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Wave functions for free, massless particles and nonintegrable representations of sl(2,c)
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A class of representations of the Lie algebra sl(2, e) is discussed. These representations are
operator-irreducible and su(2)-integrable, but are not all integrable to representations of the
group SL(2, c). Free, massless fields and wave functions belonging to such index-space repre-
sentations are considered, and the possible invariant helicities are given in each case. It is
shown that the nonintegrability of the sl(2, e) representations does not preclude the possibility of
realizing the appropriate unitary representations of the Poincare group ISL(2, c}. This permits
the removal of discrepancies between the results of Bender, Frishman et al. , and Simon
et a/. In particular, it is concluded that the free electromagnetic potential, in the radiation
gauge, belongs to an infinite-dimensional representation of sl(2, c) which is not integrable.
The relationships between free, xnassless fields and wave functions, having the same invari-
ant helicity but belonging to different representations of sl(2, c), are discussed, and the
corresponding generalization of a result due to Neinberg is obtained.

I. INTRODUCTION

Elementary particles are commonly described
in terms of multicomponent fields or wave func-
tions P(x), which belong to finite-dimensional rep-
resentations of the group SL(2, c). In the "index
space" of those g belonging to a given such repre-
sentation there acts a set of operators (matrices)
S„„=-S», satisfying the commutation relations
characteristic of sl(2, c), the Lie algebra of
SL(2, c), via. '

I[ST Svo] g~nS o+g oSvv g„oSv, -gv, S„

These S„„generate in the index space the corre-
sponding representation of SL(2, c).

Attention has been focussed in recent years on
infinite-component fields and wave functions. ' In
such cases, one must be careful to distinguish be-
tween a representation of the Lie algebra, and one
of the group, in the index space. One can conceive
of functions belonging to a representation of sl(2, c)
which is not integrable to a representation of
SL(2, c). The index space might still be a Hilbert
space, and contain a dense subspace which is in
the domain of definition of each of a set of opera-
tors S„„,which is invariant under the action of
those S„„, and on which the commutation relations
(I) are satisfied. The existence of such a common,
invariant, dense domain is not sufficient to guar-
antee that the S„„beintegrable. '

Can fields and wave functions belonging to nonin-
tegrable representations of sl(2, c) be used to de-
scribe elementary particles? For such an appli-
cation, one seeks a Hilbert space H of wave func-
tions, carrying some particular unitary represen-
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tation of the Poincars group ISL(2, c), generated
by the operators

P„=is/ax",

Jlfv XVPv Xv PQ +SVv '
(2)

These operators must form a representation in H
of isl(2, c), integrable to the particular unitary
representation of ISL(2, c) of interest. However,
if such a space H can be found, the wave functions
in it (or at least in a dense subspace of it) will sat-
isfy one or more wave equations, which may be
thought of as projecting onto H a much larger
space, the direct product of the index space and
some space of (scalar) functions of the space-time
coordinates. Then it is conceivable that the inte-
grability of P„and 4„, in H does not always re-
quire the integrability of the S„, in the index
space.

Ne shall show that this observation provides the
clue to the resolution of an apparent paradox which
has arisen as a result of recent studies, by sever-
al people, of the description of free, massless
particles in terms of infinite-component fields
and wave functions.

Let us suppose that we are given wave functions

g belonging to an index-space representation of
sl(2, c), not necessarily integrable, and are re-
quired to describe a free, massless particle with

invariant helicity X, where 2X is integral, Then
we seek a Hilbert space of such functions, carry-
ing the irreducible, unitary representation' 0),+

of ISL(2, c). As Bargmann and Wigner' have
shown, the wave equations to be satisfied in this
case are

P„Pvy=0,

~~V VPo~
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The second equation reduces to

(4)S„,P'(=A. P„(,
where S„,=-,'e„,~, S". We look for (positive ener-
gy) solutions in the form

'(, )=(2,)-"*Jd '&*"e"*'(p)'

where p" =(E, p), E=Ipl, and p ~ ~=p„x", and we
find that Eqs. (4) are satisfied provided

s„.p'0 =~0„4. (8)

For a given value of A., one cannot proceed further
if the index-space representation of sl(2, c) is such
that there are no (nontrivial) solutions of Eqs. (6).
One may ask for which representations there are
Hilbert spaces of solutions, carrying the repre-
sentation 0 „+, but we prefer to tackle the con-
verse questions:

(Ql) Given an index-space representation of
sl(2, c), for which values of X are there solutions
to Eqs. (6)'?

(Q2) For which of these are there corresponding
Hilbert spaces carrying the representation 0),. of
ISL(2, c)'?

%e shall tackle these questions for a certain
class C of Hilbert-space representations of
sl(2, c), which we may call operator-irreducible
and su(2)-integrable. Let R be a typical element
of C, and S„„the operators of R in a correspond-
ing Hilbert space K~. Then we require that there
is a subspace D~, dense in K~, lying in the domain
of each S„„and invariant under the action of the

S„,. Secondly, we require that the only continuous
operators on KR which commute on D„with all S„,
are the scalar multiples of the identity operator I.
Finally, we require that the (reducible) represen-
tation of su(2) formed by the operators 5
=(S», S», S») is integrable to a representation of
SU(2), and that every (finite-dimensional) SU(2)-
irreducible subspace of K„ is contained in D~.

Then it can be deduced that' the Casimir invari-
ants

G, =-:Sq„S""=(ko +c —1)I,

are (on D„) multiples of I, with 2k, a non-negative
integer, and c a complex number. Furthermore,
the representation of SU(2) is of the form

(k,)e(k, +1)e (8)

where (s) denotes the (2s+I)-dimensional irreduc-
ible representation of SU(2), on which 5'=s(s+I)I.
Thus

D~DD(s), s=ko, ko+I, . . . ,

~here D(s) denotes the representation space for

(s). It can also be deduced that, if k, —c is nonin-
tegral, or if (c~-k„ the series (8) is infinite.
Then' may be partially labeled [k„c}.If k, —c
is integral, with ~c ~&k„any one of three cases
can occur. In the first, the series is finite, ter-
minatingwith(~c~ —1). Then', whichmaybe
completely specified by (k„c}to within equiva-
lence, is finite-dimensional and, necessarily, in-
tegrable.

In the second case, the series is infinite, with
the subspace

D(k, )e D(k, +1}$~ ~ 8 D(~c~ —1),
but not its complement, being invariant under the
action of the S„,. Then we partia/ly label R by
(k,-c}, to indicate that, under the action of the
algebra, a vector inD(s), s~ ~c~, canbe carried
into D(s'), s'& ~c~, but not vice versa. Inthe
third case, the series is again infinite, but now
the linear span of the subspaces D(~c ~),
D(~c ~+I), . . . forms the (unclosed) invariant sub-
space of D„, and R may be partially labeled by
(k, —c}.

It is well known' that there are, for the group
SL(2, c), irreducible representations [k„c], and
operator-irreducible (or "integer point") repre-
sentations [k,—c], [ko-c], whose associated rep-
resentations of sl(2, c) have all the properties of
the representations [k„c},[k,—c}, and {k,—c},
respectively, as described so far. Ho~ever, it
must be stressed that the infinite-dimensional
representations of sl(2, c) cannot be specified
completely by the values of the Casimir invariants
(7). The operators S„„are not completely defined
until one specifies their domains, and the property
(9) does not do that.

For given ko and c, with A'0 c non nteg a for
example, there are many representations (k„c}
with all the properties described above, but dis-
tinguished by the variation in the domains of the
S„„. For that representation of sl(2, c) defined by
the representation [k„c)of SL(2, c}, these do-
mains will be determined, and any f k„c}for
which the domains differ from these, must be
nonintegr able.

In Sec. II, we complete the definition of the rep-
resentations of sl(2, c) in C. For the rest of this
section, we shall refer to representations in C
"of the type" (k„c},(k, —c}, and fk, —c}.

To return to the questions (Ql), (Q2), we note
that Weinberg'has answered (Ql) for all finite-
dimensional representations of sl(2, c). For fields
or wave functions belonging to the finite-dimen-
sional irreducible representation (k„c},he found
that the only possible invariant helicity is

1=k, sgn(c).
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Furthermore, it is not difficult to see that a cor-
responding Hilbert space, carrying the represen-
tation 0„-, can be found in every such case. It
follows that in order to describe free, massless
particles with any given invariant helieity, it is
possible to restrict one's attention to finite-di-
mensional representations.

On the other hand, Bender' claims to have shown
that certain "radiation gauge" fields„and in par-
ticular the free electromagnetic potential in the
radiation gauge, belong to infinite-dimensional ir-
reducible representations of SL(2, c). He has de-
scribed fields with integral helicity A. w0, belonging
to [ j X j, sgn(A. )l; and with half-odd-integral helicity
h. (jXj& —,) belonging to [ jXj, —,sgn(A. )].

Following upon his work, Frishman et a/. ' have
considered question (Ql} for an arbitrary infinite-
dimensional representation [k„c], and have con-
cluded that the possible values of ~ are k, and -k,
in every ease. They have described fields with
these invariant helicities, in particular reproduc-
ing the results of Bender, but have not considered
the second question (Q2) for the corresponding
wave functions.

More recently, Simon et a/. "have reconsidered
(Ql) for wave functions belonging to an arbitrary
infinite-dimensional representation [k„c], ob-
taining results which disagree with those of Frish-
man et al. They have concluded that, if the solu-
tions to Eqs. (6) are required to belong to the cor-
responding representation space for [k„c], then
the possibilities are (at least for A. c 0)

A. = ik, , provided Re(+c}& 1 (11)

A. =c, provided c -k, is integral

jcj, k, &1. (12)

A somewhat paradoxical situation arises when
one attempts to reconcile these results with those
of Bender, since they imply that there are no wave
functions with integral helicity ~+0 in the repre-
sentation space for [ jkj, sgn(X)]. However, it is
well known in particular that a perfectly good real-
ization of 0,+ 0,+ can be obtained in terms of
the radiation-gauge electromagnetic potential,
which, according to Bender, belongs to the s =1
component of an element of [1, l)%[ I, -1).

In attempting to understand this rather puzzling
situation, we find that Simon et al. and Bender
have all worked with representations of sl(2, c)
rather than SL(2, c). Our analysis in what follows
shows that the free electromagnetic potential, for
example, may properly be regarded as belonging
to the s =1 component of an element of a represen-
tation in C of the type [1,lj 8{1,-1]. This rep-
resentation is inequivalent to that discussed by

Simon et al. , whose results therefore do not apply,
and it is not integrable to the representation
[1,I][1, -1]. However, this nonintegrability
does not remove the possibility of realizing the
representation 0,. 0 „in a Hilbert space of
such wave functions, as we shall show.

In Sec. Ill, we answer the question (Ql) for the
representations of sl(2, c) in the class C, and find
that

(a) for k, -c nonintegral, representations of the
type [k„cj can be found such that solutions to Eqs.
(6) exist for X = k, and X = -k„.

(b) for ko —c integral, with jcj- k„representa-
tions fk„cj can be found such that the possibilities
are" A. =ko, -ko, and -c

(c) for k, —c integral, with jc j&k„(i) represen-
tations (k, —cj can be found such that the possibil-
ities are A. =k, and -k„and (ii) representations
lk, - cj can be found such that the possibilities are

ko ko e, and -c.
As regards the second question (Q2}, we show

in Sec. IV that for each value of k„c, and A. in
(a)-(c) above, a Hilbert space of the correspond-
ing wave functions can be found, carrying the rep-
resentation 0,+. [There is one possibly exception-
al case, arising when the representation of sl(2, c}
is of the type [0, Oj.]

Weinberg' has shown that a field or wave func-
tion g(x} with invariant helicity X, belonging to the
finite-dimensional representation [ j A j, ( j

A j+n+1)
x sgn(X)j, where n is a positive integer, can be
regarded as the nth space-time derivative of a
|) '(x) belonging to ( jXj, {jXj+1)sgn(X}j, and having
the same helicity. In Sec. V, we generalize this
result to obtain the relationships between fields
or wave functions with the same helicity, but be-
longing to various index space representations of
sl(2, c).

II. REPRESENTATIONS OF sI(2,c)

%e shall now complete the definition of the infi-
nite-dimensional representations of the type
(k„cj, [k,- cj, and (k,- cj in the class C. (The
finite-dimensional ones are well known. )

In accordance with (8), we introduce a Hilbert
space K(k, ), and in it, a complete orthonormal set
of SU{2) basis vectors $, , where m runs over the
values s, s -1, . . . , -s for each value of s in the
set (, k„k, +1, . . .j. The action of the operators S

in such a basis is well known. %e have

S'$, =s(s+1)$,

S3$ = m$,

S,&, = [(s + m+1}(s v m)]'"(, „...

where S, =S, +iS,. From the requirement that the
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commutation relations (1}be satisfied on Dz, we

deduce that the action of the remaining operators
T3 —S30& Tk S10+ ~20& is of the form

D( )[( 1)2 P]uaf

T, $, =+D', '[(s vm}(s+m —I)]'"F„„,, (14)

+ D',"[(s v m)(s + m+ 1)]'"(.
s D", [(s s m+ 1)(s + m+2)]'" ]„.

where

D',"=tk,c/s(s+1)

and the coefficients D', ' and D~' satisfy

Dt 'D" =(s' —k,')(c' —s')/s'(4s' —1)

Suppose we take, in the case when either k0 —c
is nonintegral, or

~
c

~

& k„
[(s2 k 2)(s c2))l/2

sr(s)(4s' —1)'"

t, ) iT(s)[(s' —k, ')(s' —c')]'"
s(4s' —1)'"

where r(s) is a finite nonzero complex number for
each s~ (A„A, +1, . . .}. Then it is readily
checked that a representation of sl(2, c) satisfying
Eqs. (13)-(17)has all the properties of a repre-
sentation in C of the type (k„c},as described in
the Introduction. However, Eqs. (13)-(17)do not

specify a representation completely, since they
do not completely define the domains of S and T.
According to the known theory of SL(2, c), it is al-
mays possible, for given A0 and c, and arbitrary
T(s), to choose these domains in such a way that
the representation of sl(2, c) so defined is integra-
ble to the representation [A„c]of SL(2, c). How-

ever, we shall define the representation {A„c,T}
of sl(2, c) in C by sPecifying the domains of 5 and

T to be the largest possible, "consistent with Eqs.
(13)-(17). Then if we write Eqs. (13)-(14}in the
form

S„.&. ..= g (a„.)....&. ,. .
S', m'

and if

s, m ST m

we can say that Q is in the domain of 5„, if and

only if

S em Ssm

With this definition, representations (k„c,7}
with the same k, and c, but different 7(s), cannot
all be regarded as equivalent, and so cannot all
be integrable to the representation [k„c]of

SL(2, c). For exampie, consider the representa-
tions(0, 0, rj. The vector

4 = Q &.(., p

S=O

r(s)*~(s) = 1, s e (k„k, +1, . . .}. (18)

What is more, if 5„, and S„', are the operators in

(k„c,T} and (k„c,7'}, where r and v' both satis-
fy (18), then it is easily seen that S„, and S„'„are
related by a unitary transformation. Then one

may suppose that, if [k„c]is unitary, the repre-
sentation (k„c, rj is integrable provided the con-
dition (18) is satisfied. In the cases when [k„c]
is nonunitary, it is plausible that again (k„c, Tj is
integrable for some T(s) but not others How. ever,
it is not clear that (k„c,1}, in particular, is in-
tegrable, as Simon et al."have assumed. We
shall not attempt to determine which, if any, of
the (k„c,T} are integrable. However, from what

we have said so far, we can assert that the do-
mains of S and T of any (k„c,r} are at least as
large as (i.e. , include) those of a representation
integrable to [k„c]. Therefore, if we find an
eigenvector of T„say, in (A„c, r,j, for which

there is no corresponding eigenvector in every
(k„c,r,j, we can conclude that (k„c, r,j is not
integrable, We use this argument in Sec. IV when

deducing that Bender's integer-spin radiation-
gauge potentials belong to nonintegrable represen-
tations of sl(2, c).

We shall henceforth retain the labeling (k„c, rj
for the representation of sl(2, c) defined by Eqs.
{13)-{17), with the described assumption about
the domains of S and T. This labeling is clumsy
to the extent that it introduces an unimportant dis-
tinction between representations which should
properly be regarded as equivalent, but at least it
distinguishes ones which are clearly inequivalent.

So far me have not considered the representa-
tions in C of the type (k, —c} a.nd(k, —c}, which

arise when k, —c is integral, with ]c ~&k,. In the
case of one of the type (k, —c}, the action of the

A, =(-1)'(2s+1)'"r(s)T(s —1) r(0),

belongs to K(0) for some r(s), say r(s)=(s+I} /
(s+2)'. Then it is an eigenvector of T„corre-
sponding to the eigenvalue -i. But there is no

such eigenvector in K(0) for, say, r(s) =1, when

T, is self-adjoint, as it must be if (0, 0, T} is to be
integrable to the unitary representation [0, 0].

It is natural then to ask which, if any, of the

(k„c,T} are integrable to [kp, c]. In the cases
with c pure imaginary, or with &0=0, 0 «c «1, it
mould seem that one can answer this question.
Then [k„c]is unitary, and the S„„ in {k„c,r}
are all self-adjoint only if
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S„„in K(k, ) is as in Eqs. (13)-(16},but now

i(s+ ~c ~
}(s'-k,')"'

s(2s —1)r(s)

i(s —
~
c

~
){s'—k,')'"~(s)
s(2s + 1)

(19)

j ) i(s —~c ~)(s' —k,')'"
s(2s —1)r(s)

(+i '(s +
I
c

I
}(s'—k,')"'v.(s)
s(2s + 1}

(20)

In Sec. IV, we shall need to know the matrix ele-
ments of S„„in a different basis, for each of the
representations (k„c,Tj, [ko-c, r), and
[ko- c, 7). With the adoption of this basis, a gen-
eral element X'of the space K(A, ) is written as an
infinite-component object

( (koi (»orj) ) (21)

with r(s) as before. Then, as required, the sub-
space

D(k, )+D(k, +I)e sjD(ic(-1),
but not its complement, is invariant. Again, the
domains of 8 and T are taken to be the largest
possible, consistent with Eqs. (13)-(16), (19), and

the representation is labeled [k,- c, ~). Not all
such representations, for given k, and c, can be
regarded as equivalent, nor can they all be inte-
grable to [k,—c].

Similar remarks apply in the case of the repre-
sentation (ko —c, 7}, where the action of the S„, is
as in Eqs. (13)-(16), with

If k, is integral, g" =-y(,). . ., is completely sym-
metric and traceless in its s three-vector sub-
scripts i,j, . . . , A. If ko is half-odd-integral, )(('
=-)(,.'&'. . ., is completely symmetric and traceless
in its s ——,

' three-vector subscripts i,j, . . . , k and
in addition is a spinor, satisfying

(s)
&& Xgy ~ ~ ~ a (22)

where g,. are a set of Pauli matrices, acting in the
usual way in the two-dimensional spinor space.
The scalar product of two elements X, X' of K{A,) is
given by

(s)* j (s)x x = ~~x;, . . .„)(„.. .„ (23)
s =AD

where X" is to be interpreted as the Hermitian
conjugate of y(', if 2s is an odd integer.

The action of the su(2) operators 8 is now given
by

i(s) . (s) (s)(S.X)(j»='ermj Xmj .»+«rmj Xim»
(s)

~rjftAI XA j ' 'm 2+r X/J ~ ~ ~ ft y

(24)
where the last term is to be omitted if s is inte-
gral. For the remaining operators T, one finds

(T,X)'; . . ., =D'.-,',[(s+1)(2"I)]'"X",,". .
+ +n {SrX)ij k

-d, [s(2s —1)J-'j'&',,—,". , . {26)

Here the coefficients D(", D", , and D( ' are given
by Eqs. (15) and (17), (19), or (20), according as
the representation is (k„c,~], (ko —c, 7), or
(ko- c, 7}. The quantity p' " is given by

(s -1) (s -1) (s -1) (s-1)
p ri jm nk (2s 1)(6ri Xjm nk + 6rj Xim nk + + 6r» Xijm n)

V(~ (s» +r, (s» +. . . +r,
. ( ij Xrm' n» + im Xrj 'n» + 6 Xrni »'jm

(s-I) (s-i) (s -i)
ion(Srnj Xjm ~ ' 'n» E+rXnjim' ' 'nk+ +Grok Xijm' ' 'n) ~

where again the terms involving Pauli matrices are to be omitted if s is integral.

III. POSSIBLE HELKITIES (Z'-k ')(X'-c') =0. (28)

In this section, we shall answer the question
(Q1), posed in the Introduction, for each represen-
tation of sl(2, c) of the type (k„c,7), (ko —c, r},
and(k, -c, 7). Note first that, onD„,

(S„„-k, g„„)(S"o +k, g "o}(So, —cga, )(S"+cg")-=0.
p'=(p, 0, 0, p}, p&0,

where they are

429)

Furthermore, A' =c' is not possible unless kp c
is integral. This is easily seen by considering
Eqs. (6) "in the frame"

This is a consequence" of the commutation rela-
tions (1), and the assumed form (I) for the invari-
ants |",and G, . It follows at once that nontrivial
solutions to Eqs. (6), with jsj belonging to {k„c,7),
(k,- c, ~j, or (ko-c, r), cannot be found unless

(Sok+Soo)Q =(Sio+Sio)p =0 ~

The spectrum of S» =S, in K(k, ) does not include c
or -c unless A~ —c is integral.

It is convenient in what follows to work with Eqs.
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(6'} rather than (6). The integrability of the rep-
resentation of su(2) provided by S ensures that
nontrivial solutions can be found for the former
set, if and only if they can be found for the latter
set, for any p" =(E, p), with p real. The opera-
tors S12 S23+S20 and 513+$10 form a representa-
tion of the e(2) subalgebra of sl(2, c), and Eqs. (6')
indicate that @ belongs to a one-dimensional rep-
resentation of this subalgebra. The problem here
is therefore that of finding all the one-dimensional
representations of e(2} in each of the representa-
tions (k„c,7}, (k, -c, r}, and (k, -c, r} W.e
shall see that the solution depends in each cise
on the nature of 7(s), and this again emphasizes
the inequivalence of these representations of
sl(2, c), for various 7 Note . that a one-dimension-
al representation of e(2) is trivially integrable to
a one-dimensional unitary representation of E(2),
whether or not the representation of sl(2, c) con-
taining it is integrable.

Following Frishman et al. ,
' we note that the first

of Eqs. (6') can be satisfied only if p is of the form

0= QAs4, ), (3o)
S =k'0

(where of course A, =0 for s &
~

X ~). Then the re-
maining equations in that set can be used to deter-
mine the coefficients A, . These remaining equa-
tions can be put in the form

(S, +iT, )y =0,

and, on substitution for 5, , T, from the formulas
(13}, (14), we obtain two equations to be satisfied
by the coefficients:

(ii) A, = -k0.

A, 7 (s +1)[(2s+3)(s+ 1 +c)]"'
[(2s + 1)(s + 1 —c)]'"

arbitrary .
0

s~k .
0 p

-tS„„p"y=(1 -k,c/) }p„y,
which in the frame (29) yields the equation

iT,@ =(1 -k,c/~}y.

(8) (k „c,7}, k, - c integral,
~
c

~

& k„k, e 0.
(i), (ii) as for (A) aboue
(izi) X=-c.

A, r( s+ I)[( 2s+3)( s+I +k)]"'
'+' [(2s+1)(s+1—k }]'"

(33)

(34)

A, arbitrary .
0

s &k„'

Note that there are only two solutions, one with
A. =k„ the other with A, =-k„ in the cases when k,'
=c2o0.

Note also that there is no solution with A. =c,
contrary to the claims of Simon et a/. " Their so-
lution with

Note that there are two distinct solutions for A. =0,
in the cases with 00=0. These may be distin-
guished in the frame (29) by the eigenvalues of iT„
which are (1 —c) on the first, and (1+c) on the
second solution, whether or not kp 0 In this con-
nection, we note that, in general when A. IO, Eqs.
(6} imply that

A„,D', ,', [(s wX+ l)(s ~X}]"'

+ A, [ i ~ D',"][(s~ A. +1)(s+ ) )]'"
+A, , D", ,[(s +) + I}(s+)1.}]"'=0. (Sl)

A, r(s + 1)[(2s + 3)(s + 1 —k,)]'"
[(2s + 1)(s + 1 + k,)]'"

S &A,'0;

Multiplying by [(s v X+1)(s w X)]", and subtracting
one resultant equation from the other, we obtain

A„,(2s+ I)) d;,', =A, [sD',"—Xi]

x [(s + I —X)(s + I + X)]"' .

(32}

With the help of this equation, we readily find all
the solutions of Eqs. (31) and hence of (6') in the
form (30). We list the results for the various rep-
resentations of sl(2, c) discussed in Sec. 11.

(A) (k„c,r}, k, —c nonintegrat.
(i) z=k, .

A, r(s + 1)[(2s + 3)(s + 1 —c)]'"
[(2s + 1)(s + 1 +c)]"'

arbitrary .

A, arbitrary,
0

while it satisfies Eq. (32) with X=c, does not sat-
isfy Eqs. (31) at s =k, .

(C) (0, 0, 7}. In this case there are two solutions
with X =0. Set

A, = b, (-1)'(2s + )'I" ( r)rs(s —1) 7(0) .

Then b, must satisfy

(s+2)b„2 —(2s+3)b„,+(s+1)b, =0, s ~ 0.
The solutions are as follows.

(i) b, =1. The corresponding p of Eq. (SO) is an
eigenvector of T„with eigenvalue -i, as dis-
cussed in Sec. II.

(ii) b, = Q;,(I/r). On the corresponding Q,
(T, +i)' vanishes, but (T, +i) does not. Thus (T, +i}
transforms this ~t) into a multiple of that defined in
(i).
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(D) {k, c, v}, k, -c integral, ici&k, .
(i) X=k, sgn(c).

A, +, = -A. v(s + I)(a+ I —lc I )/(s +I+
I c I) ~

k, «s& fci;
A, =O s&- fci;

arbitr ary .

(ii) X=-kosgn(c).

A„, =-A, v(s+I),
S ~00;

A, =O, k, «s& ic f;

AI,
~

arbitrary.

(ii) A. = -c.
A, v(a+1)[(s+ I+ko)(a+ I + c

I
)]"~

[(s+1—k, )(s+1 —ic I) "'
s& fci;

A, =O, k, «s& ic f;

A i, arbitrary .
(iii) X=-k, sgn(c).

A, arbitrary .
0

Here the solution Q corresponding to (i) lies in the
invariant subspace

D(k, )SD(k +1)$ ~ ~ ~ SD(ic i
—1).

The S„„of{k,- c, v} realize in this subspace a fi-
nite-dimensional representation, integrable to the
representation [k„c]of SL(2, c). The solution (i)
is therefore the one solution for this finite-dimen-
sional representation, in accordance with %ein-
berg's result (10). Note that iT, has the eigenvalue
(1 —ici) on the first, and (1+ ic I) on the second
solution. In the cases with 00=0, there are still
two distinct solutions with X =0, labeled by these
two eigenvalues of iT, .

(E) {ko-c,v}, ko —c integrol, ici&ko.
(i) X=c.

A, (vs +I)[( s+ I- k)(s +I+Icf)]' '
[(s + 1+k„)(s+1 —

i c i
)]'"

in which the S„„of{k,—c, v} may be seen to real-
ize the representation {I

c I, k, sgn(c), v'} of sl(2, c),
where

v'(s) = v(s) [(s +
i c i )(2s —1)]"'

[(s- ici)(2s+1)]'"
The solutions (i)-(iii) are therefore the three so-
lutions for {I

c I, k, sgn(c), v'}, as described in (8)
Note that again there are two solutions with A, =0
in the cases with 00 =0, and that again these can
be distinguished by the corresponding eigenvalues
of iT,.

Up to this stage we have not discussed whether
or not P, as in Eq. (30), actually lies in K(k, ) for
any of the sequences of coefficients A, defined in
(A)-(8) above. For this to be so, we require in
each case that

(35)
S =%0

It wa, s the imposition of this requirement, in the
cases {k„c,1}, which led Simon et al. to dismiss
many of the solutions in (A)-(F) as merely "for-
mal, " and to arrive at the results (11), (12). How-
ever, whether or not the condition (35}holds in a
given case, depends critically on the nature of v(s),
as is clearly shown by the formulas defining A, in
each of the cases in (A)-(8). Indeed, it is possible
to find v(s), e.g. , v(s) = e', such that none of these
solutions belongs to K(k, ) [excepting the solution
corresponding to (D) (i), which is always normal-
izable]. For our purposes, it is sufficient to note
that v(s) can be found, e.g. , v(s) =e ', such that in

every case the corresponding P belongs to K(k, ).
It is appropriate at this stage to compare the

above approach to the solution of Eqs. (6') with the
second approach considered by Frishman et al. ,

'
since they failed to find all the solutions by either
method. In this second approach, they used the
realization of the representations [k„c], [k,-c],
and [k,—c] of SL(2, c), in Hilbert spaces of func-
tions f (z, z*), where z* denotes the complex con-
jugate of z.' The generators S„, appear there in
the form

A„,=-A, v(s+l)(s+1+ ic i)/(s+1 —ic i),
s+~ c

A, =O, k, «s & icii
c~ arbitrary

(iv) x=k, sgn(c).
s~k

Oy

S, = za/az —z'a/az*+-', (n, —n, },
S, =-z'a/az —a/az»+(n, —l)z,
S = a/az +z"'a/az* —(n, —1)z»,
Tz =gaza/az +tz»a/az» —zi(n, +n2 —2},
T, =-iz'a/az+ia/az*+i(n, —1)z,
T =ia/az —iz 'a/az*+i(n, —1)z*,

(36)

A„,=-A, v(s+I),
A, arbitrary.

0

Here the solutions f corresponding to (i) -(iii) lie
in the subspace

D(fci}eD(fc I+1)e ~ ~ ~

If n, =k, +c, n, =c-k„where either k, -c is non-
integral, or ic I «k„ then these S„„generate, in
an appropriate Hilbert space, the representation
[k„c]of SL(2, c). If k, —c is integral, and ici&k„
one may take n, =(ko+c)sgn(c), n, =(c —k~)sgn(c),
corresponding to [k,—c]; or n, =-(k, +c)sgn(c),
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=0 (38)

It would appear at first glance that Eqs. (38) imply
that

zB (t)/Bz —(n, —l)(t) = z*8Q/8 z* —(n, —1}(t)=0,

which, taken with Eq. (37), imply that

n 1-], + n 2-'1
A =-', (n, —n, ).

This is the only solution found by Frishman et aI.
However, there are other solutions. For example,
the generalized function" (t) =6(z, z*) satisfies Eqs.
(37), (38) with )( =-,'(n, —n, ) since, in that case,

zQB/ B=zz*B(()/Bz*= Q) z(t) =z*(t) =0.

We shall merely list the solutions we have found

for Eqs. (37), (38). In checking that (t) is a solution
in each case, one must be ca,reful with the homo-
geneous functions of degree (a, P),

z z*',
which appear. The structure of these is described
in Ref. 14, and they are to be interpreted as gen-
eralized functions. In particular, if both n and P

are negative integers, then

+(( (8/8 )-(u+)((8/Bzg)-(8 ((8(z zw)

is concentrated at z =z* =0. The function

z 'z* 'ln(zz*), which also appears below, is an

associated generalized function" of order 1 and

degree (-1, -1}. Note the correspondence of the

following solutions with those in (A) -(F) above.
(A') kp- c nonintegral, n, , kp+c n2 c kp.

(ii) ~ = -k, = —,'(n, —n, ), y = z-' z*-'.
(II') k, —c integral, lcl ~ko, k, ()0, n, =k, +c,

c kp Hex e n is a non- negative, and n, a
nonpositive integer.

(i), (ii) as above.
(iii) ~=-c =--,'(n, +n, ), y =z-'z*"2-'.
(C') k'p =c =n, =n2 =0.
(i) x=0

n, =(k, —c) sgn(c), corresponding to [k,- c]. How-

ever, it seems plausible that if we consider Hil-
bert spaces of functions f (z, z*) oNer than those
associated with [ k„c], [k,- c], and [ k, —c], then

these S„„with the same choices of n, and n„can
provide realizations of t(k„c, r), )(ko- c, r], and

(k, —c, r}, with 7(s) not everywhere equal to 1. At

any rate, all the solutions described in (A) -(E)
above reappear here, if we substitute from Eqs.
(36) for S „, in Eqs. (6'), and solve the resultant
partial-differential equations for (t)(z, z*).

We then have

zBy/Bz -z+By/Bz'=[)(+-,'(n, -n, )]y, (37)

z[ zB (t)/Bz —(n, —1)(t)] = z*[z*B(()/8z* —(n —1}(8]

(ii) )(. =0, (t) =z 'z 'ln(zz ).
(D') k, —c integral, l

c
l
& k„n, = (k, +c) sgn(c),

n, = (c —k, ) sgn(c). Here n, and n, are positive in-
tegers.

(i) 1=k, sgn(c) = —,(n, —n, ), (t) =z") 'z*"z '.
(ti) )(=-k, sgn(c) = —,'(n, —n, ), (t) =z 'z* '.
(E') k, —c integral) lc leuko) n, =-(k()+c) sgn(c),

n, =(k, —c}sgn(c). Here n, and n, are negative in-
tegers.

(i) )(= lc l=--,'(n, +n, ), (I)
=z-'z*"2-(

(tt) ) =-lcl=2((n, +n, )) y=z" (-'z* '.
(I it) )(. = -k, sgn(c) = -,' (n, - n, ), (t) = z" ( ' z*

"2 '
(t&&) 1=k, sgn(c) =-,"(n, —n, ), (t) =z 'z

IV. REPRESENTATIONS OF ISL{2,c}

We now consider the second question (Q2) posed
in the Introduction for those representations of
sl(2, c), and corresponding values of X, described
above. It seems sure that approaches could be
used which are more direct than the one adopted. "
We prefer the method used here because it reveals
much of the structure of wave functions satisfying
Eqs. (6), so leading us to the results of Sec. V.
Moreover, it involves a generalization of tech-
niques used by Bender in his original paper, ' and
enables us to justify our claim that he described
fields belonging to representations of sl(2, c), and
not necessarily of SL(2, c).

We begin by considering a Hilbert space of func-
tions (t),'„'. . .,(p), for some fixed non-negative inte-
ger 2s. These functions are tensors or tensor-
spinors of the type described in Sec. II. The Hil-
bert space is defined with the scalar product

(39)

It is clear from the work of Chakrabarti" that this
space carries the representation

0, +0, , + +0,.
of ISL(2, c), generated by i)" and 4„„, with

~ =(~23) ~3() ~(2) = L +S *
)

K = ( J(o, j~o, 4~0) = N + S"' x n,

where

L =-tp XB/Bp N=)iEB/Bp, -
n. = p/E,

and S are the generators of the t', 2s ~1)-dimen-
sional representation of SU(2), acting in the space
of the tensor and spinor indices in the manner of
Eq. (24). We pxoject onto the subspaee carrying
the representation O~. (where )( —s is integral and

l
X

l
& s), by requiring that
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S"ny" = Xy" {41)

(Note that S" n commutes with P", 2, and K—it
is a Poincare invariant. )

Generalizing somewhat, we consider the Hilbert
spaces G(s, X, a) (where n is an arbitrary complex
number) of functions 4)')(p) satisfying Eq. (41),
with scalar product

( r)!~ )),)- jd r (-r*)~.-).)(-)~r).), (-)

(42)

n{I)(" can be resolved into components correspond-
ing to spins r+1, r, and r -1. It is easily seen
that, if X=V S", then

(X- s}(X+1)(X+s+1)-=0.

The spin-(x+1), r, -and -(r —1}components of
n(I5(" correspond to the eigenvalues s, -1, and
-(s+1) of X, respectively, and therefore are ob-
tained by applying the projection operators
(X+1)(X+s+1)/(s+1)(2s+1), -(X—s)(X+s+1)/
s(s+1), and (X —s)(X+1)/s(2s+1), respectively.
In this way, one obtains the resolution

For each value of o. , G(s, )(., a) carries the repre-
sentation O~+, with generators p" and J„„where
now

(~) (+) (r) (o) (r)n;P, , . . . ( =(n; y ),, . . . , +(n,f y },, . . . ,

+(&(~-)~(r) ) (45)

3=L+S",
K=N+S ' xn+i(o —1)n.

(43)
where

(r+1)(2r+1)n(') =(y +1)'n+i( v +1}(S("'x n)

~(s) ( )
g(a-)) ~(s) ( ) (44)

The equivalence of the representations in G(s, X, 1)
and G(s, X, o. ), a e 1, is easily established using
the mapping

—S'"'(S'"' n}

(r+1)n(0) S(")(S(") n)

r(2r +l)n( ) =r'n —ir(S'"' xn)- S'"'(S'"' ~ n) .

(46}

from G(s, )(, 1) into G(s, )(., c(}. This mapping car-
ries the operators (40) into (43).

The radiation-gauge potentials considered by
Bender are of the type @"'(p) in the momentum
representation. They transform under Poincare
transformations with generators of the form (43),
with n =1 in the integer-spin eases, and o =

& in
the half-odd-integer-spin cases. There is there-
fore no difficulty in realizing the required unitary
representations of ISL(2, c}with these potentials.
This is of course well known in particular for the
electromagnetic potential in the radiation gauge,
A;{p)=(t),')(p). Just as Bender has defined, from
the potentials, wave functions belonging to certain
infinite-dimensional representations of sl(2, c), so
we shall define infinite-component wave functions
in terms of the P"(p), for more general values of
9.

Consider a particular normalized element (t('"'(p)
of the space G(r, )(., n), r = 1)(. 1, for fixed )( and ()(,

and suppose that this element lies in the common
invariant dense domain of p", S and K. When (})"
undergoes the transformation

y'"' - (I.+ S"')y'"'

Since (()
' is in G(r, X, a), (S "' ~ n) may be replaced

by X in these equations.
Define

(})(')()' ~ ( =(( + )(&+ )/I(&+1)' —)('I)"'

Then it can be checked that

(S(r +() )~(r + () ) ~(r +()

and that, corresponding to transformations of p("'
with the operators (43}, one has

~(r+() (L ~g(r+())@(r+()
7

' —[ N+S "'"xn+i(a —l}nI (()'" '"
Furthermore,

~(r + 1) 4 ~(r «1) ~(r) g (r)Vijk' 'l +&fk' ' 'l ~jk' ' '1 ~jk' ' '1 &

so that (t("" belongs to G(r +1, r)., o. ), and has unit
norm in that space.

Evidently this procedure can be repeated indefi-
nitely, to yield, for each s&~, with s —x integral,
a function

(r',.'&, . . . , = [s(2s —1)/(s' —)(')]'"(n,"p" "},, . . . , ,

n, p'"'- (L+S.")n; t'"' (()V);+, n, P",
where (V;)» =-ie(». Thus n(t(" may be considered
as an object belonging to the direct product of the
(2 r + 1)-dimensional and three-dimensional (vec-
tor) representations of SU(2). Since

( r) (2) (1) = (r 1+)$ ( y )8 (r - 1),

belonging to G(s, A, o. ), and having unit norm in
that space. (Note that in the definition of n'*' and
n ", r must be replaced by the spin value of the
wave function to which these operators are ap-
plied. ) Straightforward but tedious calculation re-
veals that
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(s)
),k.

=((s' —x')'"/s(2s+1)[ s(2s —1)]"')q
~ "

s&r

(48)

where Tt' " is defined in terms of Q' " just as
p' " is defined in terms of X' " in Eq. (26). One
then deduces from Eq. (48) that

=[s(2s-1)/(s'-x'}]'"( ' '{&"')

s&r (49)

so that

x'(p)x(p} = 4i".'* .(P}ti". .(5}'-
and

d'P~ ' 'x'(P}x(P) =1.

Furthermore, if P "', P'"'' are distinct elements of
G(r, X, n), they can be seen to define distinct X and
X' [with the same )3 (s), s ~ r], such that

Xij aXij a t&~s&t film * 'n %1m' ' ~ n)

whence

so that, by virtue of Eqs. (47) and (49), any of the
$(', s -- r, defines all the others, and so the infi-
nite-component object

X X Vlm' ' 'n Vlm' 'n

(56}

4(P) =(d';",' (P),4'" ' .(P), )

Noting that, on a spin-s function

S(s) &&n(+) &sn(+) S(s) &n(o) &n(0)

5"xn'-' = f(s+1)n'-',
(50}

and writing T" =S"' xn+f(n —1)n, one deduces
from Eq. (45) that

T&k)~{) ( 1 ) {+)~{) {o)@{)

+i(n +s}n { y){,)-s (51)

However, despite Eqs. (47), (48), and (51), it is
not appropriate to assert that &I)(p) belongs to an
infinite-dimensional representation of sl(2, c), be-
cause

where

(X X') = d'P E" 'X' P)X'(P). (57)

x- (L+s)x,

x- (N+T)x, (58)

where the spin-s components of SX and TX are giv-
en by

(S ){k) (S {s) {k)
)

and, as a consequence of Eqs. (47), (48), (51),
(52),

Corresponding to transformations of @'"' with the
operators (43), one finds

('s)
(Tix)jk' ' 'i

t)(s) (s + 1)' —x'

S(s + 1} (s + 1)(2s + 1)

This difficulty can be surmounted in various ways,
depending on the values of o. and A..

Consider first the cases where o. —A. is not an
integer, and define

x"(5) = S(s)A"'(p),

where P(s) is some fixed, finite, nonzero complex
number for each value of s, such that

(53)

lo, h. ( )+ ~ .
)
(S; X))'ks(s+ I

i(o& + s) )'-)(s) s' —x'
s(2s+ 1) f)(s —1) s(2s —1)

where p' " is defined in terms of X' ", as in Eq.
(26).

A comparison with Eqs. (25), (15)-(17}shows
that X belongs to the representation
[ I

x I, o& sgn(x}, Tj, where

Then, writing

x(p) =(x'",' k(p} x.'i".". .' ..(0), ),
one has

Xjj ~ ~ ftXlj' ' 'Q I
&~ks&l Ylm' ' 'n Ylm' 'ny

ll(s)[(» —1)(~ + o )]"'
S(s —1)[(2s+i){s—a )]"' '

Now it is clear from the way X has been con-
structed that

5 nx=xx,

Tx = [S + '( —1)n] x.
(62)
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These equations imply that

T nr=i(a —I)X,

Sg =(nxT+Zn)r,

and Eqs. (62)-(63) may be combined as

(63)

(64}

To this stage, then, we have shown that each nor-
malized element @,', ' . .,(p} of a dense subspace of

G(~X~, A. , n), a-A. nonintegral, defines a corre-
sponding function y(p) belonging to the representa-
tion I ~

a ~, a sgn(X), r}, satisfying Eqs. (64), and

having unit norm with respect to the scalar prod-
uct (57). Essentially by reversing the above argu-
ments, it may be deduced that the converse of this
statement is also true. If H(A. , a) denotes the Hil-
bert space of solutions to Eqs. (64}, with scalar
product (57), then there is a bijection from

G(~ A ~, A. , a) onto H(h. , a}. This mapping preserves
scalar products, as Eq. (56) shows, and effects
the transformations

p~-P&, I. +S( ''-I. +S,

N+S' "' xn+i(o —1}n-N+T.
(65)

Since the operators on the left generate the repre-
sentation Oz+ of ISL(2, c) in G(~X~, X, a), it follows
that those on the right generate an equivalent rep-
resentation in H(A. , a).

It can be seen from Eq (57) that .H(X, a) is a
subspace of the direct product of two other Hilbert
spaces. One is K(~X~) (c.f. Sec. II) and the other
is that space of (scalar) functions f(p} with scalar
product

Ii f )= I"'u&" ''f "(Rf'ti)
The preceding analysis shows that I +S and N+ T
are integrable in H(X, a). Now there is some ar-
bitrariness in the choice of the representations of
sl(2, e) to which X belongs, for given X and a,
since r(s) depends on the choice of the numbers

P(s) as Eq. (61) shows. However, for given X and

o. , there may well be no choice of the i)(s) satis-
fying Eq. (53) and such that [ ~

A ~, a sgn(X), T] is in-
tegrable in K(~A). For example, this is certainly
the case when o. =i p, p real, since Eqs. (63) show
that T ~ n has a complex eigenvalue -(p+i} in

H(a, o. ). This operator could not conceivably have
other than real eigenvalues if ( ~ ~], ip sgn(X), 7j
were integrable to the unitary representation
[ ~X~, ipsgn(X)] of SL(2, c). In order to understand
why the nonintegrability of T in K(~ a) does not

prevent the integrability of N+ T in H(X, n), one
observes that Eqs. (62} imply that

(N +T )~ = (N+ S x n+ i(o —1)n) y. (66)

Evidently the integrability of S in K(~ X
~ ) guaran-

tees the required result.
By setting X =+k„n =*c, one exhausts the pos-

sibilities described in (A) (i)-Pi) of Sec. III, as X

and n run over their allowed values. In order to
treat the other possibilities (B)-(E), it is neces-
sary to consider integral values of n —A.. Suppose
first that n —& is integral,

~

n
~

~
~

& ~, and & w 0.
Then the analysis goes through just as in the case
of nonintegral n —A. . One finds that X belongs to

[ ~X~, a sgn(A. ), T), with r as in Eq. (61), and by
setting A. = +ko N:+c, one runs over the possibili-
ties (8) (i)-(&i). Alternatively, X may be regarded
in this case as belonging to ( ~a ~- A sgn(n), r'j,
with

P(s)[(s+~)(~ —
I

&
~

)]"'
p(s-I)[(s —n}(s+ (x(}]'"' (67)

and then the possibilities (8) (i) -(ii) are covered. -

The cases with X =en, o = 1, or a = ~(n+-,'), n = 2,
where n is a positive integer, are those treated by
Bender. ' In the former case, when the represen-
tation in question is (n, al, ~) {or [1- +n, ~'] ), he

has made a quite arbitrary choice of the numbers

P(s), with

P(s)/P(s —1) = i [ s (2s —I )/(s' —~'}]'" (68)

so as to give

r(s) = i(2s —-1)[s(s + I)/(s'-)P)(s —1)(2s +1)]'"

It is easy to see that there are no nonzero num-

bers p(s} satisfying Eqs. (53) and (68). Further-
more, as Simon et al. implicitly have shown, '

there are no P(s) satisfying Eq. (53}and

8(s) ' (2s + 1)(s—1)
P(s —I) (»-I)(s+ I)

which is what is required, when n = 1, if w(s) is to
be equal to 1. Thus y cannot be chosen to belong
to I n, sl, Ij, and we conclude" that the integer-
spin radiation-gauge potentials considered by

Bender, and in particular, the electromagnetic
potential in the radiation gauge, belong to noninte-

grable representations ( n, ~1, ~I of sl(2, c).
Next, suppose o. —A. is integral, and n )

~

A ~. If
one sets

g" =g{s}y", s» r

the analysis goes through unaltered, except that

X is found to belong to ( ~A. i-a sgn(X), ~j, where

~(s) = g(s)/P(s —1},
and in this way the possibilities (E) (iv) are cov-
ered. However, if in this same case one sets
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then the analysis is the same, except that now X

belongs to ( ~

A ~- n sgn(A), 7}, with

~(s) =-S(s)(s —n)/S(s -1)(s+n).
As a and A. run over their allowed values, the pos-
sibilities (D) (i) are covered. Alternatively, y may
in this ease be regarded as belonging to the finite-
dimensional representation ( ~

X ~, n sgn(A. )}, so that
the possibilities (10) described by Weinberg' are
covered.

Now suppose o. —X is integral, and n &-kp. If
we set

y" = S(s}y"', s r-
then g beLongs to ( ~

& ~- n sgn(&), 7}, where T is as
in Eq. (69), and the possibilities (D) (ii) are cov-
ered. However, if we set

x" =0,

X" &(s)0=",

then y is found to belong to ( ~
A. (- n sgn(X), r}, with

r(s) = -l3(s)( s+n) /l3(s —1)(s —n),

and the possibilities (8) (iii) are covered. Alter-
natively, in this case y may be regarded a,s be-
longing to (-n, -A., 7.}, with r as in Eq. (61), and
the possibilities (J3) (iii) are thus also covered.

Finally, suppose n =A =0. Setting

y"' = p(s)y", s O

we find that y belongs to (0, 0, -, }, with r as in Eq.
(61). This corresponds to the situation described
in (C) (i).

Our analysis therefore answers the question
(Q2) for each of the possibilities (A)-(E) of Sec.
III, with the exception of (C) (ii), and shows that
in each case one can find a Hilbert space H(X, n)
of solutions to the wave equations (64), carrying
the corresponding representation O~. of ISL(2, c).
This Hilbert space has the scalar product (57} in
each case, with e and A. related to Ap and c as de-
scribed above. It is clear why the exceptional case
(C) (ii) is not covered by our treatment. Our anal-
ysis depends on both of Eqs. (64) being satisfied by

The second of these incorporates the second of
Eqs. (62), which is an inevitable consequence of
defining y in terms of an element of G{r,X, n).
However, for the situation described in (C) (ii)
the corresponding wave equations are

S„.P'X =0

(~„.—ig„,)(s"' —ig")0py =0,

and the second of Eqs. (64) is not satisfied. We
leave question (Q2) unanswered in this case."

V. EXPANSORS AND RELATIONSHIPS BETWEEN
DESCRIPTIONS

In this section, we shall again be concerned with

operator-irreducible, su{2)-integrable represen-
tations of sL(2, c), but now we shall not be con-
cerned with their detailed structure, nor with their
integrability. Consequently, we shall label them
simply (k„c},(k, —c}, or (k, —c}, with no ref-
erence to the important functions 7 (s} in each case.

Consider as an infinite-component operator, the
sequence

Ey(~t'oI ~(&I

where ("' =«(0), $',"=«(L)n;, $,",' = («2)(n, n„
5,, ), . . . . Here y is an arbitrary complex num-

ber, «(s), s =0, 1, 2, . . . , is an arbitrary nonzero
complex number, and n =p/E as before. The com-
ponent E'„' . . , .is the symmetric, traceless O(3)
tensor of rank s, with leading term «(s)n;n, ~ ~ ~ n, .

By calculating the commutator of E'E,"w th the
L and N of Eqs. (40), one deduces that p(y) trans-
forms according to an operator-irreducible, su(2)-
integrable representation of sl(2, c). This repre-
sentation is (0, y+1} when y+1 is zero or nonin-

tegral, (0- y+1} when y+1 is a positive integer,
and (0- y + 1} when y+1 is a negative integer.
However, when y+1 is a positive integer, one may
also set «(s) = 0, s ~ (y+1), and the resultant oper-
ator p(y)' then transforms according to the finite-
dimensional representation (0, y+ 1}. Similarly,
when y+1 is a negative integer, one may set «(s}
= 0, 0 ~ s & -(y+1), and the resultant operator p{y)'
transforms according to the representation
(-(y+1), o}.

For example, when y=1,

p(1) =E {«(0),«(1)n;, «(2)( n, n, — 5;,), . . . )

transforms according to (0- 2}. However, the
components of

P(1)' =E(«(0), «(1)n, )

are scalar multiples of those of the four-vector
p", so that p(1)' transforms according to [0, 2].

Objects like p(y) and p(y)' have been discussed
by Dirac, "and, more recently, by Bender and
Griffiths. ' Following Dirac, we shall eall P(y)
and p(y)' homogeneous expansor operators of de-
gree y.

Next consider wave functions y(p), with invariant
helicity A. = ekp 'E': 1 and belonging to the
(2k, + 1)-dimensional representation (k„e(k, + 1)}.
What is the effect of the expansors P(y} and P(y}'
on y(p)? We know that y = y',.P. . ., belongs to
G(k„ek„k„+I), and hence, from (44), that E~y
belongs to G(ko, ck„ko+y+I}. But then E~y is the
spin-k, component of a function y' (p), belonging to
an operator-irreducible, su(2)-integrable repre-
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sentation of sl(2, c), and satisfying Eqs. (64} with
A. =ok„n =A, +@+1. Furthermore, the operators
$(' carry F~x into linear combinations of the vari-
ous spin components of g ', as a consequence of
Eqs. (45)-(48). Thus P(y)y or P(y)'X, regarded as
a new wave function, belongs to another operator-
irreducible, su{2)-integrable representation of
sl(2, c), has invariant helicity l =ok„ the same as
X, and satisfies Eqs. (64) with a =(k, +y+I). The
particular representation to which p(y)y or p(y)'X
belongs may be determined from the values of A

and e as in Sec. IV.
It is now clear that any of the finite- or infinite-

component wave functions y', having invariant he-
licity A., as describeP in Secs. III and IV, may be
regarded as being of the form p(y)y or p(y)'X, for
appropriate y, with X belonging to the (2k, +1)-di-
mensional representation (k„e(k, +1)}, where
A. =ek, . This generalizes a result obtained by
Weinberg. ' He showed that, if g(x) belongs to
(k„e(k, +1)}, and has invariant helicity X = ek„
then

p' =P„P„~~ Pzp, P& =is/sx"

belongs to the finite-dimensional representation
(k„e(k, +n+1)}, and has the same helicity. (Here
n is the rank of the tensor P„P, ~ P .) In the
momentum representation, this is the result that
p(n)'X belongs to (k„e(k, +n+1)}. Weinberg has
explained his result as folloms: The function g'
belongs to the direct product of two finite-dimen-
sional representations. One is (k„e(k, +1)}, and
the other is (0, n+1}. This direct product reduces
into a finite direct sum of finite-dimensional rep-
r esentations:

(k„e(k, +1)}8(0, n+1}

=(k, e(ko+n+I)} 6 (ko- 1, e(ko+n)} e ~ ~ ~,

but the Eqs. (4) satisfied by g ensure that q' only
has components in (k„~{k,+n + I)}.

In the more general case, one is dealing with the
direct product of (k„c(k, +1)}and R, the repre-
sentation according to which p(y) or p(y)' trans-
forms. If y is nonintegral, this direct product re-
duces to a finite direct sum of irreducible repre-
sentations, but if y is integral, it will not always
be fully reducible. In any event, the Egs. (64) sat-
isfied by y, with a =k, + 1, ensure that p(y)y or
p(y)y' has components in only one operator-irre-
ducible representation. This representation must
of course be present in the reduction of
(k„e(k, +1)}SR. These ideas can be extended to
treat the relationships between mave functions
y„x„belonging to different representations, but
having the same invariant helieity A. = ~It|,. For if

x =p(~}x, x, =p(&)x,

where y belongs to (k„e(k, +1)}, then

We are now in a position to give a very simple
interpretation of some of the results obtained by
Bender and Griffiths. '" The electromagnetic po-
tential in the radiation gauge, A. ;, is related to the
electromagnetic field F„, by

0& =Fo

P;A; —P, A; =F;; .

In the momentum representation then, A;(p)
=F. 'F„(p). Now the part of F„„with helicity +I
belongs to (1, +2}, so that the corresponding part
A';" of A, belongs to

gt'+) p{ 1) (~)

where y" belongs to (1,+2}. It follows at once
from the results of Sec. IV that A" belongs to
(1,+I}. More generally, one has

where (I()" is the radiation-gauge potential with in-
tegral helicity +s, and X~" belongs to ( s, +(s +1)}.
Then P~" belongs to (s, +I}. For half-odd-integral
spins, one has

with y"' belonging to (s, x(s +1)}, so that Q"' be-
longs to (s, +—,'}.

Bender and Griffiths have noted that, if q "'(x)
is the coordinate-space object corresponding to
P"', then (P, )" tA~" transforms according to the
representation(s, +(n+I)} [or (s, +(n+2)}, if the

spin is half-odd-integral], provided (n+ 1) & s (or
(n+~z) ~ s]. For n =s (or n =s ——,'), the resultant
representation is (s- ~(a+1)}. These results also
can easily be understood by considering the effect
of p(n}' on @"'.

Note that p(y) has length dimension -y. Suppose
X' =p(y)y, where X(p) has helicity X = ek, and be-
longs to (k„e(k, +1)}. Since the canonical length
dimension of X is ($ —k, ), that of y' is (~g k, —y).
The corresponding coordinate space objects ( and
p' have canonical dimensions -(k, +1) and -(k, +y
+1), respectively.

Vl. CONCLUSION

The main conclusion to be drawn is that wave
functions belonging to nonintegrable representa-
tions of the Lie algebra sl(2, c) can be used to re-
alize unitary representations of the Poincare
group ISL(2, c).

A class of operator-irreducible, su(2)-integrable
representations of sl(2, c) has been described. If

S„, are the operators of a typical representation
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in this class, then the matrix elements of S„„, in
an su(2) basis, are the same as those of S„', be-
longing to a corresponding integrable representa-
tion. But a specific choice of domains for the S„,
distinguishes them from the S'„, in many cases,
so that many of the representations in the class
are nonintegrable. Nevertheless, it has been
shown that wave functions belonging to such repre-
sentations can be used to realize the representa-
tions Oz- of lSL(2, c), corresponding to free,
massless particles with helicity X. It is clear that
corresponding free, massless, infinite-component
fields can be constructed in each case, using the
techniques described by %einberg' and Frishman
et al. '

These observations have enabled us to resolve
an apparent paradox, which arises when one at-
tempts to reconcile the results of Bender, ' Frish-
man et al. ,

' and Simon et a/. " In particular, while
Bender claims to have described fields belonging
to representations of SL(2, c), he has in fact dealt
only with representations of sl(2, c). We are able
to conclude that the free, electromagnetic poten-
tial in the radiation gauge, for example, belongs
to a representation of sl(2, c) which is not integra-
ble.

In a sense it seems absurd to introduce a field
with an infinite number of components in order to
describe a massless particle, whose "spin" is es-

sentially a one-component thing. More than one
field component is needed if a "manifestly covari-
ant" description is to be given. However, as
VYeinberg' has shown, such a description of a free,
massless particle with helicity X=~s, e'=1, can
be given using fields or wave functions with 2s+1
components. %by then consider descriptions using
infinite-component objects? The point is really
that two equivalent descriptions of free particles„
using fields or wave functions belonging to differ-
ent representations of sl(2, c), may behave very
differently when one attempts to extend the de-
scription to include interactions. In particular,
the canonical length dimensions of the fields will
vary with the representation to which they belong.
The significance of this point has been emphasized
by Neinberg. ' It is therefore important to find
different possible ways of describing free parti-
cles, and more generally, to investigate new real-
izations of the representations of the Poincare
group.
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