution and making use of the infinite-
momentum limit, we get the analog of the Adler-
Weisberger relation,

s 1(°d _
2= VT F 10 + ;J‘ ;;Imw v, 0), (41)

"o
where

ImW(v, ¢2?) = %Z )

n

x[0%(p +q =p)n|o" kg [m|?
-6%(p =g =p)nld ki m]?| .

Since there is no coupling of the /=0 ¢ channel to
the antisymmetric part of the amplitude, we have
the asymptotic behavior ImW ~(v, 0) ~v“1, with
a,(0) <1, and therefore the sum rule converges.
If we now use PCSCVC, which means in this case
i 2
(nlo*kz|n) = Lsa (alasin) (42)
m*-q
where J is the source of the s meson, we imme-
diately get the familiar form*!
“ ds

2
= Y2 L?._ tot 0
U ), SRl 00

-0 . (s,0)],
(43)

which is more or less of academic interest be-
cause the cross section of zero-mass 7, particles
on pions is not known.

It should be noted that Eq. (41) is the only one
which affords the possibility of testing our current
algebra experimentally. If it should follow from
experiment that the n - 7l/v decay proceeds only
via electromagnetic weak interactions, then s !7(0)
would be of the order 1072,'° In this case it would
be very difficult to verify Eq. (41) because we ex-
pect the main contribution of the dispersion inte-
gral to be concentrated in the n pole. Such an ex-
periment would definitely disprove the validity of
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our charge algebra. It should, however, be men-
tioned that in the SU(3) generalization of this
scheme the decay of the octet part of the n into 7

is still suppressed. Therefore, the n should be
replaced by a certain mixture of 7 and X%958),
which corresponds to the SU(3) singlet. In order

to compare this result with some numbers, we
first write down the conventional Adler-Weisberger
sum rule as a low-energy theorem for scattering
of pions on any external target“zz

f,, — U3, (44)
where ff ), is the helicity amplitude in the s chan-
nel for pion-X (helicity A) scattering, and 1 stands
for the /=1 part in the ¢ channel. Such an ampli-
tude behaves like ~v*, @, <1; therefore the sum
rule converges. (I,) is the isospin value of the
target. Similarly, we get from our current algebra

1 ~adv
—f -7 Imf 350w, 0) =
0

T

'l‘f dulmg()\o rolVs 0):%(13) ’ (45)
m 0 V s

where gm »o 18 the helicity amplitude for scatter-
ing of s(m N) particles on an external target. Now
take Eq. (44) and use , particles as a target, and
take Eq. (45) for external pions: The former de-
scribes 7wy scattering and the latter 7yr scatter-
ing, which is, of course, the same thing. There-
fore, the left-hand sides of the equations are equal
and we have the important result

[fsl=1fxl - (486)

This result is a consequence of the extended cur-
rent algebra, PCAC, PCSCVC, and some assump-
tions about the asymptotic behavior of scattering
amplitudes.

In order to calculate both sides of Eq. (41) we
make use of the Goldberger-Treiman relation:

Fm(0) = Lafann 47)

mg: —m,’

The coupling constant g,,, can be determined from
the known width of 7,(975)-nmn,

r .ér_ﬂ____p_hm..

g onn = SR 5ok =60 MeV 48)

yielding g,,,~2.2 GeV and, therefore, with f,
~94 MeV,

£77(0)~0.735 . (49)

We approximate the contribution of the continuum
part by the 1’(X° resonance, so we have

1=£27(0)%+7£%°"(0)? + higher terms . (50)

0 P N
For f¥™ we have a similar relation:

XOr _ fsgxosﬂ
Y mget =mt (51)
An upper limit for gyo,, can be found, assuming
the decay X°-nnn to be dominated by the , pole
in the n7 system, which yields for the matrix ele-
ment

SxO%n8smn . (52)
mZ=(p,+h, )

From the known width T'yo,,,, <2.7 MeV we ob-
tain g,o,, <3.6 GeV and, therefore, f*°"(0)s 0.38.
Thus, the squares on the right-hand side of Eq.
(50) add up to a total of about 0.7, which is not so
bad if one recognizes the fact that we have used
exact PCSCVC. At least we are in the right order
of magnitude.

Since we have no PCAC for the axial-vector SCC,
it is of no use to discuss the analog of the Adler-
Weisberger relation for the K. commutators. To
obtain more results we have to extend our charge
algebra of [SU(2)]* to the current components kj},
ks themselves, as can easily be done. In this
case we can write down sum rules for the % and
k ; propagators analogous to those obtained by
Weinberg*® for the axial-vector and vector cur-
rents:

(un| T|X°) =

u) (1)
J—B—————(a da® +J pD(a?)da* _{p )daz,

p“) (53)
f da +Jp(°) 2)daZ‘J——L——d a?
and
fp(”(az)da —jp‘”(az)da2
= [p'Pa*da® . (54)

These sum rules can be dominated partly by the p
and B mesons, as well as the 7, meson, whereas
we have no vector meson for the vector SCC (a
16J%=1"1" state cannot be created by quark-anti-
quark), and no pseudoscalar meson for the spin-
zero part of the axial-vector SCC. Therefore, the
only direct result we get is

YB=Yo » (55)

which has already been derived in the same way by
Maiani.”

We have presented a few results which depend
only on the [SU(2)]* algebra of charges and
PCSCVC. As already pointed out, the most sensi-
tive test would be a measurement of f”. A set of
relations between masses and coupling constants
can be obtained by saturating Eq. (45) with low-
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lying meson states and improving the scheme pro-

posed by Gilman and Harari.** Further information

can be obtained by extending the current algebra
for the current divergences, but in this case the
behavior of the strong Hamiltonian in Eq. (29)
definitely comes into the game.

V1. LEPTONS AND WEAK INTERACTIONS

Let us look at the implications for leptons of our
[su(2)]4. Gell-Mann and Ne’eman?® formulated
the concept of hadron-lepton universality, which
means the following: The lepton currents l: and
17 participating in the weak interactions defined
through

, e +Eyurx% ,
SUETR SO (56)
ad+v), L=,
fulfill the following algebra:
[w;,wil=2w?,

13=9,
15=1,

]

9

7)
(we,wil=4w;,

where
Wi= fdsx ls(x)
and
W?=fd3x%($uero¢ue‘$e To¥e

+$uur‘o¢vu -EFFOZP“).

The statement of lepton-hadron universality
means that any hadronic current coupled to the
leptons by weak interactions must fulfill the same
algebra, i.e.,

W= j d*x J(x),
(58)
[W;’W;]=2Wg’ [Wg,W:]=iW:.
If we write down our total weak hadronic current,
JE=dV s g

=v+ar+iki+ k3, (59)

Jx=b')\+ax—lk)\—lk)\5,

we see that the algebra of (48) is fulfilled by the
“charges”

+ 1 + + gt st - +
Wy =5 @+Q1+ iK™+ iK), Wi=W)),
(60)
Wi =3(@Q°+QY),

which is consistent with lepton-hadron univer-
sality. There exists, however, an alternative

possibility for the total hadronic current:
J§=Ui+a§+k’;\+k;\5, (61)

which realizes the algebra by means of
Wi =1@Q +QI+K +K]), W;=wW;)",
W3=1@Q3+Q+K® +K?2).

(62)

Owing to the different CP properties of first- and
second-class currents, in the second case we get
a Lagrangian for semileptonic weak interactions
which produces CP -violating effects proportional
to the interference terms of first- and second-
class form factors. This is essentially the origi-
nal idea of Cabibbo.®* The CP violation introduced
in this way is maximal, whereas a weak current
of the form j,+ef®k, will in general not fulfill
the algebra of Eq. (58) and, therefore, will violate
lepton-hadron universality. Thus, we have two
possibilities for the weak interaction compatible
with [SU(2)]* and lepton-hadron universality: CP-
violation effects are either zero or maximal.

As has been discussed in the literature,** the
general hadronic current, including AS =1 transi-
tions, can be obtained by a rotation U = ¢?!%F~
about the seventh axis of SU(3) from the AS =0
current. From universality, it follows that the
Cabibbo angle 6 must be the same for first- and
second-class currents.

One can go one step further and ask if the lepton-
hadron universality goes so far that there exist
analogs of the SCC in the leptonic case. Since G
parity has no meaning for leptons, we may formu-
late the question in a different way: Do there
exist CP-even Hermitian leptonic currents? Such
a direct analogy between hadrons and leptons would
be extremely important if we wished to generalize
the weak interactions in the sense of unified theo-
ries.*

Answering this question in a positive way, we
are in the same situation as described at the be-
ginning of Sec. III, as we wanted to construct SCC’s
from quarks. Derivative coupling terms would be
incompatible with the pointlike structure of leptons.
Therefore, we are faced with the fact that fwo dif-
fevent sets of leptons should exist which are CP
partners of each other. Calling these sets (I, v;)
and (I, v,s), we have the currents

5=, Tady, + ¥y Doty
CPI(CP) ==Y
and (63)
mi=¢, Thyy, + Py Dy, ,
CPmI(CP) ' =+e(M)(m})".
Although this suggestion is highly speculative,



we should like to follow it one step further and
discuss the nature of sets / and I’: Either they
are the usual electron and muon plus some heavy
leptons, or they are the electron and the muon
themselves. Concerning the former, all heavy
leptons discussed in the literature®® have the same
CP properties as the lepton itself. Concerning
the latter we are faced with the fact that the sep-
arate conservation of electronic and muonic lepton
number is related to CP conservation.*” This
possibility would also have the very attractive
feature of explaining whZy we have an electron and
a muon: They are CP partners of each other, in
the same sense as we have already discussed in
Sec. IV.

We should like to stress the fact that the neces-
sary existence of two sets of leptons, which are
CP partners to each other (probably electrons and
muons), is a consequence of (i) the existence of an
algebra which contains CP-even and CP-odd had-
ronic currents; (ii) extended hadron-lepton univer-
sality in the sense that such CP-even Hermitian
currents must exist for leptons also; and (iii) the
fact that leptons have a pointlike structure.

If we are willing to accept this hypothesis, then
we are left with a leptonic SU(2)® SU(2) generated
by the currents [, and m,. Since both currents
contain vector and axial-vector terms, we have
a complete analogy to the [SU(2)]* symmetry of
the hadronic case.

Before closing this section we should discuss
the weak-interaction Lagrangian. The form

£W=-\7(2;—(JX+KX)(Z)‘+m") (64)

(for simplicity, we have Jy=vy+ay, Kr=k)+ks,)
is definitely excluded by experiment: It would
couple the currents 1* and m™ with the same
strength to the first-class current J, and therefore
give lepton-number-violating effects. We can
avoid this by introducing some angle i between the
currents [\ and m ,:

£=TG——(JHKX)(z*coswm*sinzp). (65)
This Lagrangian, without the SCC K ), has been
studied in detail by Iro,*® and the value of siny
has been related to the measured CP-violating
effects.

A third possibility would be the Lagrangian

G’
L= —\/=2——(J}\l)\+K)\7n>‘), (66)

which is interesting because it gives rise to lepton-
number violation without CP violation, but it is
suppressed because the lepton-number-violating
current couples to the SCC only. On the other
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hand, generalizing it to pure leptonic processes
yields

Gl
£= W(zxzhm ). (67)

This predicts for the muon decay an equal amount
of (v,,7,) as well as (v,V,) pairs in the final state,
which is probably ruled out by experiment.*® In
any case, we think that the final form of the weak
Lagrangian containing CP -even currents may
probably be given in the framework of unified theo-
ries.°

Vil. CONCLUDING REMARKS

As we have seen, the problem of putting the SCC
into a group-theoretic framework can be simply
solved by doubling the commutation relations, not
only with respect to parity, as has been done in
chiral symmetries, but also with respect to charge
conjugation. The applications do not give any
contradictions; rather, the problem is one of ob-
taining practical results. Nevertheless, the test
of the n— mev decay will be crucial for our hypoth-
esis. A further consequence of our current algebra
is that the SCC always keeps the canonical dimen-
sion.

What we wish to suggest with this work is that
nobody should be unduly surprised if SCC’s some-
times show up in experiments. They can be treated
in the same way as the usual currents. The ques-
tion of whether they also act as “probes” of the
strong interactions due to an [SU(2)]* symmetry
of nature is a little more delicate, however. If
this were actually the case, we would not expect
any practical use of the symmetry, because of the
large breaking effects. But we have some reason
for using PCSCVC, and there is also the interest-
ing possibility that particles may appear in CP-
coupled multiplets. Using an extended version of
hadron-lepton universality, we are faced with the
same effect in the lepton case, which would either
give a possible answer to the electron-muon prob-
lem or postulate a set of heavy leptons.

Naturally we shall later have to generalize the
concept to SU(3). Before doing so, it is extremely
important to increase the knowledge of first-class
currents, including SU(3)-breaking effects. The
first promising result has been the calculation of
the pseudotensor coupling constant in hyperon
decays.® Apart from this the generalization is
straightforward. As Goldstone bosons we need the
pseudoscalar octet (7,K,n), a scalar octet (my,,0),
and an octet of C-odd £ particles. A search for
such C-odd mesons would also be interesting for
astrophysical reasons.®! It should be noted that
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in generalizing our o model to SU(3) we need four
nonets of bosons transforming like a (3,1,1, 3)
®(3,1,1,3)» (1,3,3,1) (1, 3,3, 1) representation
of [SU(3)]4, which also means scalar mesons with
odd C parity, or so-called C mesons.5? Johnson
and Low,*® who calculated current commutators in

higher-order perturbation theory of a quark model,

mentioned that C breakdown appears only in very
high orders but is possible. This may be a hint
that such mesons have a very large mass.
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