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We derive the quantum-mechanical operator equation of motion for a point electron and show that (i)
the electrostatic self-mass of a point electron is zero in quantum mechanics; (ii) the equation of motion

does not admit runaway solutions; (iii) the correspondence limit of the solutions of the quantum-mechan-

ical equation likewise does not display runaways; and {iv) the solutions do not violate the principle of
causality in quantum mechanics.

The Lorentz-Dirac theory of a classical non-
relativistic point electron, interacting with its
self-field and subject to an external force F(f),
leads to the equation of motion' '

d'R(f) -, d'ft(f) 2e'd'ft(i)
dt' dt' 3c' di'

where m, is the mechanical mass of the electron
and Sn is its electrostatic self-mass (divergent
for a point electron). This equation is beset by
the well-known difficulties that it admits runaway
solutions (exponentially growing accelerations
even in the absence of external forces) and violates
causality (when the runaways are eliminated by
the imposition of suitable boundary conditions,
the electron accelerates before the force acts).
While these results mar the internal consistency
of classical electrodynamics, the view is often
adopted that since preacceleration occurs on such
a short time scale (10 "sec for an electron) the
noncausal effects belong in the domain of quantum

theory, to which one must turn for a resolution of
the problem.

To prove that runaways are not present in quan-
tum theory one would have to show that no Heisen-
berg-picture operator in the theory has an expo-
nentially growing time dependence. This result
has not been established for the standard Hamil-

tonian' governing the interaction of a nonrelativis-
tic point electron with a quantized electromagnetic
field, "on which the conclusions of this paper are
based, and it is not our purpose here to give such
a proof. Instead, starting from the operator form
of Maxwell's equation and the Lorentz force qua-
tion which follow from the Hamiltonian, we derive
a quantum-mechanical operator equation of motion
for a point electron which reduces to Eq. (1) in
the correspondence limit (i.e., S-0) and show
that (i) the electrostatic self-mass of a point elec-
tron is zero in quantum mechanics, (ii} the equa-
tion of motion does not admit runaway solutions,
(iii) the correspondence limit of the solutions of
the quantum-mechanical equations likewise does
not display runaways, and (iv} the solutions do not
violate the principle of causality in quantum me-
chanics. These calculations thus show how nonrel-
ativistic quantum electrodynamics is compatible
with requirements (no runaways, etc. ) which pre-
sumably folio~ from the general principles of
quantum mechanics and in addition possesses a
physically reasonable correspondence limit.

The results in the quantum-mechanical case are
best understood by comparison to the classical
results for an extended charge distribution. For a
spherically symmetric static charge distribution,

Eq. (1) is replaced by'
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d'H(t) - 2e' x" (-1)" d""H(t)
m, „,, -F(t)—,~, „y„„,„„

+(small nonlinear terms) .

The coefficients y„are proportional to t." ', where
I. is the effective charge radius, and are struc-
ture-dependent. For simple charge distributions
these coefficients can be explicitly evaluated and

the series summed. Thus, for a spherical shell,
one obtains"

d'R(t) dR(t —2L/c) dR(t)
dt' dI, dI,

F(t)
m(1 —cT/L) '

neglecting the small nonlinear terms. " In Eq. (3},

(c/2L)(c v/L)
(I c~/L) -'

7 = 2e'/3mc',

m =—mo+ 2e'/3Lc'.

Analysis of Eq. (3) shows" that, if I.&cw (i.e.,
$ &0) there are no runaways and no preaccelera-
tion, while if L «cT this equation reduces, as it
must, to Eq. (1) with m, + 5m =m. Clearly the
higher-order time derivatives d""R(t)jdt"" in Eq.
(2), proportional to positive powers of L, are
essential in suppressing the runaways.

Turning to the quantum mechanics of a point
electron, we find similar results with the electron
Compton wavelength X formally playing the role of
a size parameter. First we derive the (Heisen-
berg-picture) operator form of the Lorentz force
equation from the standard Hamiltonian' and then,
proceeding in analogy with the classical theory,
we introduce the operator form of the retarded
solution, to Maxwell's equations, eliminating the
self-fields from the equation of motion for the
electron. The resulting equation of motion is"

dxdx'&[p(x-H(t)})x-x'(" ', (ad"''B}1(x', t)],

f

(H(t}, t)+ — + H (H(t}, t) - H;„( (4)

where pg —R(t)) is the electron's charge density
normalized to unity„

l (x, t) =- 2 p8- H(t)),
L +

and (adA)B= [A, B], (ad A)B= [A, [A, B] ], etc.
We first study the motion of an electron in the

absence of external forces, i.e., for effectively
negligible E (R(t), t) and 8;„(H(t},t) Evaluation.

of the commutators in Eq. (4} gives, after a
lengthy calculation, '

d'H(t) 2e' ~ (-1)"„d""H(t)
~p d]2 Sea ~ ~ )Cn n d]n+2

n=p

where

8

3(n+2) ax

n.'
(n I

—2a

(
x')'

dzdz'p x) z-z' " ""V-„'}'"px'},

and X =h/mc is the el-ectron Compton wavelength.

Note that each structure coefficient B„is a power
series in x'/L' and that if we retain only the h = 0

term in the series for each B„, corresponding to
the 8'-0 limit, we recover Eq. (2) with the ex-
ternal force term omitted. In deriving Eq. (5)
nonlinear terms have been omitted as in the clas-
Sical derivation.

The electron's electrostatic self-mass is given

by

where

8 = 1+A,—
2

" p'(h)n, 1 —(Xk /2)'

p(x)dzdz', 1+-,X'V-„} '
p x'),

with 8 denoting the principal value, and p(k) is
the Fourier transform of p(x). Tins result was
obtained by summing the entire series for Bp as
given in Eq. (5). Notice that if one sets a = 0 in

Eq. (6) and then goes to the point limit [p(h} = 1],
one obtains the classical linearly divergent result
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for Sn, whereas if one goes to the point limit
keeping ~ finite, Sn =0. For a Yukawa form fac-
tor, p(tt) =(1+)t'I.') ', the self-mass assumes its
maximum value when I, X-, in which case (5m}- am„where e is the fine-structure constant.
Furthermore, we find that the self-mass givenby
Eq. (6) can even be negative for I, small compared
to the Compton wavelength.

Vfe now turn to the remaining coefficients. In

the Point limit,

'
0, for n even

( + } (2 I)) (( I)(~-&)/2yn-&
8(n + l)(n +2)

[dH(t) dR(0) = constant .
— )at tt

Finally, we discuss preacceleration. Assuming
a c-number time-dependent external force F(t),
the acceleration is given by

mA(cu) = F ((o)
1 —3' (i—(uX/c)

where f(q) is defined in Eq. (8) and

+oo 2 /

A(a)) =(2m) "' dt ' e ' '
dt'

for n odd. F((o) =(2v} "' dt F(t)e "'.

1 = —',of (q),

f(q) = ——[(1 —2iq) "'—(1+2irt) "']
3

——[(1—2iq}"'+(1+2iq)"' ——,]
371

+,[(1—2iq)"' —(I + 2ir})"'].2i
3n'

(8)

Detailed analysis shows that, for the physical
value of the fine-structure constant a, Eq. (8} has
no roots inside the circle of convergence

~ q~ & —,'.
The condition

~ q( & 2 corresponds physically to
the condition E „&~~c' and our nonre1. ativistic
formalism, with its systematic neglect of terms
of order v'/c', (v'/c')', . . . , can be expected to
be consistent only if this condition is respected.
But within this domain, we see that there are no

runaways, Likewise it is clear that runaways are
not present in the correspondence limit of the
allowed solution to Eq. (5):

Note that A, agrees with the classical result, as
expected since it is dimensionless, and that the
higher coefficients A„are proportional to ~" '

(n odd). Equations (5) and (7) show an obvious
similarity to the classical equation (2).

Next we investigate the solutions of Eq. (5).
Taking matrix elements of the operator dR(t)/dt
between stationary states of the Hamiltonian, we
have [dH(t)/dt] „=exp(iE„„t/tt)[dH(0)jdt] „, where
E „=-E„—E„. If there are runaway solutions,
there must be states (m) and ~n} for which

[dR(0)/dt] „x0 and for which i}=iE „/@has a
positive real part. Supposing [dR(0)jdt]„„&0and

taking the matrix elements of Eq. (5}between
states ~m) and ~n}, one obtains a power series
in the variable tt—=P(X/c). Inside its circle of
convergence

~ rt~ & 2, this power series may be
summed to obtain the following equation for p

(after factoring out the root P =0):

For consistency we must require the force to
have no Fourier components for frequencies

~
&u

~
& c/2X. This condition corresponds closely

to that discussed above (i.e., E„„&~c') and

means that the applied force changes slowly com-
pared to the time required for light to cross the
electron's Compton wavelength. Equation (9)
can then be rewritten as

with

d'R(t)
dt

G(t- t') =

dt' F(t')G(t —t'),

+ t;!oXd i ~(t-t''}e

„,„2v 1 —;af(i(uX/c—)
'

=F(t)+r dF t
dt

(12)

the last approximate equality being a consequence
of the fact that F(t) changes very little on the
time scale of ~. In effect, then, quantum theory
yields the usual radiative damping effects in the
correspondence limit (e.g. , the radiative line-
width of a low-frequency oscillator) while elim-
inating the possibility of observable noncausal
behavior.

investigation of Eq. (11}shows that the response
function G(t —t') is spread about the origin
(t —t' =0) with a width given by the characteristic
time ~t- 5/E „-A./c. This time scale, set jointly
by the dynamics [through Eqs. (5} and (I}]and

the uncertainty principle, is very large compared
to the time 7 - oX/c associated with classical pre-
acceleration, implying that there is no observable
violation of causality in quantum mechanics.

The correspondence limit (i.e., the limit h-0)
of the solution given by Eqs. (10), (11) is the solu-
tion of the equation"
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