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A SUL(2) U(1) U(1) gauge model of electromagnetic and weak interactions is presented, which has

three pseudo-Goldstone bosons identified as pions. %e can include strong interactions in the pion

masses without generating mass counterterms, if the strong gauge symmetry is U(1) or "color" SU(3).
At the one-loop level (without strong interactions) the n remains massless, while the m* pick up
masses. From our analysis, the one-loop calculation should be interpreted as the electromagnetic and

weak contribution to the pion mass difference. Our result is not too large in magnitude as compared

with the results found in other models. The pion mass difference including strong interactions has the

same form as in the %einberg model where pions are not pseudo-Goldstone bosons. %'e also exhibit

formulas for the pion masses including strong interactions, which however we can not evaluate.

I. INTRODUCTION

The idea of pions as pseudo-Qoldstone bosons, "
perhaps a unique feature of gauge theory, has re-
ceived much attention. Most notably, the pion
masses are calculable. ' ' Models with pseudo-
Goldstone pions have many distinctive features,
some of which we shall discuss below, But in the
models' studied so far, the contribution of weak
and electromagnetic interactions to the pseudo-
Qoldstone boson masses come out to be too large
(of the order e'm ~') to be the pion masses (mass
difference). In this note we present a model which
contains three pseudo-Qoldstone bosons whose
masses can be of the order of the pion masses
(mass difference). Our model differs from previ-
ous ones in that the pseudo-Qoldstone boson mass-
es are roughly related to the mass differences of
the vector mesons. %e shall henceforth refer to
the pseudo-Goldstone bosons as pions.

It is well known that gauge theories in which the
symmetry is spontaneously broken are renormal-
izable. Because of this property, some physical
quantities are in principle calculable, among
which are the masses of the pseudo-Goldstone bo-
sons. If the scalar potential of a Lagrangian has
a larger symmetry, called pseudosymmetry, than
the gauge symmetry, then certain physical fields
remain massless after spontaneous symmetry
breaking. These are the pseudo-Qoldstone bosons,
which pick up finite and calculable masses in high-
er order. Such a theory offers the following unique
and desirable features.

(a) The sole of the lions. The Higgs mechanism
in gauge theories renders the ordinary explanation
of pions as Goldstone bosons (for example, in the
o model) invalid. Ordinary Goldstone bosons in

gauge theory cannot be pions. But if pions are
pseudo-Goldstone bosons, they pick up masses in

higher-order corrections. The origin of the pion
mass is due to the correction to the pseudosymme-
try, in contrast to explicit symmetry-breaking
terms in nongauge theories (as in the o model).

(6) Hadxonic mass scale. Although many hadron-
ic mass relations have been derived from strong-
interaction symmetries, none of the existing the-
ories of hadrons relates the scale of the hadronic
masses to that of other masses. In renormalizable
theories, if the mass is a calculable quantity, then
the square of the ratio of the scalar-meson mass
to the vector-meson mass can be calculated in
perturbation series. An example is the model of
Coleman and %einberg. ' The mass of the pseudo-
Qoldstone boson is calculable because of the ab-
sence of a mass counterterm; the mass ratio m J
m ~ can be expressed as a perturbation series.

(c) Zeroth-orde~ symmetry. An important fea-
ture of some gauge theories is the zeroth-order
symmetry. Corrections to such a symmetry are
of higher order, and are finite and in general
small, and this might account for approximate
symmetry relations observed in nature. In order
to have pseudo-Goldstone bosons, the scalar po-
tential must have a symmetry larger than the
gauge symmetry. Such a symmetry (the pseudo-
symmetry) is a zeroth-order symmetry. The
pseudo-Goldstone pions are the consequence of
the pseudosymmetry.

(d) Partial consexz~atzon Of axial-vector c~xxent
(PIC) in gauge theory. The pseudo-Qoldstore
pions are massless in zeroth order. Thus, natu-
rally, to first order the relevant axial-vector cur-
rent has a massless pion pole. Picking up the pion
pole we obtain the soft-pion result. It should be
emphasized that the soft-pion result is obtained
not because the chiral SU(2) SSU(2) symmetry is
a good symmetry as ordinarily interpreted for the
soft-pion calcula. tions using PCAC, but simply due
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to the fact that the pion mass vanishes to first or-
der in perturbation theory. The success of the
soft-pion result could be taken to mean that the
first-order approximation works so well that high-
er-order corrections are in fact small. Note that
if the pion is not a pseudo-Goldstone boson, it
need not be massless in zeroth order, and in this
case something other than the perturbation argu-
ment is needed to justify the use of PCAC or the
smallness of the pion mass. Thus, we note that
the success of the soft-pion mass differences of
Das et al. ' can be easily understood if pions are
pseudo-Goldstone bosons. Furthermore, higher-
order contributions to pion masses (on mass shell)
are finite, thus resolving the old problem of the
divergence of on-mass-shell pion mass differ-
ences. This last point in (d) has not generally
been noticed.

The above four points are our motivation for in-
vestigating the pseudo-Goldstone boson problem.
The outline of the paper is as follows: In Sec. II,
we give the formulas for the pion masses and mass
differences. In Sec. III, the model is presented
and the pion masses calculated. In Sec. 1V, we
give a concluding discussion. Some mathematical
details are given in the Appendix.

II. THE PION MASS FORMULA

While previous attention has been directed to
pseudo-Goldstone pions in gauge theories of weak
and electromagnetic interactions or of strong in-
teractions separately, it is essential to take all
three basic interactions into account. In other
words, if one has a gauge model of weak and elec-
tromagnetic interactions which contains pseudo-
Goldstone pions, one must ensure that incorporat-
ing strong interaction does not spoil the calculabil-
ity of the pion mass. The problem arises from the
fact that pions are strongly interacting particles.
Thus the strong interaction, if not properly incor-
porated, may require mass counterterms in order
to preserve renormalizability, which would make
the pion mass uncalculable. To avoid such coun-
terterms the potential with pseudosymmetry should
be the most general one, with respect not only to
the weak and electromagnetic interactions but the
strong interaction as well. From parity consider-
ations, it was previously noted' that the strong
gauge symmetry should be neutral to the weak and
electromagnetic gauge symmetries, which suggests
that it should be U(l) or "color" SU(3). If the
(most general) potential has a pseudosymmetry
with respect to the weak and electromagnetic gauge
group, and is also color-invariant, then we see
that the pseudo-Qoldstone boson mass is finite and

calculable.
Let us recall the origin of the pseudo-Goldstone

pion masses. We have a Lagrangian in which the
scalar potential has a larger symmetry G than the
gauge symmetry G. When G is spontaneously bro-
ken to a subgroup S, G is correspondingly broken
to S. With each generator in G not in S, there is
associated the unphysical Goldstone boson which is
transformed away. Corresponding to each genera-
tor in G, not in S, and also not in G —S, there is
associated the pseudo-Goldstone boson. Since G

is a zeroth-order symmetry, the pseudo-Gold-
stone boson remains massless in zeroth order.
Higher-order corrections due to pure scalar-me-
son exchanges do not contribute to the pion mass
since the scalar potential is G-invariant to all or-
ders. With respect to the G-invariant potential the
pions are like the ordinary Goldstone boson, which
remains massless to all orders. To phrase it dif-
ferently, if G were the symmetry of the total La-
grangian, then after the spontaneous symmetry
breakdown the pions remain massless to all or-
ders. Thus the pion masses come from interac-
tions which do not respect G symmetry (higher-
order corrections). The strong interaction alone
being neutral to G, is G-invaria, nt to all orders.
But the interactions of the weak and electromagnet-
ic gauge mesons and the Yukawa interaction need
not be G-invariant, and in general they will con-
tribute to the pseudo-Goldstone pion mass. For
most interesting cases, the Yukawa interaction is
also G-invariant, it then does not contribute to the
pion mass (at the one-loop level). We shall not
discuss it in this note.

At the one-loop level, the calculation has been
carried out by Weinberg' for any group and repre-
sentations and for arbitrary gauge. The result can
be most easily illustrated by using the Landau
gauge. The propagators of the vector mesons A.

„

and the scalar mesons P,. in this gauge are given
by

'gvv kvkv/0
y2+~ 2

g@, I

A' +M;

where p. and M; are the masses of A„and (t);.
There are four diagrams, shown in Fig. 1, which
contribute to the pseudo-Goldstone pion ma. sses.
Their contributions are as follows:

2 2(A, A) 2(A, 4) + 2(&) + 2(T)

where B denotes the quantum numbers of the pseu-
do-Goldstone pions, and
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where gB„B,gB,.„,gBB«e and f», are the cou-
pling constants of the interaction terms /~A "A8„,
8„$8$&A",$~$3A "A „,and Q~Q~Q, , respective-
ly. We then find

FIG. 1. Feynman diagrams for the scalar self-energy.
(Here dashed lines refer to scalar fields, wavy lines
refer to gauge fields. )
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We can easily check the above formula with Weinberg's result which can be written as

AB (P Ul )AB e

where

q'„,=- -(e,~),(e„~),,

fl„,=, --,'(e„~),((e., e,}~),{e,», ((e„,e,.}», d u(4u'+q )-2'„„('+q')-',
„

~ —,'(ee)((e„ejeee,f 4'e(e* ~ e)-'.e ~ !e(e„,ege)((e„,eejee, f 4'eee ~ ee-'. e . He

where A.; are the vacuum expectation value of the
real scalar fields, 8 are antisymmetric and Her-
mitian matrices of the generators in the (real)
scalar space. Capital A, B denotes the axes which

project out the pseudo-Goldstone boson subspace
and repeated indices are summed over. In the rep-
resentation of physical particles (with diagonalized
mass matrix), one finds that Egs. (l) and (2) are
the same, with the aid of the following relations:

electromagnetic gauge symmetry is color-singlet,
then the scalar potential with the pseudosymmetry
is the most general gauge-invariant one within the
pseudo-Goldstone pion sector. The pion mass to
first-order perturbation in the weak and electro-
magnetic coupling constants is again given in Fig.
1. Therefore to all orders of strong interaction,
we can use current algebra and write

g...=-,'-(e, ~), (( e., e,}»,/I ~. I,

g....-=-(e.A);(e.'e.A);/I ~. I,

(5a)

45b}

2m ee
—

(2 )4 g~

x d'xe""(~ Tg~„(&}~,(O}) ~),

Q fBB,g, ./&, '=-(eB'~);(e'&);/iuB I', (5c)
a, g

where
I pB I

= I -(eBX),(eBA), J'", and a, P correspond
to indices of the diagonalized vector mesons. Eq.
(5) can be easily checked from Ref. 2.

As we discussed before, if strong gauge symme-
try is U(l) or color SU(3), whereas the weak and

(6)

where g is the weak and electromagnetic coupling
constant defined by

Z,„,=gg A„j„,
a

and j„is the hadronic current coupled to A„.The
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essential element in obtaining Eq. (6) is that the
strong interaction does not generate infinite cor-
responding to the mass counterterm of the pseudo-
Goldstone pions, thus the pion mass including all
orders of strong interaction should be finite.

III. THE MODEL

We shall consider a SU~(2) 8 U(1)8 U(1) gauge
model for weak and electromagnetic interactions.
We have an extra U(1}gauge symmetry as com-
pared with the Weinberg SU~(2) 8 U(1} model. ' As
expected, many properties will be the same as in
the %'einberg model, but there are two differences:
(1) Because of the extra U(1) gauge gluon, the neu-
tral currents are diff'erent in this model than in
Weinberg's case, since the fermions can couple to
the two neutral vector gluons arbitrarily. The neu-
tral current induced process will have a different
amplitude, which is more flexible than in the
Weinberg model. (2} In the SU~(2}8U(1) model,
one cannot incorporate the pseudo-Qoldstone pi-
ons. ' But in the SU~(2)8 U(1)8 U(1) model, the
(doublet) representations can be unlocked, by re-
quiring a discrete symmetry, namely, charge con-
jugation invariance. As a result, the scalar po-
tential has a pseudosymmetry, which gives rise
to three pseudo-Goldstone bosons.

%e shall not go into the fermion sector, since
the couplings of the fermions with the physical
gluons follow easily from the spontaneous symme-
try breakdown discussed below. For the purpose
of calculating the pseudo-Goldstone boson masses,
we shall only discuss the scalar Lagrangian. Let
g be the SU~ (2) gauge coupling constant, and for
simplicity, we have the same coupling constant g'
for both of the U(1) groups. " We have three dou-
blets of spinless mesons,

i m'+ m' irI'+rr'

with the following gauge-invariant Lagrangian:

g =-,' I(s„ig~.A„"-fg'B„)y-I'
+k l(s„ig&,A„--&a'C„)q I'

+i~ I(& q
—f47~A"„-ig'C„))I'+P(P, y, ]),

where A '„,n = 1, 2, 3, and B„,C „arethe SU~ (2)
and U(1}8U(1) gauge vector mesons, and P(P, t), $)
is the scalar potential. & The Lagrangian is like the
cr model, with the field a +in 7, Z+iTI T, and

Q, +i Q "r transforming like (-,', —,') under chiral
SU(2)8 SU(2) symmetry. We have only gauged the
left-handed SU(2) symmetry. If we turn off the
weak and electromagnetic interaction, the above
2 is chiral SU(2)8 SU(2}-invariant with the dis-
crete symmetry imposed below. " The isospin
and parity of the (pion) fields are defined as in the
rr model. This point is relevant, if pions are go-
ing to have strong interactions also. The color
SU(3) strong-interaction symmetry will be dealt
with in Appendix B. But as far as the masses are
concerned, we can forget it at present.

Let us first of all see the pseudo-Goldstone bo-
sons in the model. %e impose a discrete symme-
try, namely, a special charge-conjugation invari-
ance on the Lagrangian, which plays a crucial
role. The Lagrangian invariant under the discrete
symmetry is also renormalizable, if it has the
most general (quartic) polynomial which is gauge-
invariant but also discrete-symmetry-invariant.
In Eq. (7) one notes that the field P couples to B„,
whereas g and E, couple to C„,in such a way that
the covariant derivatives are invariant under the
following charge-conjugation transformation:
P- (~,)P*, B„-B„In-the s. calar polynomial,
terms like (PP), (P$), and so on are not charge-
conjugation-invariant. Therefore by imposing the
charge-conjugation invariance, the most general
gauge-invariant polynomial is a function of @', P,
$', and g ~

E, only. " As a result, the polynomial
has a pseudosymmetry, namely, it is also invari-
ant under separate SU(2) transformation on P, and j
or on &jr and $ together, i.e., G = SU~~(2) 8 SU~~ '(2)
8 U(1) 8 U(1). The gauge symmetry G =SU~(2)
8 U(1)8 U(1) is spontaneously broken to a subgroup
S=U(1}, i.e., the electromagnetic gauge; corre-
spondingly G is also broken to S =U(1). Thus we
have G —E —(G —S) =3 pseudo-Goldstone bosons,
where in this equation G is defined to be the num-
ber of generators of the group G, etc.'

Let the vacuum expectation values of the fields
be (P, ) =X, (cr) =o, and (Z) =Z. The symmetry
is spontaneously broken to the electromagnetic
gauge, with the photon

A„=, „}„,(g'A'„+gB„+gC„). (8)
1

2g +g

The charged vector meson has mass

The other two neutral vector mesons are also
massive. They can be expressed analytically, if
we set A.

' =o'+Z~. In general, the vacuum expec-
tation values are unrelated, but in order to carry
out the calculation analytically, we shall assume
this relation holds without changing the qualitative
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features of our model. %e then get mz'
= (2g'+g"))P, where

1 I

andm~' =g")P, where

1X„=~2 (Bq -Cq). (10)

(XP'+(cr}v'+(Z)II'), i =1+i2, 3

(-~y'+ (o )o +( Z }Z),

and the three pseudo-Qoldstone pions are

Note that our definition of g and g' [in Eq. (7)] is a
factor of 2 smaller than the ordinary gauge cou-
pling constants. The electric charge is given by
e = 2gg'/(2g'+g ")"'and Q =-,'I~ + Y, where 7 is
the sum of hypercharges corresponding to the two
U(1) groups.

It is straightforward to find that the four Gold-
stone bosons are

the physical gluons, 8"„,Z„,X„,and the photon,
and in terms of the pseudo-Qoldstone pion fields,
or be evaluated by using Eq. (5). The latter meth-
od is simple, once the representation of the gen-
erators in Eq. (5) is specified. The details will
be presented in Appendix A.

(i) Mass of the neubal pion. We find by the use
of (5a) that the coupling of v' with any two vector
mesons is zero; thus the two-vector-meson ex-
change diagram (Fig. 1) does not contribute. We
have checked this by direct calculation from the
Lagrangian (7). The four-point vertex (5b) is non-
vanishing for (v')'W'„W„,(v')'Z„Z„,and
(v ')'X„X„withcoupling constants g,o„ov.v- =g',

2 1 i2 1 r2 ~

g~offozz =g + pg 2 and g1}.Q~Ogg = 2g 2 which one
can also easily check from the Lagrangian (7).
But its contribution (i.e., m" "') is exactly can-
celed by the tadpole term (m'~r'). One can see
this point from Eqs. (5b) and (5c), where the two
equations are equal but opposite in sign if 0 ' com-
mutes with 9e (here 8 = v', note that 9 is antisym-
metric). Thus, we find m „o'=0 at the one-loop
level (and f = 0).

(ii) Mass of the cha~ged Pion. The only nonvan-
ishing contribution of m, ~'{""~comes from 8'-
and X-exchange diagram with

1
v',&„.= ~

(-Zy'+(o)v'+(Z}ll'),
g~+sx = 288 ~y (13)

i =1+i2, 3 (12)

where X' =(o)'+(Z)'. One recalls that pseudo-
Goldstone bosons correspond to generators of the
pseudosymmetry group (but not the gauge group).
This is evidenced by the different sign in Eq. (12),
which corresponds to SU)(2)S SU~~ ~(2) transfor
mation as compared with gauge transformation,
which acts on all fields simultaneously [as in Eq.
(11)]. This point will be clearly seen in Appendix
A, which is patterned after Ref. 2.

To calculate the pseudo-Goldstone pion masses
at the one-loop level, we use Eq. (1) [or (2)].
(Here the strong interaction is turned off, setting
the strong coupling constant, which we call f,
equal to zero. ) The coupling constants in Eq. (1)
can either be calculated directly by expressing
the interaction Lagrangian [Eq. (7)] in terms of

2{AA) 4 2 t 2)23i
me& —

(2v)4 g 8

d k
1

(k'+mv')(k'+mr') '

m, ~""' has a contribution from Z exchange, X ex-
change, and photon exchange, with coupling of the
four-point vertices as follows:

2
811 f) W'+W g

(2g' -g')'
A mzz 2(2&2 +&a) i

l 3
8~ffxx =8

2+

%e have

Equations (13}and (1.4} can be checked directly from Lagrangian (7}. Similarly, the tadpole term has non-
vanishing contribution from Z and X. We find [Eq. (5c}]

2' j k +ygz + mg k +m~
(15)
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Summing up the above contributions, we have

=0= 4'" O'A
1

(2»}' (k' + m ')(}t' + m ')

m ~' lnm ~' —m~' lnm~' 2 4m p'—lnm z' =
mw x z'

10 'cos'0 sin'6}
e'

where the mixing angle is defined by g' j2g =tang.
Expressing the masses in terms of the mixing an-
gle, one has

1+e' d k— (16)
10-'

cos'(9 ln cos26}—sin'0 ln sin'{9 = sin28 cos'9
e

x (c os'8 —sin'9) .
We see that the quadratic divergence and logarith-
mic divergence cancel; we have a finite integral,

mz2
m, ~'(f =0) = ——

4m 2m 4

m ~' lnm ~' —mx' lnmx'
X

2 2
- lnmz

mar mx

(16')

The last term in the parentheses makes this model
different from previous ones. Without it, the mass
will be too big to be interpreted as the pion mass
or mass difference.

Higher-order corrections to the pion masses,
including the 7I', will presumably be nonzero. Un-
less vr

' is associated with an additional global
symmetry which requires it to be massless to all
orders (which we do not find here}, »' will pick up
mass by the very nature of pseudo-Goldstone bo-
sons. It should be noted that a next-order correc-
tion of form g'm ~2 will be of the right order of
magnitude for the pion mass. Next, we shall in-
clude the effects of strong interactions in the pion
mass formulas, and from the analysis below, it
will be seen that the isospin breaking in this model
is of the order e'. In view of this, (16') should be
interpreted as the lowest-order contribution of
electromagnetic and weak interactions to the pion
mass differences. Our result is satisfactory in
that this contribution is not too large as is the
case in other models. ' Since hm, '= e'(3/2v)m~',
we have

We note that if the mixing angle is (near) 0 or &)

the pion mass difference is (near} zero. It should
be noted that the mixing angle is different from the
Weinberg angle and the neutral current in this
model (which measures the angle) is different from
that in the Weinberg model.

A remark: Suppose we treat the second U(1)
gauge symmetry as the strong-interaction gauge
group, where C„is the strong vector gluon. Then
we have the Weinberg model for weak and electro-
magnetic interaction and an Abelian gluon for the
strong interaction. The strong U(1) group should
presumably be characterized by a different cou-
pling constant than g, but we expect that the quali-
tative features will not be changed. From the pre-
vious section, we should expect no pure strong in-
teraction contribution to the pion mass, and this
is checked from E(l. (16) where diagrams with X-
meson exchanges alone do not contribute. If the
strong-interaction gauge symmetry is non-Abelian,
[e.g. , color SU(3)], then gauge invarianee (color
conservation) prohibits diagrams with one weak
vector-meson and one strong vector-meson ex-
change. On the other hand, for Abelian strong
gauge symmetry, this is allowed [i.e. , W-meson
and X-meson exchanges in E(l. (16)].

How to incorporate color SU(3) gauge group in
the present model will be dealt with in Appendix B.
The crucial points are: (1) The pions are pseudo-
Goldstone bosons even in the presence of strong
interaction; (2) the pions interact strongly also.

Let us now turn to the pion masses including all
orders of strong interaction. Using E&l. (6) we find
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J~ & (&)J ~" "'("(T'(&l( )&:(o)&l' )

+pg d kD~~ l2 4 xe 7T T+ g„xgq 0)

+e' d'A~"„, A d xe"" m' T*(j '„(xj; 0 ) m' (18}

where s"„,(2 =W, Z, X, and photon) is the propa-
gator of the vector meson A. , j" is the associated
current and so on. The strong-interaction effect
is represented by T* product of the currents, mith

the lowest-order weak and electromagnetic cou-
pling constants given by the Lagrangian (7). The

coupling constants [in (17), (18)j are the three-
point vertices g, ~„'(&f) the exchanged meson) or
the coefficient of the seagull term, i.e., g„»,
mhich were given before.

Since —2(2g'-g")'/(2g'+g') =-2(2g'+g") —e', we

see that the pion mass difference is given by

=
(&

~ Jd &~,. J
~'*~"'("lT'&&l ( ))' ()))l" &

d'kA~, d'xe' "
m T(j „xj ~(x ) ~') (19}

which has the same form" as in the Weinberg mod-
el where pions are not pseudo-Goldstone bosons.
In the soft-pion limit, the first term seems to
dominate, "which is the result of Das et al. ' One

could evaluate the pion mass itself as mell in the
soft-pion limit. The evaluation of the spectral
function becomes a problem, since low-lying pole
dominance seems unwarranted.

From (19), we see that the pion mass difference
is characterized by the square of the electromag-
netic coupling constant e'. We have neutral pion
mass m, o' = m, &' -am „'as given by (17). The
neutral pion mass need not be too small; the value
depends on the evaluation of the spectral functions
as we have commented above. In this model, as in
the Weinberg model, the isospin breaking is of the
order e', which can also be seen directly from the
mixing of the SU(2) and U(1.) gauge gluons. " In

comparison, the isospin breaking in some other
models' need not be of order e', which would pre-
sumably spoil the result of Das et al. '

IV. DISCUSSION AND CONCLUSION

We have generalized the Weinberg SU~ (2)8 U(1)
model by introducing an additional U(1) group. By
so doing, one notes the following: (1) The model
has more flexibility, since tmo neutral vector me-
sons can be exchanged. If experiments should turn
out not to agree consistently mith the Weinberg
model, an additional gluon exchange will be the
most simple and natural explanation. (2) The mod-
el has three pseudo-Goldstone bosons if one im-

poses a charge conjugation invariance as specified
before. (3) The masses of the pseudo-Goldstone
bosons are given by functions of the masses of the
gauge vector mesons which can be made small by
properly restricting the mixing angle of the cou-
pling constants. The pseudo-Goldstone boson
masses in models studied before turn out to be re-
lated to the masses of the gauge vector mesons,
which will be an order of magnitude too large to be
pion masses. The present model does not have
such a drawback. We identify the pseudo-Gold-
stone bosons as the pions.

One notes that the pseudo-Goldstone boson mass-
es have no contribution from the scalar-meson ex-
change diagrams. Thus at the one-loop level we

are able to write the masses in terms of time-or-
dered products of vector or axial-vector currents
(corresponding to vector-meson exchange). On the
other hand, if pions are bound states of quarks,
then there is no a priori reason mhy the scalar
current contribution (corresponding to scalar-me-
son exchange) is small or not present. Since one
lacks knowledge about commutators involving sca-
lar currents, this presents an obstacle to the eval-
uation of the pion mass by the use of current alge-
bra, .

In the study of PCAC and symmetry breaking of
strong interactions, one recalls that the v model
with Goldstone pions has proven to be very useful.
We hope that the study of the idea of pseudo-Gold-
stone pions will shed some. light on the origin of
the pion mass, and may be helpful in the bound-

state model of pions.
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APPENDIX A

In this appendix, we evaluate the coupling con-
stants by the use of Eq. (5). We note that Eq. (5)
is defined (see Ref. 2) by grouping all the real sca-
lar fields as a. big column matrix, and 6 are the
real representations of the generators times the
coupling constants acting on the big column matrix;
~ is the vacuum expectation value of the column
matrix. One of the (equivalent) real representa-
tions of the 7 matrices can be written as

which satisfy the algebra 6, 6, = i2e...6„i, j, A

=1, 2, 3, and [ 9,, 9,] =0. The corresponding scalar
fields can be represented by Pr = (-P', P', P', P'),
q'=(-~', w', ~', o), and ~'=(-ll', ll', ll', Z).

Writing all scalar fields as a big column matrix 4,
where q r = (p r, gr, $ r), the Lagrangian (7) can be
written as

& =
2 I (8 p

—~9„A„-i9~B„—i 9cC„)@~

'

+potential,

6 =g 6„~,~=12 39„j

0 0 0

0 0 -i 0

0 i 0 0

-i 0 0 0

0 i 0 0

-i 0 0 0

0 0 0 -i
00 i 0

p 62

60=

0 0 -i 0

0 0 0 -i
0 0 0

0 i 0 0

Oi 00
0 0 0

0 0 0 i

L 0 0 -i 0

(A1)

6c =a'

In order to use Eq. (5), we need to find out the
representation H„corresponding to the physical
vector mesons A, where A =W', W', Z, X, and
the photon A. The 6„'sare defined by

Q 9„A„—= Q 9~2"„+~9B„+ 8c„C.

By the use of Eqs. (8)-(10), we find

i =1, 2

RC
(2g'+g")'"

~

63+ 6o

63+ 60

1
62 ~2(2g2 +gt 2)1/2

-2r'63+a" 6o

2g26 +gf 26

2@26 +g l 26
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Since &
4' r ) = (0, 0, 0, X; 0, 0, 0, o; 0, 0, 0, Z), we im-

mediately find that the mass matrix is diagonal
with masses given before, namely,

= (2g'+g" }x'

+/ 2'

where we use 0 ' +5' = ~'.
The last thing we need to know is the projection

operator of the pseudo-Goldstone bosons, defined

by

v»», .=+;(es & q &);/I Iis I,

wh~~e
f ps f

=- [-(eii & e & ),(eii & e &), j'". From Eq. (12),
we find that

of the minus sign. From Eq. (11}, one can easily
check that the real Goldstone boson projection op-
erators belong to the gauge group.

Using (Al)-(AS), Eq. (5}can be straightforward-
ly calculated. We find that the only nonvanishing
coupling constant of (5a) is the w'WZ vertex, as
given by (13). The nonvanishing four-point ver-
tices (5b) and the tadpole contribution (5c) are giv-
en by (14) and (15), respectively.

APPENDIX B

In this appendix, we shall give an example in
which the pions interact strongly with the color
vector gluons, but remain as pseudo-Goldstone
bosons. The model consists of two doublets (I) and

g which have no strong interaction as given before.
In addition we have three scalar representations
which transform as doublets with respect to SU~(2),
and triplets with respect to the color SU(3) gauge
group,

i(n'),
„

i(n' },„ i(n'), ,
(z —in'), „(z—in' ),„{z—m'), ,

8=1,2, 3. (A3)

It is clear that gs belongs to the group SU (2)
8 SU '(2), but not the gauge group SU(2), because

i=1, 2, 3

where SU(2) indices are labeled by column and the
color SU(3} indices are labeled by row. M" trans-
forms as a triplet, i =1, 2, 3, with respect to a
global color SU'(3) group, where P, g are singlet.
The gauge-invariant Lagrangian is

Z =l l(a„—iver A"„-ig''a,}y I'+i l(s„-ig».A"„ig'C„)q-I'

+ g —,
' Tr ~s „M'- igr A „M'- ig'C„M' -i fM'(ABV„)~'+potential,

where A,„,B„,C„arethe weak and electromagnetic
gauge mesons, V„the color gluons, with g, g',
and f the corresponding coupling constants. We
see as before the gauge-covariant derivatives are
inva, riant under the charge conjugation p- T,(t)*,8„--8„.Thus by imposing the above discrete
symmetry, the potential has a. pseudosymmetry,

G =ST~(2)@SUE~'" (2)8 U(1)S U(1)3SU (3)

as compared with

G =SUi (2)8 U{I) U(l)S SU (3).
The color SU(3) is completely broken, by assigning
vacuum expectation values ( p; &

= X, (o) =o, & Z;, )
=25,i, with m»' = f'Z'. The masses of the weak

gauge mesons are given as before by replacing Z'

by 3Z'. The pseudo-Goldstone pions are again
given by (12) with II' replaced by (I/v 3 )(II'„+II'»

+II'») and (Z ) replaced by M3& Z ) (note that A' =o '
+Z' is replaced by A.

' =c'+3K'}. As discussed be-
fore, the color-gluon exchange does not contribute
to the pion mass at the one-loop level. Indeed,
one finds that the coupling constants for pseudo-
Goldstone pions with the weak gauge mesons are
the same as before.

We note that the pions are not singlet with re-
spect to the color SU(3) group and thus interact
strongly with the color gauge gluons. But the pi-
ons are singlet with respect to the color group
SU"(3) consisting of the generators (p I I+18p'),
where p and p' are generators of the color SU(3)
and SU'(3) group. In this model, the classification
of the hadrons should go by the SU"(3) group. The
parity and isospin of the pions are classified by
the chiral SU(2}8 SU(2) group, which is an exact
group of the strong interactions.
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