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For gauge theories mth perturbative spontaneous symmetry breakdown it may happen that the
question of CP invariance is solely settled by the structure of the quantum corrections to the classical
scalar potential. It is shown that this can occur if and only if there exist spinless bosons which are
massless in the tree aproximation and which are non-Goldstone modes. This can be achieved in g

natural way (in the technical sense) if an accidental symmetry is present. The general theorem is
illustrated with a few formal examples, some of which yield CP invariance and some CP violation.
Our theorem also implies that if the leading radiative corrections opt for CP invariance, then the
theory is CP-invariant to all orders. Our examples further reveal the possibility that some gross
features of the particle spectrum may also be solely determined by quantum eNects.

I. INTRODUCTION

In this paper we comment on interesting sug-
gestions made by Zee' and by Mohapatra. ' They
conjectured that in a theory which is CP-conserv-
ing in the tree approximation, the radiative cor-
rections might induce a spontaneous breakdown
of CP invariance ("conjecture A"). Zee also
suggested' the possibility the the CP properties
of the theory are not determined in the tree approx-
imation so that radiative corrections are nec-
essary to settle the question of CP invariance
("conjecture 8"). It is the purpose of this paper
to examine these conjectures in the context of
gauge theories in which the spontaneous break-
down is perturbative. By this we mean that the
symmetry breaking vanishes in the limit of small
coupling constants. Vfe shall show that conjecture
8 can then be realized but only if in the tree
approximation there exist massless scalar fields
other than Goldstone bosons.

Thus, in order to pursue further the conjectures,
we must ask how spinless particles can occur
which are naturally' massless to zeroth order.
One way to realize this is for the theory to possess
an accidental symmetry, ' in which there are
pseudo-Goldstone bosons which are massless in
the tree approximation. Because of the accidental
symmetry the physical content of the theory is not
completely determined by the tree approximation.
More specifically, in the theories we discuss,
the radiative corrections solely determine whether
the theory is CP-conserving or not. Vfe will
exhibit in Sec. III a class of models which illustrate
these points and realize conjecture B. In these
models, the radiative corrections also determine
the gross features of particle mass spectra and

we are led to realize a potential new source of
natural' mass relations.

%'e will next prove in Sec. II our assertion for
a general symmetry operation.

II. A GENERAL THEOREM

Consider a field theory involving a set of real
spinless meson fields Q~. If this theory is invari-
ant under a symmetry in the tree approximation
then V(P), the tree approximation to the effective
potential (which is just the classical potential)
satisfies V(P) =V(UP) where U is an orthogonal
matrix describing the effect of the symmetry
transformation on the scalar fields. ' Suppose that
the zeroth-order vacuum expectation value is con-
sistent with the symmetry. That is, if the mini-
mum of V(ft)) occurs at p =A. , then we must have
U~ = ~. Now radiative corrections will modify the
effective potential by some function 5V(p). It is
clear that this correction again satisfies 5V(Ug)
= ()V(p). In general, this will induce a change 5X

in the vacuum expectation value of p. We want to
determine under what conditions 5~ also satisfies
U5A. = 5k. , since it is precisely these conditions
which we wish to evade.

The derivative of the exact effective potential
at the true vacuum expectation value must vanish,
so we have

(V+ 5V)i (A. + OX) = 0,
where we use the notation

y(y) —p (y}

Now assume that the change is perturbative in the
sense that 5A. goes to zero as 5V goes to zero.
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Then we can expand Eq. (I) and write

O=V {X)+gV (X)5X +5V (A}+ ~ ~ ~

where are of higher order in small quantities.
But V~(A.}= 0 because Q =A. is a minimum of V(Q),
so we have

g V„(X)5Z, + 5V, (~) = 0. (2)

Now suppose F(UQ) =&(Q). Differentiating we find

I ~ ~ ~ k

and in particular for Q =A.

Q V)» (A.)U, D., +5'(A.) =0. (4)

Subtracting Eq. (2) from Eq. {4), we derive

g V„(~)[(U5X), -5},]=0.

Now if there are no massless scalar-meson fields
in the tree approximation, V» (X} is a nonsingular
matrix and we can invert Eq. (5) to obtain UN.
=OX. This result is still true if there are Gold-
stone bosons in the tree approximation. Goldstone
bosons are associated with the spontaneous break-
down of a continuous symmetry, and by a symme-
try transformation 5~ can be chosen orthogonal
to the Goldstone-boson subspace. {See Appendix. )
This completes the proof.

For the special case of a continuous symmetry,
this theorem was proved by Georgi and Glashow. '
In this case its interpretation is obvious. Consider
the theory including radiative corrections. If the
symmetry has been broken spontaneously there
are Goldstone bosons. Now imagine turning off
the radiative corrections. The spontaneous
symmetry breaking in the form of the vacuum ex-
pectation value of a scalar field goes continuously
to zero, because it is perturbative by assumption.
But the Goldstone bosons remain until in the tree
approximation we are left with an unbroken sym-
metry and massless scalar bosons which are no
longer Goldstone bosons.

The case of a discrete symmetry is more subtle
because its spontaneous breakdown does not imply
the existence of Goldstone bosons. Nevertheless,

F, . . ., (~)= P U„,," U»„;„+», »„(X),
k ' k8

{3)
because Uk =i%.. Combining Eqs. (2) and (3) and
using the orthogonality of U, we find

the formal arguments given a,bove apply to this
case as wel1. . The key is the assumption that the
spontaneous symmetry breaking is perturbative.
This assumption is justified in practice because
we must calculate perturbatively in a loop approx-
imation or some other such scheme, and if the
symmetry breaking is nonperturbative there is no
guarantee that it will not change drastically from
one level of approximation to the next. '

This theorem is something of an embarrass-
ment as far as both conjectures are concerned.
Extraneous massless scalar-meson fields in the
tree approximation are usually both unnatural'
and unwelcome. ' There is one well-known situa-
tion, however, where such fields appear naturally;
that is when the model has an accidental sym-
metry. '

A field theory is said to have an accidental
symmetry when the symmetry group 8' of the
renormalizable scalar -meson self-couplings is
larger than the symmetry group 9 of the full
Lagrangian. %hen spontaneous symmetry break-
down occurs in such a theory, the scalar fields
which are massless in the tree approximation are
the Goldstone bosons associated with breaking of
O'. Some of these are true Goldstone bosons
associated with the breakdown of 9, but some can
be pseudo-Goldstone bosons which will develop
mass due to radiative corrections. One might
think that conjecture A could be realized in such
a model, but actually the situation is more com-
plicated. The tree approximation only determines
the vacuum expectation value of the scalar fields
up to a 9' transformation. But since the theory
is not invariant under 9', this means that the
physical content of the theory is not determined
classically. Only when radiative corrections are
taken into account does the effective potential pick
out the vacuum expectation value up to a 9 trans-
formation and uniquely determine the physics. In
a theory of this kind it is true in some sense that
the spontaneous breakdown of CP invariance is
due to the radiative corrections, but it is not true
that the theory is CP-conserving in the tree
approximation. In the tree approximation, the
theory has simply not decided whether it is CP-
conserving or not. As we shall see in the next
section, it is possible to construct CP-violating
theories of this type which are explicit examples
of conjecture B. On the other hand, if we insist
on achieving in a natural way the ma, sslessness of
spin-zero bosons in the tree approximation, then
we believe that conjecture A cannot be realized
perturbatively.

For our purposes we have so far only considered
the rather familiar pseudo-Goldstone situation.
We must ask, in addition, whether there are other
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ways in which mass-zero scalars can appear
naturally in the tree approximation. No such
alternatives are known to us.

%'e now describe a class of models which illus-
trate these ideas. %e emphasize that these
models have been contrived to make calculations
of the relevant radiative corrections as simple
as possible, and are not intended to describe the
real world; but the points which they illustrate
are equally applicable to more physical theories.

Before immersing ourselves in the specific
examples, let us briefly outline the general
strategy. Consider a gauge theory with a scalar
field potential

V=V„(y)+ V,. (y),
where V„ is the classical, (tree) part and V,„ is
the quantum (radiative correction) part. Now
imagine that the vacuum expectation values of P
contain an angle j9 which, however, cannot appear
in V„(P), for accidental-symmetry reasons. In
such a situation the extremal condition relative
to 0 becomes

III. ILLUSTRATIVE EXAMPLES

The models are gauge theories with a gauge
group which is a direct product of N SU(2) factors.
Denote the generators of the jth SU(2) by T& which
couple to gauge bosons O', . We also introduce N
four-component scalar-meson fields, Z», , for
j = 1 to N-1 and Z». %e write each of these as
a 2&& 2 matrix satisfying &,Z*7, =Z, so that
Z =a+i&. n where a and m are real. Under the
infinitesimal gauge transformation I+i Q& m& T~,
these transform as follows:

7
5ZfA -s&f '2 Zfk —l&k'Zf

(10}

Thus each 5 transforms like a real 4-vector under
the appropriate SU(2)&&SU(2) subgroup. We demand
invariance under the conventional charge conjuga-
tion operation, 8',". - -W,". , W,'. -8'f', and

Z&f - Z&*f. For simplicity, we also demand in-
variance under the cyclic discrete symmetry:

W-%- ~ ~ -WI 2 N

independently of the classical part. In the case
at hand„6) will be the phase which will settle the
CP properties of the theory. We must now
examine the consequences of Eq. (7) and of
(O'V „ /&6'), „„~0.

Fortunately no great labor is involved. %'e have
only to consult the classic paper of Coleman and
%'einberg. ' They show how to calculate the one-
loop corrections to the effective potential. In the
pseudo-Goldstone case, the contribution of the
scalar-boson loop is irrelevant because it still
has the accidental symmetry. There remain
contributions from the gauge-meson loop and from
the fermion loop, given by

+ [3trM'($)lnM'(P)/M, -'-tr m'(P)in m'(Q)/Mo'],

where M'(Q) and m'(Q) are, respectively, the
vector-meson and fermion mass-square matrices
as a function of the scalar-boson fields and M,' is
an arbitrary mass scale. Equation (8) will have
in general a nontrivial dependence on 8. Again
invoking accidental symmetry, Eq. (7) can now
be written symbolically as

3&M ~ 38M3trM' lnM'-tr pn' —lnm' =0.
86 86

This equation is the starting point for the next
section.

This implies that all of the gauge couplings are
equal.

Now suppose that the Z's develop vacuum ex-
pectation values. %e can use the gauge symmetry
to put them into a very simple form. By a trans-
formation in the second SU(2) group, we can
choose (Z») to be proportional to the unit matrix.
Then by a transformation in the third SU(2) group,
we can choose (Z») to be proportional to the unit
matrix. We can continue this process through
(Z„»), but when we come to (Z»), we cannot
transform it under the first SU(2) group without

disturbing (Z „). However, we can still transf orm
it under the diagonal SU(2) generated by Q,. T, , so
we can diagonalize it. Thus we have finally

1 0('"'" 0 I
for j=l toN —1,

jA 0
(~» )" o,—,e

If all the vacuum expectation values are nonzero,
this is the best we can do.

The physical content of the theory depends
strongly on what value of 0 is picked out. For
0 =0 or n, the theory is CP-conserving, there is
an exact SU(2) gauge symmetry surviving after
spontaneous symmetry breakdown, and there are
three massless vector fields. For 8= w/2 or
3v/2 the theory is CP-conserving but only a. single
massless photon survives. For other values of
0, there is also a single massless photon but the
theory is CP-violating (and C-violating since P
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is always conserved in these simple models).
However, for N& 4, the classical potential is

independent of 8, because the first gauge-invariant
coupling which depends on 6 is tr(Z»Z» .Z»)
which is not renormalizable. The symmetry group
of the renormalizable scalar-meson self-couplings
is a direct product of 2N SU(2) factors, an in-
dependent SU(2)&& SU(2) for each Z. In other words,
there is an accidental symmetry. When the Z's
develop vacuum expectation values, the accidental
symmetry is spontaneously broken [down to SU(2}"]
and there are 3N massless scalar bosons in tree
the approximation. Only 3N-I (or 3N-3 if 6 =0
or s}are true Goldstone bosons of the theory.
The remaining one (or three) are pseudo-Gold-
stone bosons and will develop mass in the one-
loop approximation.

The classical potential depends only on the
magnitudes of the Z fields ((Z~'=o'+s'), and
cannot determine the value of 8 since it is inde-
pendent of 8. So to discover whether these the-
ories are CP-conserving„we must include radia-

tive corrections.
As a first example, let us consider the case

where no other particles are present than the
scalar-meson and gauge vector-meson system
just described. Then the only radiative correc-
tion term to be considered is the M term in Eqs.
(8) and (8). (Note that in this simple case it
follows from our assumptions that the CP issue
is independent of the magnitude of the gauge cou-
pling constant. ) This M term does have a non-
trivial dependence on 6), and to this order, it is
the only one. So the physical value of 8 to lead-
ing order in the gauge coupling will be the 8
which minimizes Eq. (8), with the magnitudes of
the (Z) fixed at their classical values.

To see wh8t happens explicitly, assume that
the parameters in the classical potential are such
that all (Z) have the same magnitude. This will
happen for some region in the parameter space
because of the cyclic symmetry, Eq. (10). Then
we can easily diagonalize the vector-meson mass
matrix. This matrix looks like

-,'p'[(W', -W', )'+(W', -W', )'+" ~ +(W'„-W', )']+ i '(IW', -W,'I'+ IW,'-W,'I'+ ~ + I&"W N-e "W,'I'),

where W'= (W '+i W')/W2. Since only the shape
of Eq. (8) as a function of 6 is relevant, the over-
all mass scale is unimportant and we can set
p,

' = 1. The neutral vector-meson masses are
independent of 8 and are therefore not relevant.
The charged vector-meson mass squares are
2 —2cos[(26+ 2mw)/N] where m=0 to N 1. The-
contribution of these charged vector-meson
masses to the Coleman-%'einberg sum is propor-
tional with positive coefficient to

V,Z;4+7,Z»4. + +V~Z"~,4, + H c.
This is invariant under the cyclic symmetry Eq.
(10) and g, -g,- —g„-g, . Invariance under
the conventional C operation implies that the
Yukawa coupling constant is real. Now there is a
8-dependent contribution to the effective potential
from the fermion loop, namely the m-type term
in Eqs. (8) and (8). In this case, the eigenvalues
of the fermion mass matrix are 2 cos [(6+2m'}/N],
which give a contribution to Eq. (8) proportional to

cos2k8
k(N'k'-1)(N'k'-4) '

(-I)m/' cosk6~ k(X'k' 4)(X'k' 1-6)-
k=y

(12)

for N& 4. This function is obviously minimized at
(9 =0 or n, so these theories pick out a CP-con-
serving solution.

Multiloop corrections will not change this re-
sult. This is clear because we can now regard
the one-loop effective potential as a starting point
and apply the theorem of Sec. II. Since there is
no remaining accidental symmetry and therefore
no pseudo-Goldstone bosons in the one-loop approx-
imation, the theorem implies that there can be
no perturbative breakdown of the CP invariance.

To get a CP-violating solution we must further
complicate the model. We specialize to even
N~ 6 and include fermions in the theory. First,
consider N doublets g& transforming according to
6P& =i u, ~7$&, with Yukawa couplings to the
scalar mesons as follows:

This function has its minimum at either 0 or m

(for %=4/+2 or 4I, respectively) which again is
CP-conserving. But we can also include fermions

P& with Yukawa couplings

4,Z»4 2+ ~ ~ ~ + 4'~-iZN-igpN +Zzi4 i + H.c.

invariant under Eq. (10}and qb, —Q, — ~ .-p&- Q, .
This gives a contribution to Eq. (8) of the form
of Eq. (12) with 6- 6+ w. So if the Yukawa cou-
pling constants for Eqs. (11) and (13) are equal,
the contribution of the fermion loop to the effective
potential is proportional to

cosk8
k(N'k -4)(N k' 16)'-
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which has a minimum at 8 =r/2 or -v/2. This is
still CP-conserving, but if the Yukawa coupling
constants for Eqs. (11) and (12) are slightly
different, the minimum moves away from s/2
and -s/2. If, in addition, the Yukawa coupling
constants are larger than the gauge coupling con-
stant, then the contribution of the fermion loop
will dominate that from the vector loop and the
minimum of the full one-loop effective potential
will be CP-violating. 'o

One reason that this class of models is so easy
to work with is that at least one massless photon
necessarily survives and one can divide the fields
into charged and neutral sets. In more general
(or more physical) theories, this does not always
happen. It may be that the tree approximation
does not determine whether an electromagnetic
gauge invariance survives. The Coleman-Wein-
berg analysis can still be done but it is more
complicated.

In any event, it is clear from our contrived
examples that CP violation can be realized as a
pure quantum effect, due to radiative corrections
in a field theory. This mechanism should be kept
in a mind as a possible byproduct of accidental
symmetry, and as a possible quantum alternative
to arrive at natural values for CP-violating
phases, which so far have been discussed' via
properties of the classical potential.

symmetry group G, let the generators of C on the
scalar system be T';&. Then the potential V(y)
satisfies

Q V'g T';, ~g (&p)=0.

The Goldstone-boson directions are

g',. =i'P T', , X„

satisf ying

Q V, , (A.)g'q =0,

so they are massless in the tree approximation.
Suppose 6~ has a component in a GoMstone-

boson direction. Then we can write

D. = 5A. '+P 5o.'g',

where 5X' is orthogonal to the Goldstone-boson
direction. But under an infinitesimal global trans-
formation

5cp =i g 5u' T' rp,

h.5,„g„g=ig 5n' T'A

AeKNOWLEDC, MENTS

It is a pleasure to thank Sidney Coleman and
Judy Lieberman for useful discussions.

APPENDIX

We show that 5A, can be chosen orthogonal to the
Goldstone-boson subspace.

If the Lagrangian is invariant under a continuous

So the component of 6~ in the Goldstone-boson
direction can be obtained simply by making a
gauge transformation, without any change in the
potential. Then by making the inverse transfor-
mation, this part of 5A. can be transformed away,
leaving ~X' which is orthogonal to the Goldstone-
boson direction.
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