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The existence of a Hermitianizing matrix q is usually assumed in the study of first-order
relativistic wave equations because it provides for an invariant scalar product, bilinear densities (e.g. ,
Lagrangian), and parity realization in a canonical way. However, an q will exist only if the

representation of SL(2, C) which governs the transformation of the wave function is self-conjugate. The
drawbacks of this fact for theories with s & l are discussed and a class of relativistic wave equations
which avoids these drawbacl{;s and which does not allow for the existence of an g matrix is set aside

for study. It is shown that a dual space may be defined (or, equivalently, a metric operator may be

introduced) such that all of the above q-matrix benefits may be maintained without an q matrix. The
discrete symmetries are defined for these equations and it is shown that the realization of parity in

terms of an antilinear operator naturally emerges. The locality, positive-definite metric, and

positive-definite energy of the second~uantized version of the formulation are described. These
considerations apply to a class of wave equations which provide a simple and uniform description of a
massive, spin-s relativistic particle and which remain consistent and causal in the presence of a

minimally coupled external electromagnetic field.

l. INTRODUCTION

In the study of relativistic wave equations of the
general form'

(ip s —m}„8$8(x)=0, ~, p=l, . . . , Ai

it is usually taken as axiomatic that there exists
a matrix q called a Hermitianiming matrix with
the property that'

(1.2)

The existence of such a matrix has moreover been
assumed for excellent reasons:

(1) It guarantees the existence of a relativistical-
ly invariant bilinear form on the solution space of
Eq. (1.1),'

as [x'=(x„, -x)l

y.'( x}=q.,y, (x}, o. , p-l, . . . , & (1.5)

S(A)=g (n, , m, ),

where

S'(A)S(A) ~I .

thus guaranteeing the covariance of Eq. (1.1) under
this transformation.

In order to see how q accomplishes all of these
things consider the transformation properties of
P(x) under the homogeneous Lorentz group (x'= Ax):

y.'(x')=S,(A}y,(x), a, p= 1, . . . , X

where S(A) is a direct sum of finite-dimensional
(nonunitary) representations of SL(2, C),

where o(x} is a spacelike surface. The existence
of such a form is of course essential if we wish to
attr ibute a quantum-mechanical interpretation to
the solutions of Eq. (1.1).

(2) It provides for the construction of invariant
bilinear densities. For exampl. e, it ensures that
the wave equation is derivable from a Lagrangian,

I (x)= y (x)q{iP ~ e-m)y(x), (1.4)

and guarantees it Hermiticity. This greatly facil-
itates the introduction of interactions into the for-
malism.

(2} It affords a simple realization of parity sym-
metry. For example, if p, is Hermitian and p is
anti-Hermitian, then using Eq. (1.2) we see that
the action of parity on p(x) may be simply written

q's claim to fame is that

St(A)gS(A)=g for aII A,

thus providing for the invariance of (1.3} and (1.4).
But g is a two-edged sword since it exists only

for a restricted class of representations S. In-
deed, q exists if and only if S is self-conjugate, '
i.e., if and only if the direct sum (1.7) contains
only self-conjugate (n, =m, ) or pairs of mutually
conjugate [(n„,m, )83{m„n;)]components. Some
well-known examples are the Dirac equation [S
= (~z, 0}$(0,2)] and the Petiau-Duffin-Kemmer
(P-D-K) equations [S=(0,0)e{2, &) or S=(1,0)
+(2, ~a)+(0, 1)l.

In order to see why conjugate representations
are necessary we need only recall that while any
finite-dimensional irreducible representation of
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SL(2, C), D&"' (A)=—(n, m), is nonunitary,

D(n, m)(A) tD(n, m)(A} + I (1.10)

(~n, o) (o, 2)

0 1 t (2, 0)

J „, (o, -')
a, p=l, . . . , 4

(1.12}

and for the P-D-K cases q 8= 5 8, +, P= 1, . . . , 5
or

(0, I)

(y, /=1, . . . , 10

such representations have the additional property
that

D(m, n)(A) tD(n, m)(A)

g exploits this by coupling mutually conjugate rep-
resentations and thus may achieve (1.9). Further-
more, since D~" )(A) is related to D' "'(A) by the
parity operation we may also attain the transfor-
mation property (1.5).

In the examples cited above we have for the
Dirac case

or (b) add further interlocking SL(2, C) components
so that there may exist nontrivial P matrices. In
case (a) one runs the risk of introducing unphysical
masses into the theory which may not be dynam-
ically independent of the physical masses, "and in
case (b) there are two possibilities: (bl) The rep-
resentations (s, 0) and (0, s) are connected by in-
termediary interlocking representations which
"bridge the gap,

" or (b2) there are representations
which interlock with (s, 0) and (0, s) separately,
thus permitting the existence of P matrices, but
these two sides do not interlock with each other
("open gap").

In ease |'bl) the P matrices may form an irreduc-
ible set, but the number of intermediary represen-
tations will grow with s as the gap widens. This
will result in an increasing number of auxiliary
spins among the independent components which
must be projected out if we are to return to a
pure spin-s theory. Moreover, upon the introduc-
tion of interactions this complex system of con-
straints leads in general to inconsistencies such
as noncausal propagation, "" indefinite metric, "
losing constraint equations, etc.

In case (b2) the gap is not bridged and one is left
with reducible P matrices with at least four (2s+ 1)
independent components; i.e., parity doubling oc-
curs. A simple example of this is the representa-
yon1

in the basis where S(A) is completely reduced.
Although this requirement of conjugacy is readily

implemented for the lower-spin cases, as evi-
denced by the above examples, difficulties develop
if one attempts to maintain it in the description of
higher-spin systems. Let us examine in a qualita-
tive wa.y why this happens.

Recall the following two facts: (1) In order to
describe a spin-s particle the (2s+1)-dimensional,
unitary, irreducible representation of SU(2),
D"(R), must occur in S(A) when A is restricted
to the rotation subgroup. ' This will happen for any
representation (n, m) where s is contained in the
set (n+m, . . . , ~n-m~ j. (2) The irreducible SL(2, C)
components of S(A) may be coupled by the P matri-
ces in Eq. (1.1) only if they interlock, i.e., if their
labels differ by ~ (see Ref. 7}:

S(A) = (s, 0) g (s-2, 2) iB (n, s- n') e3 (0, s), s~ —,

(1.15)

whose wave equation suffers not only from parity
doubling but also from negative-metric and neg-
ative-energy difficulties. " We may furthermore
expect this to happen for all case-(b2} equations.

If we start with an SL(2, C} representation (n, m}
where neither n nor m is zero, then we will aga, in
encounter auxiliary spins in the formalism and
the resultant difficulties of case (bl).

In short, there seem to be pitfalls in every di-
rection for self-conjugate representations when
s&l ~

Qn the other hand, if we give up the self-conjunn

gacy requirement then there exists a family of wave
equations which are simple and uniform no matter
how high the spin. The P algebra is given by

(n, m) —(n+ 2, m+ n}. (1.14)

Consider the simplest SL(2, C) representation
which describes spin s, (s, 0). (This is the sim-
plest because it describes no other spins. ) The
self-conjugacy requirement demands that (0, s)
must also be contained in the direct sum (1.7). At
this point we may either (a) abandon equations of
the form (1.1) and go to higher-order equations, "

for any spin, and the resultant wave equation has
no secondary constraints, is consistent, and leads
to causal propagation in a minimally coupled ex-
ternal electromagnetic field." Thus many of the
drawbacks of self-conjugacy ean be avoided. Such
equations, however, do not permit an g matrix
when s~l.
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An important question, therefore, is whether the
benefits of an g matrix can be salvaged in its ab-
sence even for free fields. In the present report
we shall study this question in detail and answer
it in the affirmative.

Using a formulation analogous to that presented
by Weinberg' and by Weaver, Hammer, and Good, "

we shall argue that we do not need a,n g in order
to enjoy its benefits (1), (2), and (3). We shall re-
strict our attention to wave equations whose P
algebra is given by (1.16) and which describe non-
interacting mass m&0, spin-s particles, since that
is where these questions arise.

In Sec. II we shall define the system of wave
equations which we wish to consider and construct
their plane-wave solutions, A related system is
defined in Sec. III and a mapping between the solu-
tions of these equations is introduced and some of
its properties are demonstrated in Sec. IV. After
a study of the orthonormality properties of the
plane-wave solutions in Sec. V, a, bilinear form
is defined in. Sec. VI and its properties are studied
in Sec. VII, where it is shown to provide a suitable
scalar product for the solutions to the wave equa-
tion.

The Lagrangian and other bilinear densities are
introduced and examined in Sec. VIII and the sec-
ond-quantized formulation is discussed in Sec. IX.
The theory is formally local, is realizable on apos-
itive-definite metric Fock space, Bnd has a non-
negative energy spectrum. The discrete symme-
tries are studies in Sec, X. It is shown there that,
although it is not necessary, it is natural in the
present formalism to realize parity in terms of an
antiunitary operator. The action of the discrete
symmetries on the commutation relations and
field quantities is also described. Finally, in the
Appendix, equiva. lent realizations of parity sym-
metry are briefly discussed in a, general frame-
work.

S(A-')P„S(A)=(AP) „, (2.3)

where

x[u„(p, o)a(p, o)e "'*
+~„(p,o)b*(p, o)e"'*J, (2.6)

thus guaranteeing the covariance of Eq. (2.1).
We shall assume that the solutions to Eq (2. .1)

describe particles with a unique mass (m&0) (Ref.
19) and a unique spin s which may be determined
from the nonzero components of the rest-frame
solutions of Eq. (2.1) in momentum space. We
assume that only 2(2s+1) of these components are
nonzero corresponding to the positive- and neg-
ative-energy solutions of a spin-s particle. We
shall further a.ssume that the P„are irreducible
and that P, may be chosen to be Hermitian and
thus [as may be shown from the infinitesimal form
of Eq. (2.3) J that P;, i = 1, 2, 3 is anti-Hermitian
[see Eq. (3.9) belowJ:

Po =Po (2.4)

These assumptions are very restrictive since
they imply that the P matrices satisfy the alge-
bral2~20~21

Z(p"p" p'-~""p')=o, (2.5)
P

where P represents a, sum over the six permuta, -
tions of the vector indices. However, they do
allow for the possibility of studying equations
which do not permit the existence of an q matrix,
and they exclude many peripheral questions which
would only serve to complicate the issues at hand.
These assumptions do, in fact, lead us to the
simplest equations for which there is no q matrix
and are thus ideal for our purposes.

Using a, familiar technique" we expand the solu-
tions to Eq. (2.1) as foBows:

II. WAVE EQUATION AN@ PLANE WAVES
u„(p, o)=6 8(L(p))u s(0, o) (2.7)

We consider wave equations of the general first-
order form

(i p ~ 8 —m)y(x)=0, (2.1)

where m is taken to be a positive-definite multiple
of the identity. P(x) transforms under the action
of the proper Poincare group as

v. (p, o)= S.,(L(p)). ,(0, o )C"(-'... ;

o, o =-s, -s+1, . . . , s,

E= E, ( p) = + ( p'+ m ')'~',

(2.6)

[V(a, A) yJ. (x)=S,(A) y, (A-'(x-a)), (2.2)

where z, /=1, . . . , ¹ A is a homogeneous Lorentz
transformation, a is a space-time translation, and

S(A) is a finite-dimensional representation of
SL(2, C). p„represents four A'XN matrices with
the property

L(P} is the pure Lorentz transformation which
boosts a particle of mass m from rest to momen-
tum p, andu(0, o) [v(0, o)] are the positive-
[negative-) energy rest-frame solutions of

(p p »m)0(p, o)=o. - (2.9)

u (0, o) [v(0, o)] are eigenstates of P, with eigenvalue
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+1 [-1]and they are also eigenstates of 4„ the
generator of rotations about the 3 axis for the rep-
resentation S(A), with eigenvalue o.

C{,'} is defined as follows: For' each unitary ir-
reducible representation of SU(2}, D(')(R), there
exists a unitary matrix C '}which expresses the
equivalence of D')(R) to its complex conjugate:

solutions as follows":

(1) (n, 0) 6) (n- &, —,'),
(2) (n, 0)(n+-, ', —,'),
(3) (n+ s, s)e(n, 0)6)(n —,—,'},
(4) (1, 0)(s(-,', —,')6)(0, 1),

(2.19)

D (s ) (R ) s C (s )D(s )(R )C (s ) -&

C{'}may be chosen to have the properties"
C(s)sC(s) ( )ss

C {s}fC {s}

C{~}S{5s}C{s}-1-

and, for later use,

(2.10)

(2.11)

(2.12)

{2.13)

a,nd their conjugates.

With every system defined by Eqs. (2.1}, (2.2),
and (2.3) there is a closely related system:

(3 1)

and

D' "(R ') K(')D"(R)=RE" (2.15)

C{s-l,}+{s}C{s}-1 g{s}4 (2.14)
5

where S(' are the (2s+1)-dimensional generators
of D('(R) (the "spin-s" matrices) and K,.' are
three rectangular matrices with the properties"

[U(a, A)$J(x)=S(A)4)(A '(x-a)) (3.2)

S '(A) P „S(A)= (AP )„. (3.3)

S(A) is the representation of SL(2, C) which is con-
jugate to S(A); i.e., if

S( )S( )iK( ) K( )= fs~ . S( )+s 6 (2.16)j 5 j 5Jjh( fj

Under the usual phase conventions C{"- may be
written as

C(,',) =(-)''6.. ., o, o'=-s, . . . , s. (2.17)

then

S(A) =
Pp (m „n;}.
5=1

(3.4}

(3.5)

We may observe in this expansion some effects
of our simplifying assumptions. The unique-mass
assumption not only simplifies the expansion (2.6),
but when coupled with assumption (2.4) leads to
(2.5) and the resultant condition on P,

Po'= Po (2.18)

p, thus has eigenvalues +1, -1, and O. The unique-
spin assumption further demands that the +1 and
-1 eigenvalues each correspond to a (2s+1)-dimen-
sional subspace which carries the representation
D('(R). Thus we need only sum over (2s+1}val-
ues of cr in Eq. (2.6). The subspace corresponding
to the +1 [-1J eigenvalue of P, is assumed to be
spanned by the u(0, o) [v(0, o)]. If we did not make
this assumption (and, correspondingly, the irre-
ducibility assumption of P„) then we would in gen-
era, l be forced to allow for additional solutions
corresponding to other quantum numbers, e,g. ,
parity. The zero eigenvalues of Po correspond to
dependent components which vanish in the rest
frame. There are A(-2(2s+1) of these.

Although the class of equations under consider-
ation is a restricted one, there do exist families
of wave equations which satisfy all of the above
restrictions. These equations may be listed ac-
cording to the transformation properties of their

S(A) and S(A) act in the same N-dimensional
space and are equivalent when A is restricted to
the rotation subgroup. For pure Lorentz transfor-
mations both S(A) and S(A) are Hermitian and

S(L(p))S(L(p)}=I . (3.6}

where J,. is the generator of spatial rotations about
the ith axis and X; generates boosts along the ith
axis. Identical equations may also be written for
Eq. (3.3), and since J,.=Z; and N;= -X„ it is clear
that we may write

P =P~ and P;=-Is;= p], (3.10)

where we have invoked Eq. (2.4) to get the last
equality. We shall hereafter consider (3.10}as

This last relation indicates tha, t the infinitesimal
generators of pure Lorentz transformations
(boosts) in the S(A) and S(A) representations differ
only in sign.

In order to relate P„ to P„consider the following
relations which are equivalent to Eq. (2.3):

(3.7)

(3.8)
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our definition of P„.
We may expand the solutions to Eq. (3.1) in the

same way as we did for the solutions of Eq. (2.1):

S(L(p)}= S-'(L(p) }=S(L(-p)), (3.15)

so we may rewrite the plane-wave solutions as

g 3~ ~ a/2

P()((x)
(2 )3/2

x [u ( p, a)a(p, a)e '~ ' "
a,nd

u„(p, a)=S,8(L(-p)}u 8(0, o)

v„(p, a)=S s(L(-p)) v()(0, a')C '„,„;

(3.16)

(3.1"I)

where now

+ v„(p, (r}b*(p,o)e"' "], (3.11) hence, using Eqs. (3.11}, (2.7), and (2.8) we get

a,nd

u~(p, a)=S 8(L(p))u8(0, a) (3.12)

x[u (-p, a)a(p, a}e '~''
v (p, a)=S„B(L(p)}vs(0,a')C ', , ; (3.13)

n, /=1, . . . , N and v, o'=- s, . . . , s as before.
Since u(0, a) and v(0, a) are the positive- and

negative -ener gy rest-f rame solutions of

(t} p-»)e(P a)=o (3.14)

in light of Eq. (3.10) we have u(0, a)=u(0, a) and

v(0, (r)= v(0, a) and so we may hereafter omit the
tilde over these solutions.

From (3.6) we see that we have

+ v„(-p, a) b'(p, a}e'~ ' "] . (3.18)

&(P)=&(p,P.)=CS '(L(p)}j'. (4.1)

Form the matrix A(is) and operate on Eq. (2.6):

tV. RELAT1ON BETWEEN (t} AND Q

Consider the solutions of Eq. (2.1), (t)(x}, and the
matrix corresponding to the Lorentz transforma, —

tion

A. ,(fS @,(x)=g
3 Z/2

[&„,(p),(P, a)a(P, a)e "'+&.8(-p) v 8(P, a&*(p, a}e"'*] . (4.2)

Since [see Eq. (4.19)]A(-P)=(-)"A(P), we may use Eqs. (4.1), (2.'7), and (2.8) to get

'p m '/'
&( &)(ix)=E f 2,).~. z ( (-r, ~)a(r, )

"'~ (-)*' (-r, ~)('(r, ) "")

When we compare this equation with Eq. (3.18) we
see that the operator A(iS) maps every (P(x) to a
(t)(x), with the latter's coefficients given as

(a) S'(A-')A(P)S(A-')=A(AP) .
We start with the identity for a pure (Wigner} ro-
tation,

and

a(p, a)=u(p, a}

&*(p, a)= (-)"&*(p,a) .

(4.4a)

(4.4b)

(L '(Ap)AL(p)) L '(Ap)AL(p)=I

if and only if

L(p)A'L '(Ap)L '(Ap)AL(p)=I,

(4.7)

(4.8)

(4.5)(t)(x)=A(is)4)(x) .

That is, (t)(x) is given by the expansion (4.3) once
(P(x) is given by the expansion (2.6).

Let us consider some properties of A(is):

This mapping of the space of solutions of Eq.
(2.1) to the space of solutions of Eq. (3.1) has an
inverse (A '(p}=CS(L(p)) j'}, and associates a
unique solution of Eq. (3.1) to each solution of Eq.
(2.1) and vice versa; aU solutions of Eq. (3.1) and
Eq. {2.1) are so related. The mapping is thus one
to one and onto, i.e., a, bijection.

Let us redefine the tilde notation to mean that
(P(x} is the particular solution of Eq. (3.1}associ-
ated with (t)(x) [a solution of Eq. (2.1)] such that

where we have used the fact that L (p)= L(p).
Equation (4.8) implies that

L-'(~ }I.-'(A )=A'-'L-'( )I.-'( )A-'

and for the representation S(A) we have

CS(L '(Ap}}]'=S'(A ') CS(L '(p))}'S(A '),

S(A)A(P)S(A '}=A(Ap) .

(b) &(P)P P& '(p)=ii p.

(4.11)

{4.1.2)

which completes the proof. Note that the relation
St(A)=S '(A) implies that we also have
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A(p)P pA '(p)=S '(L(p})S '(L(p})P p

and by (2.3)

x S(L(p))S(L(P))

A(P)P 'PA (P)=S (L(p))(L(p)P) 'PS(L(p))
(4.14)

=(L'(p)p) p

= P ~ ( L-'(P)P}

(4.15)

(4.16)

(4.17)

since (L '(p)) is precisely that transformation
which brings a, momentum p first to rest and then
to a momentum with the same magnitude in 3-
space but opposite direction. In configuration
space Eq (4.12.) reads

A(r's)(i P ~ 8)= (i P B)A~(is) .

(c) A( P)=(-)-A(P)

(4.18)

(4.19)

Equation (4.11) implies that A(P} is composed of
constituents a('((P), each of which maps a function
which transforms according to (n„rn;) to one which
transforms according to (»;, n;):

A(p)-4 u"'(P), (4.20}
5=1

where P represents a sum over the six permuta, -
tions of the vector indices. We have

u ( P,-o)(P„P.P&+P. P„P&+P.P&P„)p"P u(p, o')

P ((„((.((,)('(' (r, ~ ( (s.4(
P

= '(-r, )2 gz, .((.)('("«(r)(,5'')
P

=u'(-p, o)(2P„P P+P„p')u(p, o')

=u t(-p, o)(2»p „+»'P„)u(p, (r'),

since u(p, o) is a solution of Eq. (5.2). But since
Eqs. (5.2) and (2.4) imply that

(5.6)

u (-p o)(P p™)=0, (5.8)

we find that the left-hand side of Eq. (5.4) is also
equal to

u r(-p, o)(3»' P „)u(p, (r) . (5.9)

Equating (5.7) and (5.9) yields the desired result.

(b) v'(-p, (r)Pp(p, o')=-v'(-p, o) ~ v(p, o')

(5.10)

This case is the same as the last except that v(p, o)
satisfies the equation

a'((p): (n;, n( () - (rr(&, n;) . (4.21) (P p »+) (vp o)=0 (5.11)

Since a('l(p) is a function of p which transforms
according to the (2, —,') representation, Eq. (4.21)
restricts the order of p which may enter a('&(p):

g.
a"'(p)- a) (-,', —,'-)r

r (4.22}
i=1

where A;= 2(n;-m, ~+2q, and q; may in general be
a positive integer or (as is actually the case) zero.
For half-integer spine (integer spine) 2~n, -»,

~
is

odd (even) and this implies the desired result, Eq.
(4.19}.

and hence also

vr(-p, o)(P p+»}=0

in contrast with Eqs. (5.2) and (5.8).

(c) u "(-p, o')u(p, o')=5„, .

(5.12)

(5.13}

(d) v~(-p, (r) v(p, a')=6„ (5.14)

This follows from (2.7) and the normalization
u t(0, (r) u(0, o)=6„,. Likewise we get

V. PROPERTIES OF PLANE-WAVE SOLUTIONS

In this section we shall derive some orthonor-
n1ality and completeness relations for the momen-
tum-space solutions occurring in the expansion
(2.6}.

(a} u'(-p, o)p„u(P, o')=u'(-P, o) "u(P, o'),

(5.1)

(e) u (-p, o) v(p, o')=0

= v~(-p, o)u(p, o') .

Using the above results (a) and (c) we have

(f} u'( p, o)P„u(-p, o')=~6..
and from (b) and (d} we get

(g) v (-p, o)P„v(p, (r')=-—5..

(5.15)

(5.16}

(5.17)

where the u's satisfy

(p p-»)u(p, o)=0. (5 2)
Taking the 0th component of (f) and (g} we have

We prove the above relation using the algebraic
property (1.16) which is equivalent to

and

ur(-p, (r)p, u(p, (r'}= —5„, (5.18)

6„6,P), -Z„,P), =0, (5.3) v (-p, o)P,v(p, o')= ——5„, . (5.19)
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(h) u (p, (r)p,v(p, o')=0 where the last equation follows from Eq. (2.3):

= v "(p, (r)p„u( p, o') .

Using (5.8) and (5.11}we have

u (P, o)(p, p, +p p-m)=0

(5.20)

(5.21)

S '(L(P)) P PS(L(p)}= (I (P)P) f

= p ~ «-'(p)p)

=/0m )

i.e.,

S(f-(p)) P.S(L '(p})=

(5.34)

(5.35}

(5.36)

(p p —p p+ m)v(p, o')=0.

We thus find from (5.21)

u'(p o)p v(p o')= —u'(P o)( pp-+») v(P (r')

(5.23)

and from (5.22)

u'(p, (r)p, v(p, (r'} =-—u'(p, (r)(- p p+»)v(P o'),
0

(5.24)

The desired result now follows from Eqs. (5.31)
and (5.33).

(j) P v. (p, o) v 8(-P, o} =-
ppg I ~g

= A (P) . (5.38)

We proceed similarly to the last case starting
with the rest-frame projectors onto negative-en-
ergy states

which imply the desired result. Similar argu-
ments apply to the right-hand side of (5.20).

and

A (0)= Q v(0, o) v (0, (r}

A (0)=-,'(p, '-p, )

(5.39}

(5.40)

-= A, (P) . (5.25)

The projection onto the positive-energy solutions
in the rest frame may be written either as

and boosting as before to get (5.38}.
Note the generalization of the usual projectors

for the Dirac equation for which (P P)'=P'= »'.

VI. SCALAR PRODUCT

A, (0)= Qu(0, (r)ur(0, o')

A, (0)= —,'(p, '+ p, ) .

(5.26)

(5.27)

We are now in a position to discuss the central
point of this paper. We assume that the states of
a free, mass&0, spin-s, relativistic particle are
described by the solutions (j((x} of the wave equa-
tion

The first form is clearly a projection onto the

positive-energy rest-frame solutions. That the

second form is also such a projection follows
from

and

p, u(0, o)=u(0, o)

p,v(0, o)= -v(0, &r) .

(5.28)

(5.29)

A (P)=S(L(P))A+(0)S(L (P)} (5.30)

We now boost these rest-frame projectors to mo-
mentum p to get

(i P S rr()(jr(x)=-0, (2.1}

((, (l = J~„(*)('(*l(("r(~(, (6.1)

where (r(x) is a spacelike surface and (jl(x) is de-
fined as

where (jl(x) transforms according to (2.2). In order
to obtain a, quantum-mechanical interpretation for
this description we must equip the solution space
of Eq. (2.1) with a scalar product. To this end we
therefore introduce the bilinear form for any two

solutions Q and (j( of Eq. (2.1):

and

u p, cu -p, o

A,(P)=S«(p)}-'(P.'+ P.) S (L '(P))

(P f)', P P
2 m' 'm

(5.31)

(5.32)

(5.33}

j (x)=a(i&)y(x} .

Thus the dual to each solution of (2.1) is no
longer the complex conjugate, transposed solution,
but rather the solution must first be transformed
by A and then the complex conjugate transpose is
taken. So defined, (jl(x) will satisfy Eqs. (3.1),
(3.2}, and (3.3) as can be seen from Eqs. (4.11)
and (4.12). Equivalently, we could write the form
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(6.1} in the usual fashion by explicitly displaying
the A(ie) as a metric operator. We shall do this
whenever it is convenient.

In Sec. VII we shall consider some properties of
the bilinear form (6.1) in both configuration space
and (for the sake of exposition) in momentum
space. We shall find that the form (6.1) does in-
deed provide a satisfactory scalar product on the
solution space of Eq. (2.1).

Let us first establish the corresponding bilinear
form in momentum space. To this end we retrace
our steps a bit and reconsider the Fourier expan-
sion.

Since Eq. (2.1) implies that (p(x) satisfies the
Klein-Gordon equation componentwise, we may
Fourier -expand the solutions

(p(x)= 2,y, d pe ' '*6(p'-m )(p(p), (6.3)
l

where (t)(p) satisfies

(6.4)

on the mass shell.
Decomposing into positive- and negative frequen-

cy parts we have

(6.5)

with

generality of which will be demonstrated below,
we may derive the bilinear form in momentum
space

((p, (C)= d'x $t(x)ji, y(x)

[0' "(-p)0"(p)

-(-)"4' "(-P)0' '(P)], (6.12)

where we have made use of the orthonormality re-
lations of Sec. V.

We shall now examine the properties of ((P, (C)} in
detail. In the above we wished only to point out
that the dual operation in momentum space involves
mapping the function to a reversed three-momen-
tum.

Vil. PROPERl lES OF ~y. ~)

The bilinear form (6.1) on the solutions of Eq.
(2.1) has the following properties.

(a) Unifarily. ((t), lt) is invariant under the action
of the proper Poincare group.

For [see (2.2)]

[U(a, A)yJ(x)=S{A)y(A-'(x-a})

we have

(U(a, A)y, U(a, A)g}

Defining

0"(P)= ~2 e(PO) iP(P)(+) l

(6.6) do „(x)[A(i s)U(a, A}(t)J'(x)p)' [U(a, A)(t J(x)

(7.2)

„(x)[A(is)S(A)y(A '{x-a})Ji

and

=v 2E u(p, o)a( p, o)

0' '(p) -=~ 6(p.)0( p)-( )

x P "S(A)(}){A '(x-a));
using Eq. (4.11) we get

A(i s)S(A)= S(A}A(iA-'s),

and so

(7.3)

(7.4)

we get

=&2E U(p, o)f)*(p, o) (6.8) (U(a, A)(t), U(a, A)(t}

doux P (A 'x-a)S A)SA AP"

x q(A '(x-a})

(6.9)
In (6.7) and (6.8) we have indicated the relation-
ship to the previous expansion (2.6).

Using the definition of A we have

do
p {A '(x-a)) y {A ' x-a))

x)8~ (C (A-'(x-a))

da„x)P x P" y x)

(7.6)

&(P)4"(P)=0'"(-P), (6.10}

which in turn yis lds (6.2) .
Assuming that the configuration-space integral

is over a time slice [o(x) such that f =constant] the

( 1 .8)

Consider for comparison the positive-energy so-
lutions in momentum space which transform as
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I U(a, A}(t](P)=e" 'S(A)A(A 'P).

We now have. (dQ=d'p/2E)

(U(a, A)(t), U(a, A}{()

(7.9) definite for the positive- (negative-) energy solu-
tions when s is an integer.

Into the scalar product (6.12) we insert the re-
lations (6.7) and (6.8), and we use the orthonor-
mality properties of Sec. V to get

dQ A PU, A y'P)Ua, AqP), q. 10

dQ A P e"'S A y A-'p) 'e"' '8 A)q A-'p

(7.11}
and by (4.11) we have

dfI j'(A-'P)4(A-'f )

dAP~P g P

(7.13}

(7.14)

(7.15)

where we have invoked the invariance of the vol-
ume element dQ.

(I)) Oonservaiion ((t), (C. } is invariant with respect
to variations in 0'.

Using familiar techniques, ~' we have

(r, r), =
fdir

"(*)r (x)r„r( ) ().(6)

=» [j'(x)p„q(x)] (7.17)

=e'( )p 8" C.( } i'() ~ p 8 "q(x)
(7.18)

= i rnid'(x)(i(x) irnP~(x}-q(x) (7.19)

where we have used Eqs. (2.1), (3.1}, and (3.10).
In particular we may conclude that (4), (}) will be
conserved in time.

(&) ((t), $)= (({,{{))*.In momentum space we have,
e.g., for positive-energy solutions

(r, r)= f«(&(r)r(r)l'r(i) (7.20)

«1y'(p}A(f )q(p)

dQAP& p *'P*p)

=(q, y)*.

(7.21}

(7.22)

(7.23)

(d) (Q, (x((t, +P(1,)=(x(P, g, )+P(P, g,). This property
is trivially true.

(e} ~~P~)'=-((}), (t)). This is positive-definite for
s equal to a half integer and positive- (negative-)

(U(a, A) y, U(a, A) {I)

dg S A)A A-'p) y(A-'P) 'S A)y A-'P

(7.12)

(r, r)= g f& r( '(r ~') (i

o"' =(aoA-')' (7.25)

or„equivalently, the metric operator A(ie} must
be considered in the taking of the Hermitian con-
jugate. "

VII I. LAGRANGIAN

Based upon the preceding discussion of bilinear
forms we now consider the existence of bilinear
densities such as the Lagrangian. Ne take the

Lagrangian density for a mass-m, spin-s field
to be

L(x) =,'-(t) (x}(ip a rr&}p(x)-
+-', q'(x){ ip 3 .n)y(x)-, (8.1)

where we have explicitly symmetrized with respect
to derivatives. That L(x} is a scalar density under

the transformations of the proper Poincare group
follows easily from the previously given transfor-
mation properties of p and g.

In order to justify the independent variation of

Q and Q, consider, for a moment, the usual Dirac
case. There the independent variation of 4 and
4' may be justified either by breaking 4' up into
its real and imaginary parts and varying them in-
dependently or by simply varying 4' and 4 and

then determining whether or not the consequences
of this independent variation, i.e. , the Euler-
Lagrange equations, are consistent. %e shall
follow this latter procedure.

Consider the more general density

-(-)"&(p,o)&'(p, &)J, (7 24)

from which the assertion (e) follows.
In view of the above properties (a)-(e) we may

conclude that the bilinear form (6.1) provides a
suitable scalar product on the solution space of
Eq. (2.1) for any spin, the negative-definite con-
tributions in the integer-spin case being remedied
as usual in the transition to the positive-definite-
metric Fock space. See Sec. IX.

Thus even without an q matrix there exists a
suitable scalar product for the formalism. How-

ever, this has entailed the introduction of a dual

space which is more complicated than usual. In

particular the Hermitian conjugation of operators
with respect to this scalar product will now in-
volve the mapping A(i&):
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1.(x}= z g (x)(i& ~ a-m) P(x)

(8.2)+ 2~/ (x)(-ip ~ a -m) p(x) .
Varying with respect to g (x) leads to the Euler-
Lagrange equation

For example, the energy is given as

H = d'x700 X

d'x[i y'(x)p'a'4(x)]

(8.18)

(8.19)
91 ()L

" a(a. (')
=!(ip a-m)q(x}- my(x) i,'i p -.aj(x)

(8.3)

(s.4)
d'x[$'(x) (-iP V+m)y(x}J. (8.20)

=(I p .-m)y(x). (s.5) If we insert the expansion (2.6) and (4.3) and use
the relations of Sec. V we get

Similarly variation with respect to P(x) leads to

(x)(-i P a -ne) = 0 . (8.6)

Now equations (8.5) and (8.6) are consistent with

the choice {a(x)=-g(x)„ that is,

g (x) = (A(i a)(p(x)I (8.7)

To see this operate on Eq. (8.5) with A(i a), use
Eqs. (4.18) and (3.10), and take the complex con-
jugate transpose:

0 =A(i B)(i P 9-m)y(x) (8.8)

= (i p ~ a-m)A(i a)p( x), (8.9)

which implies

p (x)(-i p a —m) =0, (8.10)

which is identical to Eq. (8.6) for p(x)—=q(x).
it is consistent to independently vary q(x) and

P (x} in (8.1).
In view of the above discussion we see that the

Lagrangian (8.1) leads to the equation of motion
of P, (2.1), and the associated equation for p,
(3.1). Thus the equations are derivable from a
Lagrangian and another q-matrix benefit is
a,chieved in the absence of an g.

Anticipating the second-quantized formulation,
the Hermiticity of L(x} may be seen as follows:

f."'(x) = (p (x)(i p a-m)g(x) I" '

(x)(i p a -m)" "' p(x) .
(8.1 1)

(8.12)

so we get

=(-ip a -m), (8.15)

g,"' (x) = f. (x) . (8.16)

Let us now consider some other bilinear densi-
ties. We may determine physically relevant quan-
tities from the energy-momentum stress tensor

T""(x)=i {a (x)p "a'p(x) . (8.17)

From Eqs. (7.25), (4.18), and (3.10) we have

(i p a -m)"' = [A(i a)(i p a m)A '(i a)]' (8.13)

= (i p ~ a-m) (8.14)

d'PE[a*(p, cr)a(p, a) + (-)"5(p, o)a+(p, o)]
0

(s.21}

d'PE[la(p, o)I'+(-)" I&(p, o) I'1 (8.22)

We see that H is positive-definite for all integer-
spin particles and indefinite for half-integer-
spin particles. This latter difficulty is remedied
in the usual fashion in the second-quantized for-
malism by normal-ordering the operators in Eq.
(8.21}and assigning Fermi-Dirac statistics to
half-integer spins.

By virtue of the equation of motion [see Eqs.
(7.17)-(7.19)] the current

j "(x}= 0'(x)p"W(x)

is conserved:

a„j"(x}=0.

The associated conserved charge is

(8.23)

(8.24)

d 'x j o(x) (8.25)

d 'x j)'(x}P'P(x), (8.26)

which upon inserting the expansions (2.6) and (4.3}
becomes

d 'p[ a*(p, o)a(p, o) —(-) ' b(p, o)5*(p, a')1
0

(8.27)

d 'P[
I a(p o) I' - (-)"

I b(p o) I'1 (8.28)

IX. SECOND QUANTIZATlON

We formally second-quantize the present theory
in the usual fashion. Let the a's and b's satisfy

which, as noted before, is positive-definite for
half-integer spine and positive (negative} definite
for positive- (negative-) energy solutions for
integer spins. When second-quantized and normal-
ordered using &he usual spin-statistics relation-
ship all spins lead to the latter case.
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[o(p, o), o'(p', o')J, =5(P-p') 5..
[5(p, o), &*(p', o')], =5(P-p') 5..

(9.1a}

(9.1b)

and all other commutators (anticommutators) van-
ish. %e assume" that the CCR hold when s is an

integer and that the CAR hold when s is a half-

the canonical commutation (anticommutation) rela-
tions CCR (CAR) for integer (half-integer) spine,
respectively:

integer. In both cases the relations (9.1) are re-
alizable on a (positive-definite metric) Hilbert
space which is the underlying Fock space for the
formalism.

In configuration space we may determine the
canonical conjugates to the independent components
[a =1, . . . , 2(2s+1)] of the field p„(x) from the
Lagrangian (8.1). It is 4)s(x) Po&„. We may cal-
culate the CCR (CAR) from Eqs. (2.6), (4.3), and

(9.1}:

[4 (x), 4's(x')]. =(2;.p d'f
Z [u.(p, o}~s(-p,o)s ""*)-'.(P, o) o', (-p, o)e"'* *']

and from Eqs. (5.25) and (5.38) we get

[4.(x},4',(')], = . ' ' +(p I) s-"'"-"'- ' -(p ~ p) s" '-*'
(2v)' 2E i m m

(a ~ gM
ip. s {p ) ~ i [s &p'(*-*') -e&p'(~-~')]

m I „s(2w)' 2E

=i ip s — b,(x-x')(pals)"
I~g

(9.2)

{9.3)

(9.4)

(9 5)

which displays the covariance and causality of the
commutator (anticommutator).

In order to see more clearly that the theory is
indeed local, consider the projection of (9.5) onto
the space of the independent components. The in-
dependent components are those which enter the
time derivative term of Eq. (2.1) and so they cor-
respond to the 2(2s+1)-dimensional non-null sub-
space of P,. Since Eq. (2.5) implies that P~(P,

'
-1)=0 the projection onto the non-null subspace
of Po is simply J30'.

In the following we wiLL need the fact that for the
independent components

[p, , p ],„s=0, a, p =1, . . . , 2(2s+1),
i=12 3 (9.6)

Proof. The algebraic relation (2.5) for the
choice p. =0 = v, X = ~ = 1, 2, 3, becomes

~0 ~0 ~ + ~o~ J(30+~ ~o~o

which implies

Po'P; Po+Pol; Po'+P; t30 —P; 60=0, (9.8}

P.'[P;, P.J,P: =0, (9.10)

which is the desired result.
Now let us consider the commutator {anticommu-

tator) for «, =«,' on the space of independent com-
ponents. We find

P.'[ 4(«}, 4 '(«' )P.J, I,, .,Po'=

(P &}'
=~P,' iP eP, — Jj, P,'~(x-x') . (9.tl)

0 0

But purely spatial derivatives of

~(x- x }~„„,=0

vanish, so we get

where we have multiplied from the right by Po and

used JI30' = po. Again using this last relation we get

~0'~, ~o'+ Po'~; ~o' =0

)X =X0 0

(9.12}

From Eq. (9.10}, Po'=Po, and (Cl'+m )4(«- x') =0
we get

p.'[ 4 (x), j '(x')P.J, I.,=.;P.' = p' &.d (« -«' }I., -

= p,'5"'(x- x') {9.14)

and so

[&j()«}&)&', {'«},P, l, l.,=.,=&, &"){x—x') (9.15)

for n, j = 1, . . . , 2(2s + |).
The energy and charge spectrum has already

been mentioned in Sec. VIII and can be determined
directly from Eqs. (8.21) and (8.27), respectively.
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Once normally ordered, H is positive-definite for
all spin values and Q is indefinite.

We see therefore that the difficulties of nonlo-
cality, indefinite metric, and indefinite energy
may be simultaneously avoided in the present
formalism.

if and only if

(ip 8 -m)~, ~(is)y(x) =0, (10.6)

where we have used Eqs. (3.10) and (10.4). Appli-
cation of property (4.18) yields

X. DISCRETE SYMMETRIES q, x(is)(ip 8 -m)4(x) =0 (10.7a)

as(pl o) ='1'( pi&)~

b~(p, a) = (-)"q*,b(- p, c),

where q~ is an arbitrary phase. "
In configuration space we find

(10.1a)

(10.1b)

y~(x, f)=g~Q d'p[a(p, a)a( p, a)e -" "

+ (-)"v(p, a)b*( p, a}e'~ '*]-

(10.2)

As mentioned in the Introduction, in the absence
of an q matrix we must abandon the usual imple-
mentation of a parity symmetry, P. In this sec-
tion we shall first consider a more general parity
realization in terms of a linear operator„and then
we shall consider an antilinear realization appro-
priate to the present formalism in addition to the
other discrete symmetries, time reversal T and

charge conjugation C. We shall argue that the
parity symmetry may still be realized even in the
absence of an g matrix, i.e. , in the absence of a
self-conjugate representation.

First, let us consider the more customary parity
realization on the solutions of Eq. (2.1). The ac-
tion of P on these solutions may be given in terms
of the coefficients of the expansion (2.6):

if and only if

(i13 S -m)y(x) =0, (10.Vb)

ar(p, c) =Ta(p, a)T '=qrCc, '1 a(-p, a'), (10.8a)

br(p, a) = Tb(p, a)T '=@AC';,' b(-p, a')„(10.8b)

which tells us that the equations of motion in the
unprimed frame and the primed frame are identi-
cal. Thus, with this definition of P, Eq. (2.1) is
parity-covar iant.

Since the operator involved in the parity opera-
tion is the same as that used in the dual transfor-
mation, it is natural in the present formalism to
consider a parity realization which is antiunitary
rather than unitary. We present a general discus-
sion of the action of parity on the observables in a
relativistic system in the Appendix and argue there
that if parity is to be realized in terms of an anti-
unitary operator then it must also induce a re-
versal of operator products. We incorporate this
in the following discussion of the discrete symme-
tries for the systems here under study.

Consider again the solutions to Eq. (2.1) as ex-
panded in Eq. (2.6}. Define the action of the dis-
cr ete symm etries on the Fock- spac e operator s
now as follows:

=q g 'P[ (-p a)a(P a)e '""' " " a, (p, a) =Ca(p, c)C "=q,b(p, o-), (10.8a)

= q~y(-x, i },

+ (-)"~(-p,c)b*(pc)e'"""'"]
(10.3)

(10.4)

bc(p, cr) =Cb(p, c)C '=pa*a(p, cr),

a~(p, o) = Pa(p, o)P ' = q~ a*(-p, c),

(10.Bb)

(10.10a)

(ip '8-
m) 4'( 'x) =0 (10.5)

where we have used Eq. (4.3). Thus the usual
parity matrix which acts only on the indices of p
is replaced by the matrix differential operator
A(is), which has the effect of reversing the three-
momenta of each of the Fourier components.

The covariance of the wave equation may be
demonstrated as follows. In the primed frame,
x'=(-x, f), Eq. (2.1) reads

b~(p, o) =Pb(p, a)P ' =q~(-)" b*( p, a), -

(10.10b)

where the q's are phases and C" is defined by
Eq. (2.10). T and P are assumed to be antiunitary.
and C to be unitary.

In configuration space we obtain the following
transformation properties, again using the expan-
sion (2.6).
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We have the following equation:

A. Time reversal (antilinear)

4.'(x) = T@.(2)T '

1
}T(2s)3/2

S/2
d'p — u* p, o e~' a -p v' e'~ "+U~ p, v)C~'.*a* —p v')e f~

(10.11)

(10.12)

1
1T (2 )3/2

X/2

d'p — u* -p, v C",,' a p, o' e"~()"o""'"+v* -p cr C".b* p, a' e f~ "0 fp "

(10.13)

From Eq. (2. t) we have

u*„(-p,o)C';,' = S„*3(L(-p))u3(0, o)C",,' ~ (10.14)

=S„*,(L( p))C»u, (0,io'), (10.15)

transformations may be constructed from subma-
trices whose nonzero contributions are propor-
tional to S~'], K", or K~' ~ and these alone. "
Thus we get

where Cz is given by

C- gC 4' (10.16)

u,*(-p, o)C"..' ~ =C,u, (p, o') .

Similarly,

(vy( p, Q)Cga = C~gv3(P, o )

(10.1&)

(10.20)

and sf, i = 1, . . . , N, enumerates the N spins oc-
curring in the completely reducible representation
of the rotation subgroup, S(R). For example, if
S(A} is the representation (s, 0)$(s ——,', —,') then

C(s) 0

and so we get

Similarly we have

y."(x, t}=2}T'4 t(x, -f)C,'. .

(10.21)

(10.22)

0 C(8)

0 0 C(s -1)

(10.1t)

CP~C ' =Pq. (10.23)

We note for later use that in addition to the prop-
erty (10.18), C also has the property that

in the basis where S(A) is completely reduced.
Now because of the properties (2.13) and (2.14)

it follows that

(10.18)

This is true because in any finite-dimensional
representation the generators of pure Lorentz

This also follows from (2.13) and (2.14) along with
the facts that, as a result of (2.3), (i) I3, must be a
multiple of the identity on each of its square sub-
matrices in its SU(2) decomposition, and (ii) be-
cause of its 3-vector character, the nonvanishing
submatrices of P, , i=1, 2, 3, must be proportional
to either S, K, or K

8. Charge conjugation (linear)

We have the following equation:

1
9o(2 )3/2 ~

r/2
d'p — u p, a 6 p, g e ""+v p, v a*p, o)ef~'"

(10.24)

(10.26)

and

pu(0, o) = v(0, o) (10.26a)

Introduce the matrix p cI, p~ =I, which commutes
with S(A) and C and which has the further property
that

matrix

1 0 0

p= 0 -1 0

0 0 -1
(10.27)

p (0, ov) =u(0, o). (10.26b)

For example, if S(A) =(s, 0)e'(s--2', —2'), p would be
the [(2s+1)+(2s+1)+2s —1=6s+ 1]-dimensional

in the basis where S(A) is completely reduced.
Note that Eqs. (10.26) imply that [ p, p&&), =0, and

hence since [p, S(A)] =0 for all A, Eq. (2.3) yields
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(10.28}

These properties allow us to use Eqs. (2.7) and
(2.8) to establish

(pC ')s*(-p, o) =(oC 'S*(L(-p)) u(0, o) (10.29)

=S(L(p)) C 'v(0, o)

= v(p, o)

(pC ')r*(-p o) =(-)"~(p o)

(10.31)

(10.32)

(1O.33)

=S(L(p)}C 'pu(o, o) (lo.3o)
where we have made use of Eq. (2.11).

Using these relations in Eq. (10.25) we have

1/2
(*) ~.) =./. P d'p(~ (( )"p(: "'-( p. )&(p, -) ""~ p(: ' "( p, ) '(p,-)8'"].

lc(PC )n8(t 8(+})

where to get the last equation we have used Eq. (4.3).
In a similar manner we find

c 4*.(x, t)c -' = (-)"(pc ').,4,(x).

(10.34)

(10.35)

(10.36)

C. Parity (Iantilinear, reverses operator products)

We have the following equation:

y'. (x, t) =P4.(x, t}P

=n,
(2 )...p Jd'( z (:(L ) '(-i, )

"' ~ (L )(-'.)*'((-i&, )

(10.37)

(10.38)

=q,P(-x, t),

(10.39)

(10.40)

where we have used Eqs. (10.10), (2.6), (4.3), and
the antilinear nature of I'.

In a similar fashion we get

(t)„(x,t) = P(t), (x, t)P ' = q pg, ( x, t) . -(10.41)

TL(x, t)T '= L(x, -t}, - (10.42)

So defined we see that T maps the solution space
of Eq. (2.1) into itself ((t)- Q), while C and P in-
volve the mapping A((t) - (t)).

We shall conclude with a consideration of the ef-
fects of the discrete symmetries on some impor-
tant quantities.

Bearing in mind that T is taken to be antiunitary
with no operator-product reversal, t is unitary
with no operator-product reversal, and P is anti-
unitary and reverses operator products, it is easy
to verify that these transformations defined by
(10.8), (10.9), and (10.10) will preserve the Fock-
space CCH (CAH) given in Eqs. (9.1).

Using the transformation properties of the fields
under T, C, and &, the properties of C and p given
in Eqs. (10.23) and (10.28), and, in the case of C,
normal ordering of field operators, we may derive
the following transformation properties:

THT '=H,

Tj„T '=j"(x, -t);
C L(x, t) C

-' = I.(x, t),
CHC-'=H,

cj"(x, t}c )=-j"(x, t);

(10.43)

(10.44)

(10.45}

(10.46)

(10.47)

PL(x, t)P ' = L(-x, t),

I HI-'=a,

Pj„P '= j"( x, t), --
(10.48)

(1O.49)

(10.50)

where for parity we have used the operator-re-
versal property

P(AB)P '=(PBP ')(PAP '). (10.51)

XI. DISCUSSION

In the present study we have examined certain
relativistic descriptions of free, massive, spin-s
particles which do not permit the existence of a
Hermitianizing matrix, g, and we have seen that
in the absence of such a matrix we may still have
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an invariant scalar product, bilinear densities,
and a realization of parity invariance; in other
words, all of the usual benefits of an g matrix.
In order to achieve these ends we have seen that
it was necessary for us to introduce a dual space
(or, equivalently, a metric operator) which is
more complicated than the usual one. Although
the characteristic mapping & involves derivatives,
we also saw in Sec. IX that the theory is still, at
least formally, a local one.

It has been the purpose of this paper to present
in detail the above results for free-particle theo-
ries, thus providing the framework for the intro-
duction of interactions. The ultimate worth of
the present formalism mill of course depend upon
its applications in this latter domain. In general
we may expect that the mapping A mill be inter-
action-dependent. However, given the difficulties
of the traditional methods in forming operator
products, we feel that the possibility of having a
natural dependence upon the interaction of such
products is not at all an unpleasant prospect.

The assumptions of the present work have lim-
ited its results to particle theories whose wave
functions have the index-transformation properties
of (2.19) and their conjugates. " The first class
of the above wave equations is the simplest and
has also been suggested by the consideration of
the Galilei-invariant higher-spin wave equa-
tions. "" This system and the others of (2.l9)
are consistent and causal in the presence of a
minimally coupled external electromagnetic field,
and they afford a simple and uniform description
for any spin. Here we have seen that we may also
define a scalar product, a Lagrangian, and a par-
ity symmetry for these equations.
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APPENDIX

%'e wish to demonstrate that parity may be real-
ized either as a linear (unitary) operator which

does not reverse operator products (I., R} or as
an antilinear (antiunitary) operator which does
reverse operator products (A, R)."

Consider the invariance group of the system,
the proper Poincarb group. The nonvanishing
bracket relations of its Lie algebra are

[J,, J,]=i&„„J,,
[K, , Kq] = ie-, ii, J~,
[J(, Pi] = iei~i, Pl, ,

[K, , Pg]-i5, J Po

[K, , P,] =iP, ,

[J,, K,] i„e-, K, ,

(A1a)

(A 1b)

(Alc)

(Aid�}

(Ale)

(A if)

where J, , K, , P„and P, generate space rotations,
boosts, space translations, and time translations,
respectively.

Ne may define the action of parity on the gen-
era.tors as

8) =PJ,I' '=J, ,

K] -PK]P —-K],

P =PPg '=P

(A2a)

(A2b)

(A2c)

(A2d)

1. P linear

If P is linear then we have

P[K, , Pi]P '=i 5,

HAPP+

'

=)6]~ Po

= [K„P,]
=[K', , P, ]

since both K& and P& change sign under P.

(A3)

(A4)

(A5)

(A6)

2. P antihnear

If P is antilinear then we have P(aO)P '
=@*POP ' and so

P[K(, Pi]P '= i5 PiiP, P-'
= -i 6]~ Po

=-[K,, P, ]

= -[Kf, Pir]

=[p, , Kri] .

(A7)

(A8)

(A9)

(AIO)

(A11)

We now demand that the Lie algebra (Al) be pre-
served under the action of P given by (A2). This
may be done in two ways, which we shall illustrate
by means of (Ald).
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Hence if I' is antilinear then it must also reverse
operator products if it is to preserve (Ald):

P(AB)P '=(PBP ')(PAP ') .

Identical results are obtained for the rest of the
relations (Al).

It is this (A, R) type of realization which was
presented in Sec. X of the text.
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