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Position-operator method for evaluating the shift of a totally reflected electron
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A method based on expectation values of a position operator is developed for evaluating the spatial
shift of a polarized Dirac electron undergoing total reflection. Longitudinal and transverse components
of the shift, as well as the associated time delay, are obtained by considering the differences in the
expectation values for the physically reflected wave packet and a purely geometrically reflected wave

packet. For a number of position operators, this method is used to calculate the mean shift arising
from a single reflection of an electron from a step-function potential. Eigenpolarization states are
determined by means of a localization form-invariance argument. For these states, results obtained

employing the Newton-%igner position operator are shown to be identical to those obtained using the
phase-shift analysis method. A comparison calculation giving diferent results is made using the
current-flux method. The current-flux results are shown to be inconsistent with conservation of total
angular momentum normal to the reflecting boundary.

I. INTRODUCTION

It has been demonstrated experimentally' that a
well-collimated light beam undergoes a spatial
shift (the Goos-Hanchen effect) when it is totally
reflected. In general, for such a shift to be ob-
servable, an experimental arrangement producing
a series of total reflections is required. The type
of shift observed depends both on the polarization
of the incident beam and the geometrical arrange-
ment of the reflecting surfaces. Although the ex-
perimental evidence is unambiguous, the theoret-
ical explanation has followed several approaches,
each of which yields a somewhat different predic-
tion. Basically, these approaches have involved
either a phase-shift analysis method' (applied to
a single-surface reflection process or a multiple-
surface reflection process) or a current-flux
method' (applied to a single-surface reflection
process).

For particles undergoing total reflection, it has
been predicted that similar spatial shifts should
occur."Again, the theory has followed the two
main lines mentioned above. Recently, ' we have
presented a variant of the phase-shift method in
order to predict the spatial shift for a polarized
Dirac electron undergoing a series of total re-
flections. Localization of the electron has been
taken into account explicitly via a wave-packet
treatment, and a localization form-invariance
argument has been given to determine the eigen-
polarization states for a multiple-reflection
process and the relevant phase shifts.

In the present paper we develop another method,
based on expectation values of a position operator,
for the evaluation of the spatia1. shift that would
occur in the position of a polarized Dirac electron
undergoing total reflection. Longitudinal and trans-

verse components of this shift, as well as the
associated time delay, are obtained by consider-
ing the differences in the expectation values for
the physically reflected wave packet and a purely
geometrically reflected wave packet. In order to
facilitate comparison with the results obtained by
other techniques, we restrict our attention to a
single-surface process, although the position-
operator method may be generalized to treat a
multiple-surface process.

The organization of this paper is the following.
In Sec. II, we present the solution of the Dirac
equation for a polarized positive-energy state
totally reflecting from a step-function potential.
In addition, we evaluate the current densities for
the incident, reflected, and evanescent components
of the solution. In Sec. III, we determine the
eigenpolarization states for a single-reflection
process, and calculate the spatial shift and time
delay by the phase-shift analysis method utilizing
a localization form-invariance argument. In Sec.
IV we develop the general formulation of an ex-
pectation-value calculation of the shifts involving
a position operator. The results obtained for the
Newton-%'igner position operator and other position
operators are presented and compared with the
results previously obtained via the phase-shift
method. In Sec. V, the current-flux method is
used to evaluate the shifts, and further compar-
isons ere made. Finally, in Sec. VI, the current-
flux method is criticized on the basis of symmetry
considerations.

II. SOLUTION OF THE nlRAC EQUATION
FOR A STEP-FUNCTION POTENTIAL

In this section we shall collect and reorganize
results from an earlier paper' dealing in part with
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the total reflection of a polarized electron from a
step-function potential discontinuity. For x, & 0,
the appropriate solution of the Dirac equation

[a p+pm+V, 8(z2)] / =ED

is the superposition of the incident wave

C'(p, s}=s"'*"~}C{p,s}

and the reflected wave

R(p/ sl) et(p' 2-st}&-(5 (p}&-tz (p, r}~(~t st)

4 (s) =
sin 26s e s

where 6, and fQI), are the polar and azimuthal angles
of s. The momentum of the reflected wave is

p = p-2 (p' X2)Ã2, (6)

where the normalized spinor P(p, s) has the form

(E+m) 4(s)
t)(p, s) =[2E(E+m}] M' (4)

(t p C(s)

Here s is the direction of polarization of the in-
cident wave, and 4(8} is the two-component eigen-
function of a i given by

5(p) =arctan[}(p2/(p22 EV,)]-, (IO)

where the evanescent damping factor a is defined
by

t(' = p, ' +p2' +m ' (E-V2)' . -
The polarization-dependent phase factor is given
by

and the polarization of the reflected wave is

s'= (s, s}s,+[siny(p)] sx s,
+ [cosy(p)]s, x(sxs, },

where

s, =(pxx 2)/p

and where

exp[i ,'y(-p)]=(E+m) '(E2 f}22-) "'
x[(E -p2 ™)+ jpp2] .

For convenience we have defined p =—)pxx2. The
reflected polarization direction s' is produced by
a clockwise precession (without nutation) of the
incident polarization direction about s, through an
angle y(p).

In Eq. (3), the polarization-independent phase
factor is

2t „gr} [cosy sin8, +siny cos8, cos{p, -4}]-i[siny sin(g, -p}]
([cosy sin8, +siny cos8, cos(Q, -4)] '+[siny sin(Q, -p)]'I 't' (l2)

4 (t(, s}=[2(E V, +m)(E2 p-')' ']-
X

{E-V,+m)U(st}4(g)

(t [[p (f}, it()x,] U-(s, )4-(s)

where

(l4)

U(s, ) =[2V, (E V, + m)(E+ m)(E-2 ft ')"']-
x[p2(E Vo+m)+ it((E+m)+-ipV2o s, ]. (15)

The matrix U(s, ) represents a "rotation" about
the axis s, through a complex angle y, where

tan(2y) =pV2/[p2{E. V2+ m) + it((E +m)] . -(16)

where P is the azimuthal angle of the momentum

p, and the functional dependence of y has been
suppressed.

For x, & 0, the solution is the evanescently trans-
mitted wave

( Ps') —et(P&2t +22 2 2t}es- K22p-[2/(V E)]1/2

x s ' }' 4(t(, s) . (I3)

Here the normalized spinor 4(t(, s) is given by

A, Current densities

and

QL=Q'xsx St (18}

The current-flux method to be discussed in Sec.
V involves the use of plane-wave current densities.
If g represents one of the wave-function contribu-
tions (incident, reflected, or transmitted}, then
the associated current density is

3 =}}}ag, {17)

where n is the usual set of Dirac matrices. For
the incident and reflected waves the current
densities reduce to the associated velocities, i.e.,

p/E and p'/E for the incident and reflected waves,
respectively.

On the evanescent side, it is convenient to de-
compose the current operators into longitudinal
(I. which denotes the longitudinal component mea-
sured in a plane parallel to the boundary plane)
and transverse (t } components. These are defined

by
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us=a (19)

2KX3 2gP 2

J 3

ZV, (E' p, ')(E-+ m)

where s, is defined in Eq. (8). Using these def-
initions and the transmitted wave function given in
Eq. {13), one obtains the associated evanescent
current densities

e-2Kx3 2p 2

Jz=, ', [p(Z-Vo)-ms(s s, )]

is characteristic of the reflection process. The
relevant phase shifts and the associated eigen-
states may be determined by means of a localiza-
tion form-invariance argument similar to that used
in a previous paper' concerned with multiple total
reflections. In this section we shall adopt this
argument to a single-surface reflection by re-
formulating for a step-function potential a wave-
packet description employed by Miller and Ashby. '

In a coordinate system X„X„X„whichis
aligned so that X, is in the direction (p, ) of the
incident electron, the incident wave packet has
the form

x[(E'-p, '+Em)(», xs, s)+pp, (», s)]. (21)

The evanescent-current density component associ-
ated with the current operator a x, is zero.

e'"'ix, ))=)2w) "*Jf)P p 4)e-"'„"*"

x )))(P, S)d'P . (25)

B. Foldy-Nouthuysen transformation

Some of the calculations performed later involv-
ing incident and reflected wave-packet expectation
values are conveniently done in the Foldy-
Wouthuysen {FW}representation. ' The trans-
formed wave function O'F„and the generic operator
A. F„arerelated to the corresponding quantities in
the Dirac representation by

The weighting function f(P-P„S),which is sym-
metric in both I', and P„hasbeen chosen so that
the packet is peaked about a single central position
that moves in time with a velocity p, /(m'+p, ')"'.

The coordinate system x„x„x„for which x, is
normal to the reflecting boundary and p, is in the

xy x3 p lane, is re lated to the X coordinate system
by» =R,(8o)X. Explicitly,

p)N PD)sac & pN) D' (22)

where the transformation operator e' is given by

e"=[2E(E+m)]-"'(t)a p+E+m). (22)

Xl COS |})o

{,;.J {.;...
0 -sin6, X,

1 0 X,

0 cos6), X,

(26)

In the FW representation, the transform of the
spinor ))){p,s) displayed in Eq. (4) assumes the
especially simple form

C (s)
e'~ g(p, s) =

0

III. PHASE-SHIFT ANALYSIS

One method for calculating the displacement of
an electron undergoing total reflection from a
single surface involves the determination of the
net phase shift, for a localized wave packet, that

in which 8, is the angle between p, and x,. In terms
of this coordinate system, the incident wave packet
is described by

4'"'(x t)=(2m) "' f P-p S)e'~p " E"

xe ' ' o"')))(p, s)d'P. (27)

Here the components of the vectors x, p, and s,
are related to the components of the vectors X,
P, and 0, by the coordinate transformations
»=R, (-8,)X, etc. The phase factor n, (-8„s)in-
troduced by the spinor rotation is given by

(sin6, cos6),-sin00cos(It, cos6), )+i sin&osing,
[(sin8, cos8,-sin8, cosg, cos8, )'+(sin8, sing, )'] "' (26)

After being totally reflected, the packet will have
the form

y refl ~K g)= (2+)-3/2 {P p g)ek(P' x-Et)

xex -~~(-e, ,S) -~~(p)e

xe '"~i' s)q(p', s' )d'P, (29)

where s' is the precessed polarization direction
given by Eq. (7), 5(p) and X(p, s) are the phase
factors given by Eqs. (10) and (12}, and p' indi-
cates the momentum components of the reflected
wave as given by Eq. {6). In terms of a coordinate
system X'„X2',X,' which is aligned so that X3

in the direction p,' of the reflected electron, the
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reflected wave packet is described by

e""(x' t)=(2m) 'f*f*(P p-R)e"' '"

xe '"g(P', S')d P, (30)

where here the components of the vectors X', P',
and 8' are related to the components of the vectors
x, p', and s' by the coordinate transformation
X' =R,(w-8, )«, etc. The rotation matrix B,(w-8, )
about the 2 axis through an angle m-eo is obtained
from Eq. (26) by making the suitable substitution
of angles. The composite phase factor q is given
by

q = 5(p) +}((p, s) +a(-8„s)+a(s-8„S'), (3l)

where h(v-8„8')is obtained from E(l. (28) by re-
placing 8, by 80-v, and 8, , P, by 8~., Pz i which
are the polar and azimuthal angles of the pre-
cessed polarization direction with respect to the
X' coordinate system (i.e., measured with respect
to X and X",, respectively).

Now, as a result of the coordinate transforma-
tions and the reflection,

P ' = P, X', +-P, 22 + P, X,', (32)

where P =P, X, +P, X, +I' X,. Thus, since
f(P P,„S)is a s-calar symmetric in both P, and

P„the reflected wave packet displayed in Eq. (30)
without the phase factor e '" would have exactly
the same form as the incident packet [displayed in
E(l. (25)] if the components of 8' were related to
those of S by

S'=S,X', + S2X2+ S3X3, (33)
A,

where S = S,X, + S,X, + S,X,. For those polariza-
tion directions, designated as the eigenpolariza-
tion directions, such that this condition (E(l. 33)
of form invariance is satisfied, the reflected wave
packet is peaked about a single central position
that moves in time with a velocity p,'/(m'+P, ')'I'.

Solving E(l. (33}for the eigenpolarization direc-
tions, we find that the corresponding directions
+ s, for the incident wave packet are given by

sing sin6}o sin-,' y

s, =(1 B')"'
l cos-8, cos-,'y-cos4) sin8, sin-,'y

sinfI5} cos~o»n-,' &

(34)

and the precessed polarization direction s,' turns
out to be s, -2(s, «, )«„which means that the
eigenpolarization directions reverse upon reflec-
tion the same way the momentum does. Also,
s, X, is zero, which means that (S,), is zero.

The composite phase factor contributions assume
a somewhat simpler form for the eigenpolariza-
tion states. Defining

A = (1-B')'I' [(s,), cosP-(s, )) sin(())]

= cos6}ocosp cos 2 y-sin&o sin 2 y,

we find that

(35)

and

e -2~~(-eo, ~ f,)

[(1 —B')cos'(-,'r) +2'sin'(-,' y) ]"'

246(W 6p & S4))

(s x«z)'(s~xX~}gfs «~xX&
g Xg3 S X +g'AX

(38)

p ' Vpr =p' Vp )

Eq. (39) for the reflected wave-packet trajectory
may be rewritten

reflx" =(f 7}(po/E)+-D, (-, - )+D,
) P X &3 I P I P + &3 I

(40)

Here the time delay r is given by

7 = -(B/P')[p &~@(p,+ s, )], (41)

and the transverse shift D& and the lohgitudinal
shift D, are given by

The trajectory of the reflected wave packet may
now be obtained from E(l. (30) by application of the
method of stationary phase. Since P' ~ X'=p'x,
this method yields the result

x"" -(po/E)f -V~ @ =0,

where p' and p are evaluated at p,' and p„re-
spectively. Using the relations

P Xg3 VP(-PXX3 ~ V~,

(p'x«, )xp'V~, =px(px«, ) v~,

A

where the components are displayed in the X„X„
X, basis, and where

D(=p '[p», &.q(p, ~s.)] (42)

B = (cos(() cos8, sin-,'y+sin8, cos-,'y) .

The components of s, are related by

(s, ), = (tan-,' y)[(s,), cos()) + (s,), sing], (35)

D, = (pp) '[p x (p x «, ) ~ V( & (p, z s, )] . (43)

Upon substitution of the relevant derivatives of
the composite phase factor for the eigenpol. ariza-
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tions + i„weobtain

P,[m'(E-V, )+ E(E'-P,')] pP, m
8 x(E2 P 2)P2 (E2 P 2)p2

and

D, (+ s, )=0,
(44)

(45)

IV. ANALYSIS BASED ON THE EXPECTATION VALUE
OF A POSITION OPERATOR

In the preceding section, we have obtained the
single-surface shifts by means of a phase-shift
analysis that has employed a localization form-

(46)

Here, pis to be evaluated at the wave-packet peak
value of p, . For total reflection to occur, the
damping factor a' must be real. This requires that

P, /E« 1 for low to moderate potentials (V,«m).
Consequently, the preceding equations may be
simplified by neglecting quantities of the order
P, /E and V,/E.

The first term in Eq. (46} represents that part
of the longitudinal shift (dependent on the potential)
that is common to both eigenpolarization states.
It appears to approach infinity as the critical
angle for total reflection is approached (x- 0).
However, the stationary-phase approximation
employed, which extracts mean values at the peak
momentum, restricts the validity of this form to
values of ~ greater than the momentum spread of
the wave packet. This is consistent with the as-
sumption that all components of the wave packet
undergo total reflection.

The spatial longitudinal splitting of the two
single-surface polarization eigenstates, D, (+s, )

D, (-s,), i-s independent of the potential and agrees
completely with the expression obtained by Miller
and Ashby' in their single-surface treatment of
electrons reflecting from an infinite ramp poten-
tial. This splitting is at most of the order of a
Compton wavelength. The fact that the single-
surface treatment gives no transverse shift for
the polarization eigenstates again agrees with
Miller and Ashby. However, one must not infer
from a phase-cumulation argument that a trans-
verse shift cannot occur for a process involving
a series of total reflections. As we have shown
in an earlier paper, ~ the unsplit polarization eigen-
states for a two-surface reflection process may
undergo a transverse shift which is additive in a
multiref lection process.

X =v E+Xo,

while for the reflected particle the asymptotic
trajectory is

x~=v+f +xR

(47}

(48)

If the electron upon reflection had not undergone
spatial displacement, then the trajectory of the
reflected particle would be the same as Ec(. (47)
except for the change in sign of the x, component
of the velocity. This geometrically reflected wave
packet would have a trajectory given by

xs =x'-2(x'x )x (49)

The displacements are obtained from the differ-
ence between the physically and geometrically
reflected waves. Thus, the time delay is

invariance argument coupled with the method of
stationary phase. However, in quantum theory it
would be natural to obtain the shifts by eal.culating
the expectation value of a position operator using
the incident wave packet and compare this to a
similar calculation using the reflected wave
packet. In this way a simple straightforward de-
termination of the shifts can be found. Indeed if
this approach is used in the nonrelativistic theory,
the calculated expressions for the shifts would

agree exactly with those obtained from a phase-
shift analysis. However, in the relativistic theory
the situation is not so simple. As we have seen
in Sec. III, the complexity of the four-component
wave function, which has relative phases among
its components, requires that great care must be
taken in a phase-shift analysis to identify the
relevant phases and polarization states. More-
over, a calculation of the shifts by means of ex-
pectation values raises two problems not en-
countered in the nonrelativistic theory. First,
instead of a unique position operator, there are a
number of operators' to describe the position of
a physical system in relativistic theory. Secondly,
for an expectation-value calculation one must
identify those initia, l polarized wave-packet states
of the system that are not spatially split by the
reflection process. Otherwise, an expectation-
value calculation will yield a mean shift of the two
polarization components that individually are
shifted by different amounts. %'e shall consider
these problems in our expectation-va, lue calcula-
tion.

First, we shall develop the general formulation
of an expectation-value calculation of the shifts.
For this purpose, we begin by examining the kine-
matic aspects of the displacement of the outgoing
motion relative to the incoming motion. The
asymptotic trajectory of the center of the wave
packet for the incident particle is
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-s -gp'(x"-x '),p'

the transverse component is

D =p '(p'xx ) (x"-x~)

(50)

(51)

g 1Nw-" 2E P 2E(E+m). P

1 . -)
2Z'(Z+m)'~( 'P P'

(52)

and the longitudinal component is

D, =(pp) '(p'xx~)xp'(x -x ).
The trajectories x" and xE may be obtained by

calculating expectation values of the appropriate
position operator using the incident and reflected
mave packets given in Sec. III. Several of the
position operators discussed in the literature will
be considered.

The Newton-Wigner position operator in the
Dirac representation is given by

This mas obtained from an analysis of localized
states for elementary systems' so it appears
especially suitable for calculating a shift in local-
ization of an electron undergoing total reflection.
In the F%' representation this operator is trans-
formed to x, so it is convenient to calculate the
expectation values in the FW' representation.

For the physically reflected trajectory, we

employ the reflected wave packet [Eq. (29)],
taking the spinor factor in the FW representation
[Eq. (24)] . It follows that

+ d'P (P p, S '
V&. Et+5 )+ g p s}+6 -8„s+4~ g' iV&A s' (54}

Using the incident wave-packet [Eq. (27}], the geometrically reflected trajectory is obtained from Eq. (49)
by taking the expectation value. This yields the result

(x')= fd pf (p-i.,'ll(v, f(p i., s)%,'p!f-(p )js i)'pr, .[z (~(-e„ii)]+I'(i))(ir;,o())j. (55)

(56)

J~ &g(p)f*(p-po, ~}f(&-p., s}
& Po gdsPy(y ~)(2

When these values are substituted into Eqs. (50}-
(52) we obtain

~ (57}

P, [m'(E-V.}+E(z'-p, ')] pP, m

arid

P3
(E+m)'(Z'-p, ')

x [pp, (s x,)+(E'-p, '+mz)(s x,xst)], (59}

p[2E'-p, '-EV,] (Em+ p,'-Z')
(, , }

[~P(Z'-P, ') P(z'-P, ')
(60}

Now by direct calculation

4t (s) r'V& 4 (s) = —,
' cos8, V& i (j)„'

a similar expression is obtained for the s' states.
Substituting these expressions together with the
derivatives of 5(p) and X(p, i) into Eqs. (54) and

(55}, we obtain an integral form for the expecta-
tion values. These integrals may be evaluated by
considering the wave packet sharply peaked at
p„sothat

where we have relabeled p, by p. These expres-
sions for the shifts and time delay are mean
quantities for an arbitrary incident polarization
direction s. In order to find those initial polar-
ization states that do not become spatially split
by a single-surface reflection process, we must
invoke the form-invariance localization argument
of Sec. III which yields the single-surface eigen-
polarization states s s, given in Eq. (34). We note
that when evaluated at p =p„s,becomes simply
-s, . Consequently for the unsplit single-surface
eigenpolarization states, Eqs. (58}-(60)are the
same as Eqs. (44)-(46) given by the phase-shift
analysis method.

The appearance of a mean transverse shift for
an arbitrary state of polarization is due to the
interference between the tmo split components
(corresponding to the eigenpolarization states) of
the incident beam. Similarly, the mean longitu-
dinal shift and the mean time delay have contri-
butions from these interference terms.

To illustrate how the expectation-value calcu-
lation of the shifts depends on which position op-
erator is used, we mill do a similar calculation
using the operator x in the Dirac representation.
The transform of this operator to the FW repre-
sentation is given by
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E(E+ m)
ss) (62)

There are no additional contributions to the time
delay. The additional terms are at most of the
order of the Compton wavelength.

Another position operator which has been ex-
tensively used in the literature is the center-of-
inertia operator. ""In the F% representation it
assumes the form

o'x p
2m(E+m)

'

The additional contribution to the shifts for the
center-of-inertia operator can be obtained from
the results given for center-of-mass operator by
changing the sign of the terms and replacing E in
the denominator by m. Thus for all polarization
directions there is no transverse shift.

The results presented above for these other
position operators are given for purposes of com-
parison to those obtained for the Newton-Wigner
position operator. It is the set of results obtained
for the Newton-Vhgner position operator which
agrees with the phase-shift method of analysis
given in Sec. III.

V. CURRENT-FLUX METHOD OF CALCULATING
DISPLACEMENTS

Another method of calculating the displacements,
used extensively in the literature' on the Goos-
Hanchen effect for light, is based on conservation
of current. Using the optical Fresnel relations
for total reflection of an incident plane wave of
arbitrary polarization, it is easy to show that in
the evanescent wave there exists a nonzero time-
averaged Poynting vector parallel to the reflecting
surface. From this one can infer that energy is
transferred from the incident light beam to the
medium of lower index of refraction, flows along
that side, and then this energy subsequently
reemerges in the reflected wave. Thus, the beam
will be spatially translated. In the steady-state

O'X p
2E(E+m) '

where all odd-operator terms have been dropped
since they do not enter the expectation-value cal-
culations. When acting between positive-energy
states this operator is the same as the center-of-
mass position operator. ""gath reference to the
results obtained from the Newton-Wigner position
operator, the additional contribution to the trans-
verse shift is m/E times the expression given in
Eq. (59) and the additional contribution to the
longitudinal shift is

pp, (E V,) mp-,
1 yx(E2 p 2) y(E2 p 2) ( t)'

The longitudinal shift D~, measured in the plane
of the boundary surface, is related to the shift
D, defined in Eq. (40) by D, = (P,/P)D~.

INCIDENT BEAM

Jl D
PROJECTION
OF INCIDE
PLANE ON
BGUNDAR
SURFACE

REFLECTED BEAM

DIRECTION GF

f EVANESCENT

BOUNDARY SURFACE

FIG. 1. Geometric configuration utilized in calculation
of shifts based on conservation of current Qux.

situation, the principle of conservation of energy
is used to establish the quantitative expression
for the shift. Using the Schrodinger equation,
Renard has applied this method to find the shifts
for a particle beam. In a quantum-mechanical
treatment of this type, the current-flux approach
may be equivalently considered as a conservation
of probability (or particles) method. In this sec-
tion, we shall use this approach in a straight-
forward way to calculate the shifts for a Dirac
electron undergoing total reflection.

As is customary in the application of the current-
flux method we will employ a plane wave to rep-
resent the central region of the beam. Utilizing
current-flux conservation we see from Fig. 1 that
the flux of incident current through a strip of the
boundary surface of unit width and of length D
(the shift) aligned in the direction of the evanescent
current should be equal to the flux of the evanes-
cent current through the semi-infinite strip of
that width extending from x, =0 to x, =~. Thus,

D J,(0) = dh3, 64)
0

where D is taken to be the displacement (shift) on
the boundary plane of the reflected plane wave
relative to the incident plane wave. S is the eva-
nescent current, and J;(0) is the x~ component of
incident current evaluated at the boundary surface.
Substituting Eqs. (20) and (21) into Eq. (64), we
obtain the results

D= P'.
V,(E+ m)(E'-p, ')

x t pp, (s x,)+ (E'-p, '+mE)(s x, xs, )],
(66)
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The polarization-dependent terms of Eqs. (65)
and (66) exhibit an inverse Vo dependence. In
contrast, the polarization-dependent terms ob-
tained from either the phase-shift analysis or from
an expectation-value calculation of a position
operator are independent of the potential. More-
over, the phase-shift analysis of Sec. III or any
of the expectation-value calculations of Sec. IV
give the same expression for the polarization-
independent term of the longitudinal shift, namely
the first term of Eq. (46). The current-flux
argument produces a different result for this term
[cf.Eq. (66)j . However, these two expressions
for the polarization-independent part of the longi-
tudinal shift agree near the critical angle (tt- 0}.
This common limit follows from the relation

(2E'-p, '-EV, ) = V [N-V, )p,'+ Ex']. (67)

There is no direct method of calculating a time
delay using the current-flux method. An indirect
approach involves the estimation of the time t~
for the evanescent current to flow the shift dis-
tance. This time is

f,= (D,'+ D, 'P'/u.„„, (66)

VI. REMARKS

The spatial displacements for a totally reflected
electron have been calculated in a number of ways
in Secs. III-V. Although all of the methods give
small polarization-dependent terms and the polar-
ization-independent terms approach the same limit
near the critical angle, the functional forms given
by the various approaches are in disagreement.

The phase-shift analysis and the expectation-

which depends on a knowledge of the average speed
of the evanescent current parallel to the surface.
If this speed were known, the time t~ could be
related to the time delay v previously defined via
the expression

x x + Dt st xp + Dtst T(p~/E)t (69)

by rewriting this as

'+((,(i,xt, ( ((, t, -(v+ *)p'/z. ((0(

Consequently, it follows that

= t. EpD, /(PP. ).-
However, there is no simple expression, e.g.,
p/E, which can be used for the average velocity.
Indeed, if one uses the results for the shifts and
time delay of the eigenpolarization states given
by the phase-shift method, one obtains a compli-
cated polarization-dependent expression for v,.„,.
This expression reduces to p/E only near the
critical angle.

value calculation using the Newton-Wigner position
operator yield the same set of results for the
eigenpolarization states. Although other position
operators give different results, it is the Newton-
%'igner position operator which best characterizes
the properties of localized states. Since the
spatial displacements pertain to the localization
properties of the system, it appears reasonable
to employ the Newton-VA'gner operator.

The symmetry of the problem implies rotational
invariance about the x, axis. Consequently, the
third component of the total angular momentum
is conserved. Vfe may write this requirement in
the form

(S.&'=(S,&'+ (Dxp).
=(S,&" + pD, . (72)

The appropriate spin operators which are to be
used in the above equation will depend on which
position operator is used in evaluating the dis-
placements. For the Newton-signer position
operator the spin operator is just —,'o in the FVf
representation. %hen the expectation value of
—,'0, is calculated for the incident and reflected FW
states, Eq. (72} is satisfied if the expression for
D, given by Eq. (59) is used.

In order to see whether the expression for D,
obtained from the current-flux method is consis-
tent with conservation of the third component of
angular momentum, a position operator that yields
this D, and an associated spin operator must be
determined. As we have seen, none of the position
operators examined in this paper produce a trans-
verse shift equal to that obtained by the current-
flux method. Furthermore, since that polariza-
tion-dependent transverse shift is also potential-
dependent, a, suitable position operator must con-
tain terms that produce this dependence, e.g.,
terms of the type (x I") (o G) or terms quadratic
in x. None of the usual operators that in some
sense characterize the position of a system have
such terms. Thus, it appears that the displace-
ments given by the current-f'ux method violate
the conservation of the third component of angular
momentum.

The failure of the current-flux method can be
traced to the use of plane waves in evaluating the
currents. If a localized wave-packet description
were incorporated into the current, then one
should be able to calculate the displacements by
finding how the evanescent-current flux through
the semi-infinite plane normal to the boundary
falls off as a function of distance from the center
of the impact of the incident wave packet. How-
ever, if one attempts such a calculation, one is
led to a multiple integral for that flux which can-
not be reduced to a closed-form expression.
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A systematic search is made for all renormalizable theories of heavy vector bosons. It is argued that
in any renormalizable Lagrangian theory highwnergy unitarity bounds should not be violated in

perturbation theory (apart from logarithmic factors in the energy). This leads to the specific
requirement of "tree unitarity": the N-particle S-matrix elements in the tree approximation must grow
no more rapidly than E' " in the limit of high energy (E) at fixed, nonzero angles (i.e., at angles
such that all invariants p,. ~ p, , i +j, grow like E ). %e have imposed this tree-unitarity criterion on
the most general scalar, spinor, and vector Lagrangian with terms of mass dimension less than or equal
to four; a certain class of nonpolynomial Lagrangians is also considered. It is proved that any such
theory is tree-unitary if and only if it is equivalent under a point transformation to a spontaneously
broken gauge theory, possibly modified by the addition of mass terms for vectors associated with

invariant Abelian subgroups. Our result suggests that gauge theories are the only renormalizable theories
of massive vector particles and that the existence of Lie groups of internal symmetries in particle
physics can be traced to the requirement of renormalizability.

I. INTRODUCTION

The only systems of heavy vector bosons which
are known to be renormalizable are spontaneously
broken gauge theories' (SBGT's) and "conserved
curr ent" models. In an SBGT the field var iables
can always be chosen so that the Lagrangian is
locally gauge-invariant. The vector bosons ac-
quire mass through the mechanism of spontaneous
symmetry breaking. Massless vector bosons
have conserved source currents. On the other
hand, conserved current" models always contain
at least one massive vector boson rvhose source
current is conserved. Massive quantum electro-
dynamics (QED) is the simplest system of this
type. The general prescription for constructing
conserved-current models can be stated as followers:

(1) Begin with a Lagrangian which is invariant
under a nonsemisimple group of local gauge trans-
formations (i.e., a group of transformations con-

taining an invariant Abelian subgroup). (2) Arrange
for spontaneous symmetry breaking (if any) such
that the vacuum expectation values of the scalar
fields are invariant under at least one invariant
(single-parameter) Abelian subgroup (thus, at
this stage the corresponding Abelian vector is
massless and coupled to a conserved current).
(3) Add an arbitrary mass term for the same Abe-
lian vector. Notice that the Lagrangian is invari-
ant under the entire group of global gauge trans-
formations and under the semisimple subgroup
of local gauge transformations.

Most massive vector Lagrangians are not re-
normalizable because the k„k„term in the vector
propagator induces "bad" high-energy behavior
in the scattering amplitudes. Conserved-current
and SBGT models are renormalizable because
this "bad" high-energy behavior is vitiated by the
symmetry of the vector couplings which multiply
the "bad" k„k„factors. For example, in conserved-


