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The on-shell unitary formalism for three-particle scattering found by Cahill is simplified
and its connections with the alternative E-matrix formalism is established. The different
results obtained in the approximate but fully unitary three-nucleon calculations which have
been carried out to date using the two formalisms are found to be attributable to distinct
choices of the approximate input. This last circumstance is obscured in the original ver-
sions of the two formalisms. It is concluded that most, if not all, differences between al-
ternative on-shell unitary formalisms are illusory and result from input inequivalence in the
various approximation schemes that may seem suited to the various formalisms.

1. INTRODUCTION

In the past few years several different formal-
isms have been developed for generating approxi-
mate three-particle scattering amplitudes which
satisfy all the requirements of three-particle uni-
tarity. ' ' These formalisms share the common
feature of on-shell integral equations for the
physical scatt;ering amplitudes in which the un-
known input terms need satisfy only relatively
simple conditions in order to generate a unitary
theory. The spirit of the approach is analogous
to the standard K-matrix formalism in scattering
problems involving only two-particle channels.

Several reasons for seriously considering such
formalisms have been elaborated upon previous-
ly. ' ' In addition, we point out that the experi-
ence gained in the study of multiparticle unitariza-
tion techniques in the case of the three-particle
problem, where exact numerical solutions are
known, may be very useful in applications to situa-
tions involving more than three particles. In the
latter case the exact solution of the scattering in-
tegral equations becomes prohibitive with increas-
ing particle number and the reliance upon approxi-
mate techniques appears inevitable.

Two of the extant unitary forrnalisms" have
been used to carry out approximate calculations
of three-nucleon scattering. " In both cases a
few approximate forms of the input functions
which are suggested by the structure of the respec-
tive formalisms were used in the relevant quasi-
Heitler on-shell integral equations. The results
in both instances were in qualitative agreement
with the exact results'" corresponding to the
same two-nucleon interactions. However, the
two approximate, albeit unitary, solutions differ
even for those choices of input which appear to be
of "lowest order" in each formalism.

This circumstance again raises the question of

the relationship of the two formalisms and their
relative superiority, if any, in generating approxi-
mate three-particle amplitudes. ' Obviously, all
possible unitary formalisms are equivalent if no
approximations are made. The essential question,
then, is the comparison of the various formalism:
for given approximate inputs.

%'e will call two unitary formalisms input equiva-
lent if their exact input functions (e.g. , the Is matri-
ces) are the same and if identical approximate
forms of the input functions yield identical physical
scattering amplitudes via each formalism. Evi-
dently not all possible on-shell unitary formalisms
are input equivalent, but all can be placed in equiv-
alence by redefinitions of their input functions.
Such a redefinition is essential if one is to compare
calculations carried out with different formalisms
such as those of Refs. 7 and 8.

In the present work we establish the input equiv-
alence of Cahill's formalism to a new unitary
formalism which is very closely related to the
three-body K-matrix formalism. ' This allows
us to compare the approximations employed in the
calcul. ations of Refs. 7 and 8, and we find that they
are quite distinct, which probably accounts for the
different results obtained. A restatement and sim-
plification of Cahill's formalism is necessary for
our proof of input equivalence. In particular we
show that one member of Cahill's hierarchy of
four sets of integral equations is superfluous, and
as a consequence the complexity of Cahill's origi-
nal work is reduced to a level comparable with the
formalism of Ref. 2.

The main conclusion to be drawn from our in-
vestigation is that there is probably very little to
distinguish the various on-shell unitary formal-
isms in terms of their practical use. Significant
apparent differences may arise as a consequence
of input inequivalence, but these are, of course,
illusory. An open problem with all extant on-shell
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unitary theories is the lack of compelling reasons
for specific choices of approximate input. This is
in marked contrast with some off-shell unitary
formalisms that have been proposed. ""

ll. NOTATlON AiND DEFINlTIONS

where V is the diagonal matrix (V„5„z)whose ele-
ments are the two-particle potentials V and P is
the diagonal matrix (P 5 z).

The amplitude for the connected portion of the
3-to-3 process is given by the on-shell values of
the matrix element

Most of the notations we will employ for the vari-
ous two- and three-particle scattering operators
are the same as those used by Cahill. ' Some de-
partures from Ref. 1 do occur, and these are
noted in an effort to maintain some notational con-
sistency with our previous publications. ' '

Our starting point is the operator F(z) [M(z) in
Ref. 1J which satisfies the integral equations

E(z) =«.( ) «.(z&f(z&F(z) (2.1a)

= 5 G,(z) + E(z) t(z) 5 G,(z), (2.1b)

where we have employed a matrix notation with
respect to the channel indices. "That is, E(z) rep-
resents the 3x 3 matrix whose elements are the
operators Fz„(z) (P, a=1, 2, 3). t(z) is a diagonal
matrix whose elements are the two-particle tran-
sition operators t„(z) on the three-particle Hilbert
space; the index o on t„(z) refers to that channel
n in which particle o. (=1, 2, 3) is asymptotically
free. 5 is the matrix with elements 1-58, and,
finally,

G, (z) =(z -ff,)-',

where II, is the total three-particle kinetic energy
operator and z is a complex parametric energy.

The connection between E(z) and the operators
corresponding to the physical scattering ampli-
tudes is obtained as follows in the circumstance
in which there are no three-body forces, which
we suppose is the case. %'e introduce a projection
operator P„onto the channel o (=1, 2, 3):

P. -=g ie.(}., E)&(e.(n. , E)i.
& y)n

where the channel states
~ P~(ri„, E)} for ot =1,2, 3

refer to noninteracting two-particle states com-
posed of particle a moving freely and a bound
state of the other pair. E is the energy of the con-
figuration and q refers to any other labels which
are needed to specify the asymptotic configuration
in channel n including an index covering the possi-
bility of more than a single two-body bound state
in that channel. [We will let [ $0(qo, E)) refer to a
thxee-particle plane-wave state with a similar in-
terpretation for E and q, .J Then we define

(2.3a)

The amplitudes for the breakup process (n - 0),
the formation process (0- o.), and rearrangement
(a-P), or elastic for o =P, scattering are given
by the on-shell values of the matrix elements

(2.3b)

ZM', 4o
Y

(2.3c)

(yz(M ~(y ), (2.3d)

ill. UNITARY CONSTRAINTS

In this section we find the constraints, in the
form of discontinuity equations and Hermitian
analyticity conditions, imposed by unitarity on
the M operators defined by Eqs. (2.2). This has
been done by Cahill. ' %'e will repeat this here not
only for the sake of completeness and to introduce
our particular notations, but primarily because
we find that a simple restatement of the discontin-
uity equations suggests a means for significantly
simplifying Cahi11, 's entire formalism.

Using standard techniques" "we find from Eqs.
(2.1) and the two-particle off-shell unitarity re-
lation,

&i = 2i t(s) D-, t(v)-2i VDV, (3.1}

r E= —2i[E(+) t(+) D, t(+) E(+)+F(~) VDVF(+) J

respectively. In what follows we will often refer
to the on-shell matrix elements of, for example,
the operator M~(z). We mean by this the matrix
with the on-shell elements ( gz~M&~ ~ P ). Similar
remarks apply to M(z}, M "(z), and M~(z) as well
as to the various auxiliary operators which appear
in the course of our development.

M(z) =- t(z)E(z)t(z),
M"(z) = i(z)E(z) VP, -
M (z) =P VE(z}t(z},
M'"(z) =P VF(z)VP,

(2.2a)

(2.2b)

(2.2c)
(2.M)

+[E(+)t(+)&r. + r ti (+) F(+)+z t.J .
%'e have employed the following notational conven-
tions in Eqs. (3.1) and (3.2). For an operator 8(z)
which is a function of z
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8(~) -=8(E+ i0)

n8=8(+) -8(-) .

Also

g(z) -=KG,(z)

and D is a diagonal matrix with elements D
(n = 1, 2, 3) defined by

(3.3)

D, is simply the unit matrix (in the channel in-
dices} times the operator (3.3) with n =0. Finally,

D, = (1+—6)D, .

We find from (3.2) and the definitions (2.2) that
on shell

t M=-2~ [M(~) ZiPS(+)+ M'(+)DM'(+)+ M(+) D, t(+)+ t(+) D,M(+)+ t(+) 6 D, t(+)J,
SM" = —2i[M(+}D,M"(v)+ M"(+)DM~(+)+ t(s) D,M"(+)],
AMz= —2i[M~ (+)5,M(v) + M~(s) DM~(v) + M~ (s) D, t( w )],
t M~=-2t[M'(+)B, M"(+)+M (~)DM (+)].

( 3.4a)

( 3.4b)

(3.4c)

(3.4d)

We stress that Eqs. (3.4) are to be interpreted
as on-shell equations in the sense described at
the end of the preceding section. In this case Eqs.
(3.4) constitute part of the constraints imposed by
unitarity on the various amplitudes.

In contrast with the other M operators which
are directly related to complete physical scatter-
ing amplitudes, M refers only to the connected
part of the 3-to-3 amplitude. This separation of
the disconnected and connected parts of the 3-to-3
amplitude leads to the complicated forms of Eqs.
(3.4a)-(3.4c) and also to an unnecessary complex-
ity in Cahill's entire formalism. Instead, we de-
fine

y(z) = t( z) + M(z) ( 3.5)

r(+) ' = r(+),
[M "(+)Jt = M~(v)

[M (~)]'=M~(+) .

( 3.6a)

( 3.6b)

( 3.6c)

so that the complete amplitude for the 3-to-3 pro-
cess is given by the on-shell values of

(I}0 &na 40
Cs,

Then instead of Eqs. (3.4a)-(3.4c) we obtain

&y = —2i[y(+) D,y(+)+ M"(+)DMz(v)], (3.4a')

&M" = —2i [y(+) D,M"(v) + M "(+)DM~( v) J,

(3.4b')

~M' = —2t[M'(~) D, r(~) + M~(+) DM'(v) J,

(3.4c')

with (3.4d) unchanged.
Equations (3.4a')-(3.4c') and (3.4d) are not yet

equivalent to the physical unitarity constraints. "
The latter are obtained by requiring in addition
the Hermitian analyticity conditions

IV. CAHILL UNITARY FORMALISM

%'e will proceed in a manner somewhat different
from that employed by Cahill. ' The present treat-
ment is facilitated by the use of the channel ma-
trix notation and y(z) instead of the connected op-
erator M(z). This leads not only to a simpler
derivation and proof of consistency but also to a
real simplification in the demonstration that one
of Cahill's original four sets of equations is super-
fluous.

From Eqs. (2.1), (2.2a), and (3.5) we find that

r(z) = t(z)+ t(z) 6 G.(z) r(z)
= t(z) + y(z) 6 G,(z) t(z) . (4.1)

Upon separating G,(s) into its principal-value and
Dirac 5-function parts,

G, (+) =G v iD, ,

and letting p(s) be the solution of

p. (s) = t(+)+ t(+) 6 Gg(+)

= t(x) + g(a) 6Gt(a), (4.2)

we can convert Eqs. (4.1) into the on-shell integral
equations

r(~)=u (~)+su(+) &D.y(+}

=g(+)+ iy(~) 6Dop(+) . (4.3)

The operator p(+) is related to Cahill's N(+) by

&(~)=~(~) -t(*).

Note that since we are using a channel-index nota-
tion the adjoint operation in Eqs. (3.6) inc.udes a
matrix transposition with respect to the channel
indices. " For example,

[M~{~)J' = M'.,(+) .
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Next, we introduce a two-body reaction matrix
R(+}defined by

t(+)=R(+)+ iR(+) D,f(+)

R(~)v ii(a) D, R(e). (4.4)

g(+)= v(+) w i v(+) D,p(+)

= v(+) v ip (+)D,v(+) . (4 6)

The operator v(s) is related to Cahill's Q(+) by

Q(~)= v(+) -R(~),
and Eqs. (4.6} correspond to Cahill's equations re-
lating N(~) and Q(~)."

We note that Eqs. (4.6) are nonconnected-kernel
equations as are the counterparts of these [for
N(+) J derived by Cahill. ' This circumstance is
totally unrelated to the inclusion of disconnected
parts in p, (+) and v(+). Equations (4.6) can be con-
verted into connected-kernel equations using
standard techniques, ' but since they play only a
transient role in our development there is no need
to do so.

Indeed, from Eqs. (4.3) and (4.6) it is easy to
show that

R(a) still contains any relevant two-particle bound-
state pole singularities; however, R(+)~R(-) ex-
cept at these poles. Then, if we introduce the op-
erators v(+) as solutions of the integral equations

v(a)=R(+}+R(s)5G v(+)

=R(~)+ v(+) 6GR(~),

we see that

y(s) =t(s)+Q'(s)+ it(+) 5D, y (a)

+ i@'(+)D,y(~)

= i(+) +Q'(s) v iy(s) 6 D, i(+)

+ i~(*)D.0'(*),
where

Q'(s) = [I+ it(+) D, J Q(a) 1

Q'(a) —= Q(+)[1v i D, f(+)] .

(4.7')

We now foBow part of Cahill's development rath-
er closely. If we introduce operators N(+) as solu-
tions of

should be able to eliminate all of the various X
operators, to be defined below, from Cahill's
formalism, and this turns out to be the case. The
reason for this is that the various N operators
have basically the same singularity structure as
the original amplitudes. In contrast with this the
operators v(+), for example, have discontinuities
across only the two-particle unitary cuts which
are generated by the two-particle bound-state
poles. Equations (4.7) explicate the singularity
structure of y(+) associated with the three-particle
unitary cut.

We note that Eqs. (4.7) are nonconnected-kernel
integral equations. We emphasize that this is un-
related to our elimination of the N-type operators
in this instance or in those to follow since Cahill's'
original equations exhibit similar nonconnected-
ness properties. The connected-kernel forms of
Eqs. (4.7) can be easily obtained using standard
techniques, ' namely,

y (+) = v(s) + i v(s) D, y(+)

= v(s) v i y(+) D, v(a), (4.7)
N(~) =5G+5Gi(~)N(+}

and therefore we have eliminated the role of p(+)
in relating y(s) to v(a). This suggests that we

= 6G+N(s) t(s }5 G,

then we find from Eqs. (2.1) that

(4.8)

F(x) =N(+)vi[5D, +6D, i(s) F(s)+8'(s) i(s) 5D, +H(y}t(+) 5D, i(s) F(x)J

=N(+) w i[5D, +F(+) t(+) 5D, +5D, t(x)N(+)+F(+) t(+}5D, t(+)Nb)J (4 9)

M "(s)=N"(+)+i p, (+) 6DDM (s)

=N"(+)+ ir(s) 6D,N (+),

M'(~) =N'{~) + iN'(~) 6 D,r(+)

=N~(~)+ i M~(~) 5 D,p(+),

(4.10a}

(4.10b)

From the definitions (2.2b)-(2.2d) and Eqs. (4.9)
it follows that

M~(~)=N~(+)+ iN' {+) 6D, M"(+)

=N~(+) v i M~(*) 5D,N" (+), (4.10c}

where N"(s}, N~(+), and N~(+) are defined by
Eqs. (2.2) with F(s) replaced by N(+) Equations.
(4.3) are of the same class as Eqs. (4.10}, and as
in the passage from (4.3) to (4.7) we will show that
Eqs. (4.10) constitute merely an intermediate step
in this unitary formalism rather than an intrinsic
part of it.
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=KG+q(~)R(~) 5O.

N(s) and Q(+) are related via

N(+)=g(+) + iQ(+)R(~) D, i(+)N(+}

= g(+)+ iN(s) i(+) D,R(+) Q(s) .

(4.11)

(4.12)

It is clear from Eqs. (4.11) that the only contri-
butions to &Q will arise from the two-particle
bound-state poles. At this stage all the singular-
ities associated with the three-particle unitary
cut have been explicated. However, our objective
is to express all quantities in terms of operators
with zero discontinuity across the entire unitary
cut. To this end we define"

k -=R(+) + i VDV

and an operator C as the solution of

(4.13)

Next, again following Cahill, we introduce op-
erators Q(s) as solutions of the integral equations

Q(s) = KG + 5 GR (+) Q(s)

MR(+}=Q"(+) v i v(+) D, MR(x)

= Q "(~)+ ~ r (+)D.q"(*),
M~(+) = Q~(s) +i Q~(+) D,y (+)

= Q~(+) vi M~(+}D,v(s),

M~(+)= q~(+) + iq'(~) D, M"(+)

=q~(+) ~ i M'(+) D,q"(+) .

(4.18a)

(4.18b)

(4.19a)

(4.19b)

(4.20a)

(4.20b)

Equations (4.7) and (4.18)-(4.20) constitute the first
set of a hierarchy of equations of our simplified
version of the Cahill formalism. We note that
Eqs. (4.18a) and (4.19b) are nonconnected-kernel
integral equations, while Eqs. (4.18b), (4.19a},
and (4.20) are quadrature rules. Once again, as
with Eqs. (4.7}, we remark that this appearance
of nonconnected kernels is not the price paid for
the elimination of the A operators since some of
Cahill's original equations Icf. Eqs. (4.17}Jalso
have such kernels. The connected-kernel counter-
parts of Eqs. (4.18a) and (4.19b) are, respectively,

C =5G+5GkC

=66+CA 5G . (4.14)

M R(+)= I I v i i(+)D,J Q"(+)

y it(+) 5 D, M"(+) + i Q'(+}D, M"(+),
Since 44 =0 we see that 4C = 0. Combining Eqs.
(4.11) and (4.14) we get

Q(a)=C+ iCVDVQ(~)

(4.18a')

M~(+}=Q~(s}rl+ iD, i(+}J

v i M~(+) 5D, t(+}+i M~(~) D,Q'(+) .
=CviQ(a)VDVC.

It is evident that

Q(~)=R(+) Q(+)R(~)

and we define

Q"(+) -=R(~) 0(+) VP,

Q'(~) -=P VQ(~) R (+),

Q (+) =PVQ(+) VP —.

Then Eqs. (4.12) imply

NR(+)= Q"(+) v i v(x) D,N (s)

= Q"(a) v i p(+) D,q "(+),

N'(~)= Q' (~)+iq'(~) D.} (~)

=Q~(+) v iN~(+) D,v(+),

N~(s)=Q~R(s) wiq~(a) D,N"(+)

(4.15)

(4.16)

(4.17a)

(4.17b)

C =-R (+) CR(+),
C"=-Z(~}CVP,
O' =-ZVCa{~},

C =—I'VCVP .

We note that on shell

C=kCk

C = kCVP,

C'=P VCu,

(4.22)

which makes manifest the fact that on the shell

ZC = ~C = ~C' = ~C~ = 0 (4.23a)

(4.19b')

Our final set of equations of the simplified Cahill
unitary formalism connects the Q operators to
singularity-free input operators which are related
to C. We define

=q~(~) ~ iN'(~) D,q"(~) . (4.17c)

At this point, as with the deviation of Eqs. (4.7},
we deviate from Cahill's development and use
Eqs. (4.17}to express M", M~, andM~, as given
by Eqs. (4.10}, directly in terms of the Q opera-
tors. This is easily carried out and results in
the set

((
1

)
g CR (CLR) t CLR (4.23b}

From Eqs. (4.15) along with definitions (4.21) we
obtain our second and final set in our hierarchy of
equations of our simplified version of the Cahill
formalism":
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q(s)=c v iC"Dq (+)

= C + i Q"(+)Dt

qs(~) CB~ iCBDqLR(~)

CB~ iqs(~) DCIB

q (~)=c +iC Dq (~)

gL, qLB DgI

q~(~)= c~+ ic~Dq~(~)
=c~~ ~q DC~

(4.24a)

(4.24b)

(4.25a)

(4.25b)

(4.26a)

(4.26b}

(4.2Va)

(4.27b)

We remark that the integral equations among Eqs.
(4.24}-(4.2V} are of a rather trivial type which be-
come algebraic equations after partial-wave anal-
ysis.

The unitary formalism at hand consists in the
set of Eqs. (4.7), (4.18)-(4.20), and the set of Eqs.
(4.24)-(4.27) with input C, C", C~, and C sub-
ject to conditions (4.23)." To establish this asser-
tion we have to demonstrate that if we are given
proper input, then amplitudes y(s), M "(a), M~(+),
and M~(+) are generated which satisfy Eqs. (3.4')
and Eqs. (3.6). However, in contrast with Cahill's
discussion of this point we will not make any use
of the original off-shell quantities such as C, Q,
and Ã which are now irrelevant to the definition
of the formalism.

Before doing this it is important to prove that
given proper input the two versions of each of Eqs.
(4.7), (4.18)-(4.20) and (4.24)-(4.2V) are consistent
with each other. Evidently the integral equations
(4.27a) and (4.27b) define the same q~(a) so that
these equations are mutually consistent. Given
this we note using Eqs. (4.27} that

[c'+ iq~(+) Dc' J = c'+ ic~D [c'+ iq~(+) Dc'],

[q (~)J'=q (+).

Also, the relation

[q"(~)1' = q'(+)

(4.28a)

(4.28b)

follows from (4.28a) in conjunction with Eqs. (4.25)
and (4.26). Equation (4.28b), in turn, implies,
with Eqs. (4.24),

q(+) =q(+) (4.28c)

The Hermitian analyticity satisfied by the (known)
two-particle input [i(+)~ = f(v}] implies g(+) ~ =It(+)
so that

v(+) ~ = v(v} . (4.28c '}

With Eqs. (4.28) one can show that Eqs. (4.7),
(4.18)-(4.20) generate operators satisfying the
constraints (3.6).

Finally, we will investigate the consequences of
conditions (4.23a) on the proper input, which are
already embodied in Eqs. (4.24)-(4.27). From the

latter we easily deduce the discontinuity relations

which establishes the consistency of Eqs. (4.18).
The consistency of Eqs. (4.19) and (4.20) is proved
in an analogous manner.

The preceding consistency proof highlights the
seminal roles played by y(+) and q (s) in this
formalism. For example, the operators M~(+),
M (s), andM~(s) are, in point of fact, defined
by y(+), and the integral equations for M "(s) and
M~(+) have the same kernels as do Eqs. (4.7).
Similar remarks apply to q (+).

Next we deduce the implications of the con-
straints (4.23b} on our proper input. Taking the
adjoint of Eq. (4.27a},

[q ()]'=c ~ [q (.)]'Dc,
we infer that

which shows that both forms of Eqs. {4.26) gener-
ate the same q (s}. Similarly, given the q (s)
defined by (4.27) we see that Eqs. (4.25} are con-
sistent. Finally, given Eqs. (4.25) and (4.26) one
finds the relation

q"(~)Dc'= c"Dq'(+)

Lq=-2iq (+)Dq~(+),

~qs 2iqs(+) DqLR(+)

aq~= —2iq~(*}Dq~ (+),

=-2iq (~)Dq (+).

(4.29a)

(4.29b}

(4.29c)

(4.29d)

so that Eqs. (4.24) are consistent. Note that the

only properties of the input we have assumed are
(4.23a) which have been implicitly imposed in the
writing of Eqs. (4.18)-(4.20).

A similar proof of the consistency of Eqs. (4.7),
(4.18)-(4.20) is easily carried out which is entire-
ly independent of the input. One begins from Eqs.
(4.7) which evidently generate the same y(s). Giv-
en the latter it is seen that

[q"(+)+ i~(+) D.q "(+)]

=q"(+)v i v(+) D, [q"(+)+iy(+)Doq"(+)J,

It is now a straightforward matter to verify the
discontinuity relations (3.4 ) given Eqs. (4.29) in
conjunction with Eqs. (4.7} and (4.18}-(4.20) and
therefore the unitary nature of the formalism de-
fined by Eqs. (4.7), (4.18)-(4.20), (4.24)-(4.27}
along with the proper input.

V. ANOTHER UN1TARY FORMALlSM

The essential difference between the K matrix'
and the Cahill (cf. Ref. 1 and Sec. IV) formalisms
is in the order of singularity explication. Namely,
with reference to the hiera'chy of equations as-
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sociated with each, in the former case the two-
particle bound-state pole singularities are ex-
plicated first while in the latter they are expli-
cated last. In this section we employ the same
starting point as in Sec. IV but we reverse the
order of singularity explication. " The result is
a somewhat more convenient but substantially
identical form of the g-matrix theory of Ref. 2.
In the next section we show that this rephrasing
of the K-matrix formalism is input equivalent to
the simplified version of the Cahill formalism
developed in Sec. IV.

First, let us decompose t(+) into the two
parts" "

t(~)=t (+)+t,(~),

where

t, (*)=+ t VDV.

(5 1)

(5.2)

Using (5.1) Eqs. (2.1), with z=E+i0, can be re-
written as

F(~) =F(~)+7(+)t, (~) Z(~)

where

= F'(+) + E(w) t,(s) F'(w), (5.3)

F(s}=6G,(s)+6G,(s) t (+) F(+)

=5G,(+)+F(~) t(+) 6G,(~) . (5.4)

Let us again define M(+), M~ "(+), and M~(+) by
Eqs. (2.2) but with t(+) replaced by t (s). Obvious-
ly these two definitions are identical on shell,
which is the only case of interest to us. Also we
define operatorsM(+), M~ (+), andM~(+) by ex-
pressions similar to Eqs. (2.2) but with t(a) re-
placed by t (~) and F(~) replaced by E(+). Then
from Eqs. (5.2) and (5.3) we find the first set of
our hierarchy of equations:

M(s)=M(s) v i M~(~) DM~(a)

= M(+)+ iM"(+}DM~(+) „

M"(+)=M "(s}vtM (+}DM~(+)

=M"(+)v iM "(~)DM (+),
M~(x)= M~(+) v i M~(+) DM~(s)

= M (+)v i M (s) DM (+),

(5.5a)

(5.5b)

(5.6a)

(5.6b)

(5.7a)

(5.7b)

(~)= M (+)+ iM~(+) DM~(+) (5.6a)

= M~(+)+ t M~(~) DM~(~) . (5.8b)

The net content of Eqs. (5.5)-(5.8) is the explica-
tion of the singularities arising from the two-par-
ticle bound-state pole singularities.

The subsequent development is simplified if we
introduce

y(s) —= t (+) + M(+) (5.9)

which is equivalent to the y(+) defined by Eq. (3.5)
on shell. Also we let"

r(+) -=t (+)+ M(+) .

Then Eqs. (5.5}become

y(+)= r(+) + i M "(~)DM~(a)

= r(~)+ i M "(+)DM~(+} .

(5.10a)

(5.5a')

(5.5b')

One can deal with the three-particle singularities
in a manner formally identical to that followed in
Sec. IV, except that Q-type operators never appear
since these were associated with the explication
of the two-body bound-state po1,e singularities.
The result is the second, and last, in the hierar-
chy of equations of this particular unitary formal-
ism:

=C v i ~D,M"(+),

=C v iM (a)Dot&,

M (+)=C~ v i C~D,M "(a)

=C +iM (a)D,C".

(5.11a)

(5.11b)

(5.12a}

(5.12b)

(5.13a)

(5.13b)

(5.14a)

(5.14b)

and we note that the off-shell ~ operator satisfies

=Q+K5CQ. (5.16)

The connected-kernel forms of Eqs. (5.11),
(5.12b), and (5.13b) can be obtained using standard
techniques' in the same manner as in the deriva-
tion of Eqs. (4.7'), (4.18a'), and (4.19b').

The present unitary formalism consists in the
set of Eqs. (5.5}-(5.8) and the set of Eqs. (5.11)-
(5.14) with proper input" given by C, C", C~, and
C~. The proof of this assertion follows along the
same lines as in Sec. IV and need not be repeated
here; we note [cf. Eq. (5.15a)j that we require
kt =0 as part of our explicit proper two-particl. e
input. In connection with the consistency of our
various equations we observe that in the present
instance M~(s) and I'(+) now possess the seminal
roles played by y(+} and Q~(+) in the Cahill formal-
ism.

%'e conclude this section by establishing the con-
nection between the present and the K-matrix' for-

Here the C operators are defined by Eqs. (4.22),

(5.15a)
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C"=x 5P,
C~=P 5](,
C~ =P[6G.(+)-'+6 ~ 6]P.

(5.15b)

(5.15c)

(5.15d)

Equations (5.15) express the C-operator input in
terms of the ~ operator. However, the present
formalism which is phrased in terms of the C op-
erators makes manifest the fact that the various
C's need not be interrelated except for the Hermi-
tian analytic property (C")~ =C~.

it is also easy to show in addition to Eq. (5.10a)
that

M "(+)=I'(s) 6P,
M~(+)=P 6 I'(s),

M~(~)=P[6C,(+)-'+61(+)6 JP .

(5.10b)

(5.10c)

(5.10d)

Equations (5.10) establish the connection between
the M operators and the I'(+) operator of Ref. 2.
Note that I'(+) is employed in two different ways
in the present and in the formalism of Ref. 2. In
the present unitary formalism only on-shell ma-
trix elements of I'(+) of the form (P, [

I"
z (~}l{t,)

appear in accordance with our previous connection
on the usage of the terminology on shell. %'ith

respect to this convention I"(+) is used in an off-
shell sense both in Ref. 2 and in Eqs. (5.10). Sim-
ilar remarks apply to Eqs. (5.10}. Again the pres-
ent formulation is preferable in that its full gen-
erality is manifest (cf. the remarks at the end of
the preceding paragraph}.

Finally, if we introduce the Alt et al."operators

U(~)=G,(~) '+(&)&o(&) ',
U(~}=5C,(~}-'+6 I'(~}6,

then

P gUe (+)Pm=M~~(s),

and we see that Eqs. (5.5)-(5.8) are .just the so-

malisms. The latter has its input defined entire-
ly in terms of the operator x. If we note that

(5.1V)

then with the aid of Eqs. (5.16) we find the alter-
native expressions for the C operators [as defined
by Eqs. (4.22)] in addition to Eq. (5.15a):

called reduced K-matrix equations of Ref. 2. Thus
the present unitary formalism is a rephrasing of
the formalism of Ref. 2 in a manner in which the
complete flexibility available in the choice of input
is made manifest.

Vl. 1NPUT EQU1VALENCE

In this section we establish the input equivalence
of the two unitary formalisms of Secs. IV and V.
The method of proof is as follows. %e assume the
unitary formalism of Sec. IV as emobdied in Eqs.
(4.V), (4.18)-(4.20), and (4.24)-(4.2V) with a given
set of proper input. We define z by Eq. (5.15a)
and I'(+) as the solution of Eqs. (5.11). Equations
(5.12a), (5.13a), and (5.14a) are regarded as the
definitions of M"(a), M~(+), and M~(+), respec-
tively; Eqs. (5.12b), (5.13b), and (5.14b) then fol-
low with the use of Eqs. (5.11). What is to be
shown, then, is that the operators y(+), M "(+),
M~(+), and M~(~), which are directly related to
the physical scattering amplitudes, as defined by
the Cahill formalism are also determined by Eqs.
(5.5)-(5.8}. The proof is reversible, thus estab-
lishing the input equivalence of the two formal-
lsms.

If we write y(+)= I'(~}+iA(+) in the first of Eqs.
(4.V) it follows with the aid of Eqs. (4.19a) and
(4.24a) that A(s) satisfies

A(s}=C DM~(s) v i g Do A(a)

and so from (5.12b} we conclude that

A(a)=lQ "(+)DM~(+)

and therefore we obtain Eq. (5.5a'). Proceeding
in a similar manner from the second of Eqs. (4.Va)

we deduce Eq. (5.5b').
Next writingM "(a)=M"(+)v iB(+) in Eq. (4.18a)

and making use of Eqs. (4.20a), (4.24a), (4.26a),
and (4.2V) we find the integral equation

a(+)=C"DM (+)+ i~D, a(~)

and therefore from (5.12b} we find

a(~)= M'(~) DM~(~)

and thereby obtain Eq. (5.6a). From Eqs. (4.18b),
(4.2Va), (5.5b'), (5.12a), and (5.14b) one deter-
mines the relation

[M"(~) -M"(~)~ i M"(+) DM (+)] [I+ fDQ (~)]=0,

which, provided [I+iDQ~"(~)] ' exists, " i~plies
Eq. (5.6b}. Equations (5.V) follow from Eqs. (4.19)
in an analogous fashion.

Finally, from Eqs. (4.20a), (4.26b), (4.2'la),
(5.6b), and (5.14a) one establishes that

[1+fq~(~)D] [M~(~) -M~(~) ~ f M~(~) DM~(~) J=0,
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C =k5Gk,

C"=k 5CVP=k5P,

C =PV OGk= P 6k',

C =PVGGVP =PIG P.

(6.1a)

(6.lb}

(6.1c)

(6.1d)

The second set is the same as given by Eqs.
(6.1b)-(6.ld) with (6.la} replaced by a separable
form for C.

Two different sets of approximate proper input
are also considered in Ref. 8. The first of these
(which is also called the exact unitary zero-order
model) is the completely unitary impulse approxi-
mation introduced in Ref. 2:

which, provided [le iQ (s)DJ ' exists, implies
Eq. (5.8a}. Equation (5.8b) follows in a similar
manner.

Under the same conditions" it is evident that
the preceding proof is reversible. This completes
the proof of the input equivalence of the two for-
malism s.

It is now meaningful to compare the approximate
input employed in the calculations~~ of Refs. 7 and
8. Tandy et al. ' consider two sets of approximate
proper input. The first (the exact unitary zero-
order model of Ref. '7) corresponds to the choice"

fortuitous since only the spin-averaged cross sec-
tions are reported in Ref. 7. In Ref. 8 it is found
that the latter cross sections are generally better
reproduced than those for the quartet and doublet
states individually.

The results of Refs. 7 and 8 are interesting to
the extent that they show how even with rather
crude input the requirement of exact three-parti-
cle unitarity yields reasonable scattering ampli-
tudes with a relatively small amount of numerical
effort. However, these techniques are likely to be
of little quantitative use in the three-particle prob-
lem unless the choices of approximate input can
be justified and systematically improved under
certain physical circumstances (such as at very
low or at relatively high energies) in a more con-
vincing manner. Thus far no on-shell unitary for-
malism has been able to do this in contrast with
some off-shell unitary theories. "" Therefore,
at the present time there is little reason to prefer
one unitary formalism over another, and among
those which are input equivalent, no substantive
reasons at all.

As a final remark we note that we can generate
the so-called minimal three-particle scattering
model' from either of the formalisms considered
in this paper via the choice

C=O,

C =kOP,

C =Pdk,

C =P(5G '+6k 6)P.

(6.2a)

(6.2b}

(6.2c}

(6.2d)

The second approximation in Ref. 8 is called the
exact unitary first-order model and corresponds
to the choice

C=C" =C —C =0

Equations (6.4) imply that

Q(+) = Q"(+) = Q (+}= Q (s) =0,

M (+)=M (+)=M (+}=0,

(6.4)

C=k' 6 Gk,

C"= (k+0 6Gk) 6P,
C = P 6 (k+k 6Gk),

C = P[6G,-'+6 (k+k 6Gk) 6iP.

(6.3a)

(6.3b)

(6.3c)

(6.3d)

Obviously the sets (6.1)-(6.3) of proper input
differ substantially and therefore the different re-
sults of Refs. 7 and 8 are not surprising. However,
it is quite difficult to conjecture under what con-
ditions one set can be preferred over another. In-
deed, all three sets yield cross sections in the
case of N-d scattering in qualitative agreement
with the corresponding exact results, '" although
the results of Ref. 7 using the set (6.1}at 14 MeV
are perhaps in closest agreement. This may be

and consequently

y(~)= r(*),

M"(s)=Mi(s)=M (s)=0.
Obviously. this approximation makes physical sense
at best only under those circumstances in which
the 3-to-3 scattering is the only possible three-
particle process. Examples of the latter are dis-
cussed in Ref. 5.
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A study is made of the question of how difFerent the correct transformation V from the current-

quark to the constituent-quark basis is expected to be from the free mass-degenerate quark model

discussed by Melosh. The efFect of SU(3) mass breaking and of mutual interaction of the quarks is

discussed in the context of a simple model. The algebraic properties of V are more complicated than

that of V„„„the transformation constructed by Melosh; nevertheless, it still is tractable enough so an

attack may be made on the problem of mass splitting in SU(6) multiplets.

There has been much discussion recently' of the
relation between current quarks and constituent
quarks. On the one hand, there is the SU(6) alge-
bra of integrated weak and electromagnetic cur-
rent densities' and related operators, which is
denoted by SU(6)„,„„,„„;on the other hand, there
is the SU(6) algebra of operators which form an
approximate symmetry of the strong-interaction
Hamiltonian, ' which is denoted by SU(6)I
Assuming these two algebras to be connected by
a unitary transformation V, there are several
requirements that this V must satisfy; Melosh
has described these requirements and furthermore,
for the free-quark model with degenerate quark
masses, he has constructed an operator Vf„, which

satisfies the constraints. Although V„„most cer-
tainly does not have all the correct properties that
V must have, by abstracting some of the algebraic
structure of V„„which might reasonably be ex-
pected to carry over in a more realistic situation
one may make predictions for pionic decays of
meson and baryon resonances, recover many of
the good results of the old SU(6)~ scheme for the
matrix elements of weak charges, and correct
some of the poor results.

The basic problem which remains, however, is
the determination of how different one should ex-
pect the correct transformation V to be from the
explicitly constructed model transformation V„„.
For example, the extremely simple property of


