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The class of renormalization procedures with mass-independent counterterms is considered, It is shown

to be nonempty. A11 these procedures, of which 't Hooft and %einberg have given particular examples,
lead to equivalent renormalization-group equations, which can be solved at arbitrary momenta, unhke

the equations in the Gell-Mann-Low and Callan-Symanzik methods. Dimensional regularization is used

throughout, as needed for non-Abelian gauge theories. It is shown how steinberg's method using an
ultraviolet cuto5' extends to one using dimensional regularization. Finally, some calculations in quantum

electrodynamics are exhibited.

l. INTRODUCTION

steinberg' and 't Hooft' have recently produced
new methods for the analysis of the large-mo-
mentum behavior of Green's functions. These
methods are simpl, er and more powerful than the
usual Gell-Mann-I ow' and Callan-Symanzik"
methods.

In all of these techniques, there is an equation
that governs the behavior of the renormalized
Green's functions under scaling of the external
momenta. Now the equation in the Gell-Mann-I ow

approach' is homogeneous, but has coefficients
that each depend on the coupling constant(s) and
on the mass(es). On the other hand, the coeffi-
cients of the Callan-Symanzik equation each depend
on the coupling constant only; however, the equa-
tion is inhomogeneous. So in either case, the only
way to obtain an explicit solution is to approxi-
mate, and this is done by assuming a situation
where the mass(es) can be neglected —at asymp-
totic nonexceptional spaeelike momenta.

The ideas of 't Hooft and Neinberg depend on a
closer analysis of the infinite parts of the renor-
malization constants. It is these parts that give
the "noncanonical" sealing of the Green's func-
tions. Their methods use the fact that these in-
finite renormalizations can be taken to be inde-
pendent of mass. All other renormalizations (e.g.,
to mass-shell or to zero-momentum values) are
irrelevant for the discussion of scaling.

%'einberg defines the renormalization constants
at zero bare mass, awhile 't Hooft uses the power
of the method of dimensional regularization to
put (essentially) numerical values on the divergent
parts of Feynman integrals. In either case, the
result is an equation like that of Callan and
Symanzik, but without the inhomogeneous term.
Instead, there is a homogeneous term that gives
an "effective mass" in the solution in addition to

the usual "effective coupling constant. " The so-
lution applies at all momenta, including nonasymp-
totic timelike momenta.

The main aim of this paper is to show that these
new methods are special cases (though probably
the most convenient) of a general class of renor-
malization prescriptions each giving an equivalent
renormalization-group equation. Vile show by a
simple proof that the mass-independent procedures
can indeed remove all the infinities of perturbation
theory. %einberg only sketches a proof, ' and its
completion would probably be complicated.
't Hooft's proof' requj. res the egamjnation of a,

complicated set of differential equations, and the
structure of the argument is not completely trans-
parent.

In doing this, we show the close relation between
't Hooft's and Neinberg's procedures, despite the
immense difference there seems to be when read-
ing their expositions.

These general arguments occupy Secs. II, III,
and VI.

The main application of the methods is likely to
be to non-Abelian gauge theories, and there the
most convenient method of regularization is that
of continuation in the dimension of space-time.
So we use this method throughout. %e find in
Sec. IV that %einberg's procedure, which uses a
momentum cutoff, translates naturally into one
using dimensional regularization.

To show how all this works, we give in Secs. V
and VII one-loop calculations for quantum electro-
dynamics in the two methods.

Owing to infrared divergences, it is not possible
to use Neinberg's method in scalar theories.
However, as 't Hooft notes, ' these divergences do
cancel. It thus follows that a mass-independent
renormalization procedure does exist even for
scalar theories. A detailed exposition of this is
contained in the following paper. '
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II. MASS-INDEPENDENT RENORMALIZATION

For simplicity, we will consider a theory with

only one coupling constant, g, dimensionless in
four dimensions, and one mass. The Lagrangian
has unit normalization for the kinetic-energy terms
and has bare parameters g~, w~. The dimension
of space-time is &, and unrenormalized Green's
functions are obtained in perturbation theory for
each n by using the rules for evaluating n-dimen-
sional integrals given for example in Hefs. 8 and
9.

The Green's functions will have singularities at
discrete values of n, in particular at & =4. By
giving g~ and m~ a suitable & dependence, and by
multiplying the (unrenormalized) Green' s functions
by suitable wave-function renormalizations, we
obtain renormalized Green's functions that at n =4
are analytic and hence finite. The values at n =4
are the physical Green's functions.

To work this procedure in terms of finite quan-
tities, the renormalized Green's functions are
parametrized by a (finite) renormallzed mass and

coupling constant; the unrenormalized parameters
are defined, according to some prescription, as
functions of the renormalized parameters, of n,
and possibly of an extra mass p. . For example,
they could be defined so that the values of the 2-
and 3-point functions at momentum squared -g'
are equal to the renormalized parameters. Of
course, the prescriptions we use will have the
bare and renormalized parameters equal in the
lowest order of the expansion in powers of g~.

The renormalized coupl;ng constant g~ and the
renormalized mass m~ can be any functions of

n analytic at n =4. Then the chosen renormaliza-
tion prescription fixes g~ and rn~ as functions of

singular at n =4.
Note that when the S matrix is calculated by the

usual method, the result depends only on g~ and

ma, and is independent of the choice of paramet-
rization by renormalized quantities.

All this is rather abstract. To see what it
means, consider the Bogolubov-Parasiuk-Hepp-
Zimmermann (BPHZ) renormalization" of quantum

electrodynamics.
Let the full photon propagator be

q'[I +II(q', es, ms, n))

+ terms proportional to q„q,

Then Z, (es, me, n} is defined to be

[1+II(0, ee, me, n)] ',
which is a power series in e~.

Let the full fermion propagator be

S, =&p'[I —o,(p', e„m„n)]
—ms —o (p', e, m, n)] '.

Then

Z, = [1 —o, (0, ee, me, n) ] ',
and

m„= [m, +o.(0, e„m„n)]Z,
Finally, let y„PP, f ', e~, o~, &) be the part of

the (unrenormalized) 3-point function proportional
to y„. Define

e„=Z,Z, '"I'(0, 0, ee, me, n}

=Z,Z, '"[1—o~(0, ee, me, n)]es by the Ward identity

1/2
Z3 ea'

We can now express ea, m~, Z„and Z, in terms of
e„and m„(at each n).

If I"„ is an unrenormalized connected and ampu-
tated Green's function and if Zq is the product of
Z"' for each of its external lines, then the re-
normalized Green's function is

I'e(n) =Zr I'.
That quantum electrodynamics is renormalizable
means that when I'& is written in terms of m+
and e~ it is analytic at & =4 and so

I"g ——lim I g

is finite. Since for each n w4 I'„(n) is computed
as a power series in ee(n) and as a (finite) function

of m„(n), we see that its limit I'& as n-4 depends
only on en(4) and m„(4), and not, for example, on

de„(n)/dn. This last remark applies in any re-
normalization prese ription.

In practice, when calculating the renormalized
Green's functions, the values of the bare param-
eters will not be used —the calculation will be done

purely in terms of the renormalized parameters,
say by the usual subtraction procedure. " But for
our purposes it mill be necessary to consider the
bare parameters. The renormalized coupling and

mass are finite quantities which parametrize the
theory according to some prescription, which in
the case of 't Hooft's method has no direct relation
to the standard subtraction techniques.
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In the +-dimensional procedure, the bare cou-
pling g~ has dimensions of mass to the power
(4-n)p for some constant p (p= ~ in quantum
electrodynamics; p = 1 in Q' theory). The bare
mass will have dimensions of mass. Our renor-
malization prescriptions will need an extra mass
parameter p, , w'hich could, for example, deter-
mine the subtraction points.

The wave-function renormalizations Z, , the
renormalized coupling g&, and the mass renormal-
ization factor Z -=ms/mn (all of which we define
to be dimensionless") are functions of gee" ~'~

and & only: Vfe assume some renormalization
prescription that allows Z, , g~, and Z not to
depend on m. Then, by dimensional analysis, p.

and g~ can only appear in the combination g~ p.
" ".

That such a prescription exists is proved by
't Hooft' and by us in Sec. VI.

Once one such prescription is found, others
can be constructed by

(a) defining a new renormalized coupling ge
as some given function of g& and n (analytic at
& =4 and gg =0),

gs=gs(gR(n) n)=gn(gs(gee' ' n) n)

(b) for each Z, (Z ) defining Z, (Z„) to be some
analytic function C, (g&, n) (C ) multiplied by
Z, (Z);

(c) defining m„= Z 'ms;
(d) defining new renormalized Green's functions

I „=lim Z rr„= Cr(gs, 4}re,
n~4

with I"„as before, and I'& expressed in terms of
m& and g~. Here, C& is the product of factors
C,"' for each external line of I'.

In the lowest order of g~, me will have g& =g& =g~,
p%g=mg=wg, and Z =Z =Z =Z =1.

Conversely, given any two mass-independent
renormalization prescriptions, they can be ob-
tained from each other by the above procedure.
This is because a field renormalization Z, when
multiplied by the corresponding 2-point function
gives a function analytic at &=4. Also, Z 'm~
is analytic. The corresponding renormalization
factors in the second procedure each satisfy the
same condition, so they can be different only by
an analytic factor when the physical content of the
theory is the same, i.e., when the bare parame-
ters are the same. Of course, g~ in the second
procedure must be an analytic function of g& and
n, since g~ and g& are both functions of the same
g~ and are both analytic as functions of & at n =4.

III. SCALING BEHAVIOR OF GREEN'S FUNCTIONS

%'e wish to investigate the behavior of a renor-
malized, amputated, and connected Green's func-
tion rs(P, g&, ms, g) as the set of external mo-
menta P is scaled. Vfe assume I'~ is defined from
the unrenormalized Green's function I"„(P,gs(n),
ms(n), n) according to a mass-independent renor-
malization prescription as discussed in Sec. II:

re(p, ge, mn, u) =»m rs(p, gs(n), mn(n), ~, n),
nw 4

where

I'„(P,g„(n), m „(n), g, n) = I n(P, g„(g g'" ', n},m (n)Z „'(g (n) g'" ', n}, g, n)

= Zr(gs(n)g'" "~,n)I'„( P, gs(n}, ms(n), n). (8)

Our derivation of the renormalization-group equation follows Vfeinberg's' in spirit, though not necessar-
ily in actual choice of renormalization procedure.

Differentiate the second equation of (8) with respect to p. , keeping ms and gs fixed (and also p and n), to
get

re(p gn ms u n) +us gn(gel4, n) + p (mn(m), egn()penn)

Z„(gee, '" '",n) r„. (9)
8

So

8 Bgg 8 BZ Q i)Z + (10)
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where Z =me/m„. Take the limit n-4 to get

8 8 8
+P(ge) Y (gR)rrrrr rl'(gR) f R

8p,

D dK
la(KP~gR~MR& ) )=K e p r r(g(K ))

1

X &„(Pvpg(g), m(rr), p).

where

8
P(ge) =lim 0 —ga(g&(rr)0 " '",&),

n~q

8
r (g )=»mu 1nZ (g (n)u'" ",n),

n~y

rr(ga}=lim p,—lnZr(ge(s)g'" '",tr)
n

(13)

All the renormalization methods are for the
same theory, so the renormalization-group equa-
tions should give the same results. The difficulty
or ease of solution should not vary much from
method to method.

Suppose the renormalized coupling and mass and
the field renormalizations in a second mass-in-
dependent renormalization are g„, m~, Z, . Then
there exist functions A(ga, rr), C (g~, rr), C, (g&, rr)

analytic at =4 such that

8=-,' Qlimir —lnZ, (gs(n)p, '" '",n).
e n-&

(14)

go= gJ?~ p

rn~=rn gC

(21)

The sum in Erl. (14) is over the external lines of
All the coefficients I3, y are finite as n-4 be-

cause they appear in a differential equation for
a renormalized amplitude.

By dimensional analysis, we have

8 8 8
t&
—+ p 8 +rrrz~ —Dr fa(rrP~ ga&rrre» rr) =O~

i?

(15)

where P, is a set of fixed momenta, ~ is a. scale
variable, a,nd the dimensions of I' are mass to
the power Dz.

Combining Eris. (11) and (15), we get our re-
normalization-group equation:

P(ge) =»m ~

= lim g
n~Q

8E@

8gR fixed n

=P(ga) 8
"

Z, =Z,C, ,

as the bare couplings are the same. (Note that
the second procedure produces the same renor-
malized Green's functions apart from a, factor
C„=gC,"', and the same S matrix. )

Then

8
r (ga) = lim y.—lnZ

8 8 8—P(g~) +[1+r (ga)]me -Dr +rr(ge)'
8K 8gg R

&«~(~P., g~, rrr ~, Irr) = o (16) = r(g, ) + P(g „} lnC(g„, 4) .8' (23)

This is Weinberg's Erl. (3.6) (in Ref. 1), but it is
now applicable with any mass-independent renor-
malization prescription using dimensional reg-
ularization. Thus, it can be applied" to scalar
theories using 't Hooft's prescription.

As Weinberg shows, Erl. (16) is solved using an
effective coupling constant and mass defined by

=P(g(r )),dg rr)

It is easy to verify that the renormalization-
group equation for I'~ in the second approach does
give the equation in the first approach for I'& when
the substitutions (22} and (23) are made.

We note that since & = C = C, = 1 in the lowest
order of ge, Eris. (22} and (23) show that the re-
normalization-group equations in the two ap-
proaches are the same in lowest order.

IV. VfEINBERG'S PROCEDURE

= —[1+r (g(~))]m(K),
drrr (~}

g(1) =g„and m (1)= m ~ .

Then the solution of Eq. (16) is

(18) In this section, we give a version of Weinberg's
zero-mass renormalization prescription in which
dimensional regularization is used rather than
an ultraviolet cutoff,

The renormalization constants are defined by
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%einberg in terms of Green's functions evaluated
with m~ =O„and with external momenta squared

However, the method is more transparent if
we treat the mass as a Coupling constant. As an
example, we consider quantum electrodynamics,
whose Lagrangian in the Landau gauge is"

Z=--,'Z„,F""-(s„a")'/(2~,)+gy "s„y

FIG. 1. Relation of massive to massless propagators.
Here, the heavy line describes the massive and the light
line the massless propagator, and the cross is where
the term -mzgg acts.

—»s44 —~sV'Y 0+p (24)

with o. -0.
Now, the standard treatment mould use as the

free electron Lagrangian

spy "8&Q—Ps ~Q$, (25)

Z, ,= -e,y~ „A I'y -m, yy. (27)

From the standpoint of calculating the finite
Green's functions, the perturbation theory based

with propagator (P-ms) '. However, we will take
the free electron Lagrangian to be

(26)

with propagator P '. Then the interaction Lagran-
gian is

on this splitting is clumsy, the second term having
to be treated to all orders in m 3 to get the usual
results. This corresponds to picking up the suc-
cessive terms of

(28)

in perturbation theory in the way Fig. 1 depicts.
However, the procedure is convenient from the
standpoint of renormalization. One easi1y sees by
pomer counting that the only superficially divergent
diagrams are of orders 0 and 1 in m~; moreover,
in order m~ only the electron self-energy is di-
vergent.

First, we can write the photon propagator as

, +terms in q„q,
q [1 + lI~Q & 8&& 0& s) j+A~tg & 8&& ps && w~

(using notation similar to that of Sec. II). Here,
A is the sum of the self-energy diagrams of order
m~, ma', . . .; it is not over-all divergent. Next,
we isolate the divergence in II(q', es, 0, n) by sub-
tracting at q' = —p, '.
1+II(q', es, 0, n) +R(q', es, ms, n)

= I+II(-p', es, O, n)+II

=Z, '(I+Z, II~), (30)

where

Po(P, e-, 0, &)

-ms-m~(P', es, n)+ ~ ~ ~ . (34)

Here, & is independent of m~, and the dots indicate
the terms with more insertions of the mass vertex.
The divergences in the self-energy are isolated by
subtraction at P' = —p, '.

Sp ' =/[1 —c(-p', es, 0, n)]

», [I+N( p', e„n)]+Z",

Z, (esp"~' ', n) '=1+II(- g', es, O, s) (31)
where Z has no over-all divergence.

Hence, me can ~rite

SJ '=Z, '(P —ms+finite), (36}

II =Il(p', es, ms, n) —II(- g', es, O, s).
The %ard identity nom allows us to write

(32)

rI!2-2 (33)

where the factor p,
" ' ' is to keep e& dimension-

less, as explained in Sec. II.
Note that in Eg. (30}II is not over-all divergent.

The factor Z, multiplying it is only used to remove
any subdivergences, as in the usual renormaliza-
tion procedures.

Next, me mrite the inverse electron propagator
as

with

and

Z '= [I+X(-p', es, n)]Z, .

(3'I)

(38)

(38}

The procedure set out above gives exactly the
same renormalizations as steinberg's. For ex-
ample, steinberg defines Z, to be —p.

' times the
coefficient of P in the electron propagator when
evaluated with ~~ =0 and P' = -g'. This gives
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" ) —p, '[1-o(-g', e„o,s)]' -~,'[1+&(-u', e„n)]'+o(~,') {

= [1 —o(-g', es, 0, n)] ',
which is the same as Z, given by Eq. (37).

V. QUANTUM-ELECTRODYNAMICS CALCULATION

To show how the method works, we calculate the
coefficients of Etl. (16}in the one-loop approxima-
tion to Quantum electrodynamics. Since the calcu-
lations are done with zero-mass propagators, all
the integrals are simple and can be worked out
explicitly in terms of 8 and I' functions using the

formulas listed in the Appendix.
By Eq. (37), Z, is defined to be

[1-cr(-g', es, 0, n)] ',

where po(p', es, 0, n) is the term of order ms' in
the electron self-energy. Now in the one-loop
approximation (Fig. 2)

d.~ 7 "f(P+ff)r'(-fee)'
(P 1 si 1 ) (2s)tl y2(P +g)2 8 PU $2

P(2 -n) +|f(1-n)
by (Al} and (A2)

ies' (-'d d„~ p(2 n)+f-(1-&) VP'ff(1 —x)
b A10)

(2v)" J (p'x+ 2p ~ k«+0')' (p'x+ 2p ~ &«+AD')'

2 1

«([-p'x(1 —x)]""-'r(2—~)[ 2 —s —«(1 n) —.'(1 ——x—)(2—n) ]4w ""
+ [-P'x(l —x)]" ' 'I'(3 —~z)P'x'(1- x)) by (A6)-(A8)

( P ) P ( 2 ) d [ (1 )]II/2 2(1 1
)(1 2 )4v)"" 0

(40)

So to this order

Z, (es p."~', n) = 1.
Next, Z, is defined by Eq. (31):

Z, (esy, "~' ', n) = [1+rl(-g', es, 0, n)] ',

(41)

where H appears in the photon self-energy:

liat (q~'lx g~ k4

The one-loop contribution to Il „„is (Fig. 3)

(42)

So

2 l
'.„(-q')"' '(e.e~ -g. ~e') 1'(2- ~) «[x(1-x)]"' '

0

= 2(») "'e,'(-q')"" '(e, qi -g.&e') 1'(2 —a~)&(~s, ~2)

Z, =1 —2(») ""es'V" '1'(2- ~a)&(~a, i~)

FIG. 2. Ferm|on self-energy. FIG. 3. Photon self-energy.
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to this order, and ew is given by Eq. (33):

Z f/2e ~n/2

Hence, by Eq. (12)

P (e&) = lim p,—Z, "ew p" ' '
n

(~& 2}Z U2e g" ~& ~ +p" I 2 2e p —Z
n~4

8 g~ 3

=lim [(~w —2)e~ —g" ' 'ee(2w) " 'ew'g" '(n- 4)I'( 2—~w)B(m~, M)]+O(es')
n~4

= lim 2(2w) "~'e„'I'(3 —~)B(~2, —,'n) +O(e~')
n~4

= e„'(12w') '+O(ew'},

which is the standard result.
Next, we evaluate Z using the diagram of Fig. 4 and using the definition in Eq. (39):

few' „„yq(P+ff)'y„„„k"k"
(2w)" (p+k)4k' k' '

~ „2

(45)

=1 — „d"k, , by (Al), (A2), and (41)
2w)" p+ k)'k' p2

n-4
=1+ ' „„I'(2--,'s)(n —I)B(-,'n —I, ~ —I).(4w)""

So by Eq. (13)

8
r (e~) =lim g lnZ—(eeg" ' ', n)

= lim [- (4w) "~'ew'(n —4) g" 'I"(2 —m~)(n —1)B(m —1, m —1}]+O(ew')

= 3e~'/(8w') + O(e„') . (41)

Fina, lly,

8
"/p(ew) = lim p lnZr

n~4

9 8
= ~ n~"lim p.—lnZ, +nb" lim p —l,nZ,

4

where nz and &b are the numbers of external elec-
tron and photon lines of I. Evaluating the deriv-
atives in the same way as above gives

y r(e~) = n, e„'/(12w') + O(e„') .

Vl. 't HOOFT'8 METHOD

Instead of taking p, to be a renormalization
point, 't Hooft' defines p. to be a "unit of mass"
(with the dimensions of mass). Its only use is to
absorb the n-dependent part of the dimensions of
the bare parameters in such a way that a renor-
malized parameter ha.s the same dimension for
any n as the corresponding bare parameter has
at m=4.

For example, e~ in quantum electrodynamics
has mass dimension 2 —~n, so we write e~ as

p.
' " ' times a dimensionless quantity, and choose

e& to be dimensionless for all n.
In this, our procedure differs from 't Hooft's,

for he absorbs all the dimensions of the param-
eters into powers of g so that m~, for example,
would be dimensionless. However, our procedure
seems more convenient, and yields the same final
results.

The bare coupling constant, g~, and mass, m~,
and the field renormalization(s), Z, are expressed
in terms of p. and the renormalized parameters,
g& and m ~. Although we shall allow later that g&
and m& may depend on s (analytically at n =4),
initially we assume they are constants. Then

gz, m&, and Z are written in the form

p

FIG. 4. Contributian to mass renormalization.



J. C. COLLINS AND A. J. MACFARLANE

(n-4)p ~ ap(gs& mR& p)

bp(gR~mw P) m ZmB mR+ ~ ( 4)v mR m~

cu(gR~mRi p)
(n -4)"

(49)

(50)

(51)

depend quadratically on the massive parameters"}.
To derive the renormalization-group equation,

we may invert Eqs. (49)-(51) to obtain g„, mR,
and Z as functions of g~, m~, p, , and n, and then
use the methods of Sec. III. In practice, it is more
convenient not actually to do the inversion, but to
proceed as follows.

Differentiation of (49) with respect to p yields
So these quantities are just the renormalized
quantities (gR, m„, and, in the case of Z, 1) plus
whatever poles are needed to cancel the poles in
the Feynman integrals (all multiplied by a power
of p to get the dimensions correct, if necessary)

The coefficients a„b„, and c, are unique given
g„, m&, and p. .

Next, we prove a restriction on the dependence
of a„b„and c, on m ~ and p, .

Theo~em. Q„b„, and c„do not depend on IU, ;
a, and c, do not depend on m„(assuming gR is
dimensionless}. Thus, Z does not depend on p.

or on ~g.
Proof The po. les in Eqs. (49}, (50), and (51)

(to a given order in gR) are defined to be precisely
those needed to subtract the poles in the corres-
ponding Feynman integrals (and thus give a finite
result).

p, only appears as a power of p.
' " (multiplying

coupling constants}. %'hen the Laurent expansion
of each Feynman integral is made (to find the poles
which we need to cancel), logarithms of g will
appear.

On the other hand, in the residues of the poles
m~ only appears in polynomials, ' so, in the res-
idues, it only appears in positive powers, inde-
pendent of &.

But a„and c, are dimensionless, while b„
and m„have dimension 1 (all independent of n}.
The only way a„b„and c, can have the correct
dimensions is the way stated in the theorem. ""

Thus, we have proved that the (dimensionless)
renormalization factors gR p'" ' /gR, Z, and Z
are all independent of mass in this particular re-
normalization prescription, justifying everything
said earlier.

The proof clearly extends to the eases where
(a) there are several couplings, masses and

fields [then there is a collection of mass renormal-
ization factors Z&, (independent of the masses} and
in an obvious notation me, =Q,Z, , mR, ],

(b) there is a coupling constant (or constants) f
with dimension (at & =4) (dimension 1 is the only
case in a renormalizable theory; f appears in a
power series, and so in positive powers only; the
above proof applies if we treat f~ij," "'~ and f& as
masses were treated above), and

(c) the mass is of a boson and the convenient
parameters are ms', m„' (then the counterterms

Q2
p (n —4)g„+a, + ' + ~

n —4

~E'Jff. 1+ +,+ ~ ~, (52)

where a„'=da„/dgR Kno. wing (p&gR,/&p), to be
analytic, from its position in Eq. (10) for the quan-
tity I & which is analytic at n =4, we may write

= x, +x, (n —4) + x, (n —4) + ~
~Em 2

Bp

We may now solve (52) for the x„obtaining

xo = (a& gRag )-p ~'

&g =8'zP )

x, =0 for v~2,

and in addition the following family of identities
satisfied by the Q„:

Qv-1 xo+Qv xl Pa@, P = 2, 3, . . . (55)

These identities were also obtained by 't Hooft,
but by a different method. From (12}, (53), and
(54}, we now obtain

P( Rg) = (a, -gRa, ')p. (56)

Similarly, we may treat Eqs. (50) and (51), being
led to the results

PE' &

Bp, ply

8
lnZr= @~& y

(57}

y (gR) = pgRb, '/m R,

r r(gR) = pgRc, '

(61}

(62)

Since a„b„c,are determined uniquely by the
't Hooft renormalization procedure, the renormal-
ization-group equation (16) is fully specified.

%e may alternatively give a derivation of the

and families of identities involving the 5, and c„,
b, 'xo+ b 'x, = pgRb, b, '/mR, v = 2, 3, . . .

(59}

c„,'xo+c, 'x, = pgRc„,c, ', v =2, 3, . . . , (60)

also available from 't Hooft's approach. Now,
from (13}, (14), (57), and (58), we get
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solution (20) of (16) similar in spirit to that of
't Hooft. An attractive feature of this derivation
is the way it brings the effective coupling constant
and the effective mass directly into the analysis.
Returning to Eqs. (49)-(51), we see that they de-
fine functions with

&&ra(»gR(4} mR, P }, (71}

we can combine Eqs. (67), (69), and (70) to give

rR(Pi gai m Ri P) = z(~i gRi 4)

ga(»ga, n), ma™RZ„(ga,n), Zr(ga, n)

for constant m„and gR with coefficients a„b„
and c, determined by the 't Hooft renormalization
procedure. With these functions, we can define

gR(4} =g'R+zp(ni

~R= ~R &gR~i ~ ~

(72)

(73)

ga(l i gR& n} i m R Zm(gai n} 1 ZI (g Ri n}

for p = P(1+&), where e is small, and ga=gR+zb,
where 5 = o., +n (n —4) + is analytic at n = 4, and
m R =. pn R(1+ e $), where $ = pi, + p},(n —4}+ also is
analytic at n =4." We now try to choose 5 and $ so
that

g'a(» g'Ri n} =ga(pi gai n)

The values of gR at no 4 are irrelevant since
everything in Eq. (71) is finite.

Our intention is to derive Eq. (20) by comparing
the renormalized Green's functions I'R arising
from the two sets ga, m „,P and g„(4),m„, p. So we

now pass to the results of a finite change p. - p
= PK in the "unit of mass" p, . Instead of g„(4), as
given by (72), we will have g(K) which obeys

= P(&1 —g'(K}ni )
dg(K) (74)

m „Z (g„, n) = m „Z„(g„,n},

and then we are clearly comparing two ('t Hooft)
renormalizations of the same theory. Equation
(63) requires =-g(K)b, '(g(K), Km(K))P

&Km (K) (75)

and the boundary condition g(1) =gR. Similarly, in-
stead of m R, we will have Km(K) which obeys

g' =0
Bg BgR

and so can be solved by

5 =P~ 1Pi gRai +g'R("

and hence (64) leads to

gRb, Pjma. (66)

Since we are comparing two different renormal-
izations of the same theory, it follows from the
discussion in Sec. II that

and m (1) = m R. [The extra K multiplying m (K) is to
make the m(K) used here the same as in Eq. (18).]
Further, instead of z, we will have z(K) which

obeys

g(K)c, '( g(-K) )Pz (K },Sz(K)
BK

and z(1) =1. Thus, (71) for the finite change of
unit of mass reads as

(Kp ga m R p, ) = z(K)rR( Kpo g(K) K pn (K) PK)

Zr(ga n}=Zr(ga n}z(~, gR, n) (67)
(77)

defines a function z analytic at n = 4. In the same
way in which we obtained (65), (66) from (63), (64),
we obtain easily

upon renaming p as KP, . Now, if D„ is the mass
dimension of I"R in the usual sense, we may use
standard dimensional analysis to express (77) as

8 = 1 —CgRC, P. (68)
I R(Kpo, gR, m R, P) = z(K)K 1 R(pii, g(K), pn (K), P) .

We write Eq. (8) for each of the two renormal-
izations:

ra(P, g„,m„, P}= lim Zr(gaP i n)
n ~4

&&r„(p, ga, ma, n), (69)

rR(» ga(4) m. , P) = »m Zr(ga p

'" "', n)

ru(p gaimai n) ~

(7o)

As the bare quantities are the same in each case„

This equation coincides with (20) as derived by the
previous method. Equations (74) and (56) yield
(17); (75) and (61) yield (18); and, upon use of (62},
integration of (76) yields the second factor of (20}.
In this approach, the ~-dependent effective cou-
pling constant and effective mass enter as the fi-
nite parameters of a renormalization different
from the one based on gR and m R, there being a ~-
dependent finite renormalization involved in the
comparison of the two sets of renormalized
Green's functions.
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Since in lowest order Eq. (16) is the same when
derived by any mass-independent renormalization
procedure, we have in particular shown that the
methods of steinberg and of 't Hooft give the same
results in lowest order (when both methods are ap-
plicable�

}.

UII. QUANTUM ELECTRODYNAMICS
BY 't HOOFT'S METHOD

We now repeat the calculations of Sec. V using
't Hooft's prescription. Let

ee= p.
' ""[es+a„e„'/(n -4)+O(eR')],

me= m„+h»m„e„'/(n -4)+O(es'),

Z, = 1+c „es'/{n —4)+ O(es'),

and

Z, = I+d»es'/(n —4)+ O(e„').

FIG. 5. Vertex correction.

i p y" c)„p —mz pg,

with propagator

(& -mR) '.
The interaction Lagrangian is

-(m. ms' -0 e.0&-"1,4

(80)

(81)

Instead of (26), we now choose the free electron
Lagrangian to be

Then the fermion self-energy (Fig. 2) is to order

(2e}" k [(p+k)' -m„'] k'

ie, ' — „P(2 -n)+If(I n) -—kP'k/k'+ m„(s —1)
(2m}" k'[( p+ k)' —m, ']

es' ' (2 -n)p —(1-n)px —q(2 -n)p(1-x) + ms(n —1), pp'x'(1 -x)
(4m)""

3~8 fry
4}

+ regular + O(e„') .
am (n -4 {83)

We must also add the mass counterterm m~ —rn&

to Z.
Next, Z, and m~ are defined by requiring

Z, S|' '=Z, (p -me —2:}

to be regular at n=4. So

Z~= 1,

me = ms(1+2es'/[8m'(n -4)]j+ O(es') .

The photon self-energy is {Fig. 3)

{84)

d"k (-ice)'y„i($+m„)ygi($+q'+ms)
(2e}" [k' —m„'] [(q + k)' —m„']

ice'2"~' ' „{g„,[m„'-k ( k+)]q+2k„k+ „kq+ & k)q
(2e)" 0 (ms2 —q x —2q kx -k }

—1
II ~= . Tr

2 j.

dx[ms'- q'x(1-x)]"" '(I (2--,'n}jg„,[ms'+ q'«(I-«)] -2q„q,«{1-«)]

+I'(1 —gn) [m„' —q'x(1-x)] (gn —I)g„y)
2 1

'„„r(2--.'s} dx [m, ' —q'x(1-«)]""-'«(1-«) (q. q. -a.q')
0

-e~' 1=(s.e, -a e ) ~ ~ ea &a| &(~ '))

So
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1+II = 1-e„'/[67i'(n —4)] + O(e„') .

Z3 i s def ined to be such that ( 1 +II )Z3 i s regular, so

Z, = 1 + e„'/ [6m'(n —4)] + O(ee') .

To evaluate es we find the pole part of the vertex correction I'„ to lowest order (Fig. 5):

d.&&. iii i ~ ~ )&. iii i' ~ i& . &'a')
(2w)" [(k+P)'-mR'] [(k+P')'-me']k' k'

2'E eB n (n -3)k'y„+ (4 —2n)i'fk„
dy d"k, , "„",,], + terms regular at n=4.

(8&)

(88)

Here we have picked out the terms in the numer-
ator that are quadratic in k. These are the only
terms contributing to the pole. We have also
used Eqs. (Al) and (A2). So (again picking out
only the contribution to the pole) we have, using
(A8) and (A9),

as we could have obtained from the Ward identity.
Thus we find, using Eqs. (56), (61), (62), and

(14), that

]I'. (e~) =-,' 1-e

3
~eB 1

Fii i2 I (2 gn}

ify [n(n —3)+4 —2n)y„

+ regular terms
and

= e„'//(12m'),

38g
8 ~de„8n

= 3eR", (8w'),

(91)

(92)

= regular terms + O(es') . (89) 1r(en) = 2[ f" v2(eR)+n~ ~3( s)], (93)
We define eB by requiring Z, Z3'"(I"„+eBy„) to
be finite at n =4. So we have, ignoring terms of
higher order than e~',

with

~,(e )=0

a „=—1/(12m'},

and hence

R 12 2 4
+ 0(

12m n -4
Note that

B R 3

(90)

y (e ') =e '/(6m'),

These results agree with those previously derived
in Sec. V. We note that since eB, Z„and Z3
are independent of mass, they are most easily
derived by setting m~ = mB = 0 before working out
the integrals.

APPENDIX

The formulas (given in Appendix A of Ref. 8) needed for evaluating the n-dimensional integrals are

1~",~') =2g"',

Trp = 0 = Trg

Tr1 = 2"'

(A2)

{A4)

(A5)

(m' —2P ~ k —k') (m'+P') ""I'(a) '

kp E 7 F(G pn)
((m'-2P k -k')" (m'+P') -""r(u)

k' rf /2

{A6)

(AS)
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I I'(a+P) ' x '(I -x)8 '

a 5 I'(~)I'(P) o [ax+5(l-x)] (Aso)
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Remove the dimensions of g& by extracting a suitable
power of p. In the discussion of quantum electrodynam-
ics above this was not done, but for our purposes it is
more convenient to make gz dimensionless. Since in
the discussion of scaling we will want to consider the
zero-mass theory, p, must be used for this purpose
rather than mz or m&.

2our metric and Dirac matrices are those of J. D.
Bjorken and S. D. Drell, Relativistic Quantum Fields
(McGraw-Hill, New York, 1965). In order to obtain
finite Green's functions, it is necessary to renormalize
the gauge parameter by writing ~z =nzZ3. So the re-
normalization-group equation must include an extra
term involving BI &/Bo, z. Thus, in the solution, there
will be an effective gauge parameter & {~) in addition
to the effective coupling and mass. Since the depend-
ence of ez on p and e& does not involve a, this creates
no difficulty in actually solving the equation. But,
since the Green's functions are gauge-dependent, it

does add some complication. However, if e = 0, the
free-photon propagator is purely transverse. Since by
the Ward identity the photon self-energy is also trans-
verse, no renormalization of 0'. is now needed. More-
over, the derivation of the renormalization-group
equation (16) works with no extra term needed, and
so n(e) =0 identically. Therefore we use the Landau
gauge a =0.

~3Strictly speaking, this proof is inductive. It is done
order by order in g&. We have proved the theorem
true of the counterterms of a given order in gz if it is
true in the next lowest order —since these counterterms
are to subtract singularities of Feynman integrals
which only contain the bare parameters to a lower
order. The theorem is certainly true in lowest order:
ZgV" " =gg+O(zg'), ms=mgI1 0{g )j, Z=1-'O(ag)
So by induction it is true in all orders.

4Notice that me have assumed in the proof that the re-
normalization is done purely by counterterms in the
Lagrangian (so the kinetic energy terms are like
&2i g&"o"'~,g). However, the Lagrangian can be trans-
formed to one of the type considered elsewhere in the
paper in the usual way by dividing each coupling con-
stant by the appropriate product of Z~~~'s. If the bare
parameters defined one way are of the forms (49) to
(51) and satisfy the theorem, then the same is true of
the bare parameters defined the other way.

' We now have a new proof that if @ theory is renor-
malizable, then the only infinite renormalization is of
the mass, by the one-loop self-energy. Since the
coupling constant has dimension 1, f& = p
m&2 =m&~+&f&2/{n —4), Z =1.

'66 and ( should by previous arguments be functions only


