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%'e present an entirely new kind of field theory, a field theory quantized not at space-time points, but

quantized along an extended set of multilocal points on a string. This represents a significant departure
from the usual quantum field theory, whose free theory represents a definite set of elementary particles,
because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge
trajectories. In this paper, we {1)present canonical quantization and the Green's function of the free

string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete
the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a
Yang-Mills structure when the zero-slope limit is taken. In future work, we will discuss loops and

explicitly calculate Reggeon-Pomeron and Pomeron-Pomeron interactions.

I. INTRODUCTION

Quantum field theory provides one with a con-
venient formalism in which to describe the world
of strong interactions. Building on the phenomenal
successes of quantum electrodynamics, quantum
field theory yields scattering matrices which are
Lorentz-invariant, crossing-symmetric, unitary,
and analytic. Quantum field theory, however, is
a clumsy formalism in which to describe simple
phenomenological properties of hadronie interac-
tions, such as Regge behavior, resonances, fac-
torization, and duality. 8-matrix theory, on the
other hand, is another hadronic formalism, but
one which avoids the problems of finiteness and
renormalizability. 8-matrix theory, though it
can conveniently accommodate these features of
strong interactions, can, at best, only yield quali-
tative predictions concerning hadrenic scattering
amplitudes.

In this paper we present an entirely nese kind of
field theory, ' a field theory defined on multilocal
relativistic strings, which combines the attractive
features of both quantum field theory and S-matrix
theory, and reproduces the properties of the dual
resonance model. Because the free string has
well-defined resonances, this new field theory
easily describes a hadronic world with infinitely
rising Regge trajectories. This new field theory,
though it has all the features of quantum field
theory (such as canonical quantization relations,
Green's functions, equations of motion, etc.), rep-
resents a significant departure from the usual
theory, for it is a field theory defined not at a
point in space-time, but a field theory which is
defined on an infinite set of multilocal points on
a string. It is a field theory which describes not
just the interactions of a certain set of fundamental
particles; it is a field theory which accommodates
the interactions of an infinite number of hadrons.

In this paper we will write down a multilocal
Lagrangian formalism from which the properties
of the dual resonance model2 can be rigorously de-
rived. We will introduce equal-time commutation
relations and Green's functions defined on strings.
We will also introduce interactions, which essen-
tially represent the successive splittings and re-
eonstitutions of the free string. The interaction
comes in takeo terms: The first represents the
breaking of one string into two smaller ones; the
second represents a four-string interaction. Using
the usual Dyson product and the Wick expansion,
we can calculate the unitary S matrix. We find
that each term in the expansion has a simple in-
tuitive picture. In Fig. 1, for example, the four-
point function ean be represented as two strings
which emerge from the infinite past, which then
momentarily merge and then split up, and then
propagate to the infinite future. We will show that
these "Feynman" diagrams are equivalent to the
amplitudes introduced earlier in the dual reso-
nance model.

Though theorists have suspected that the dual
resonance model could be reformulated in terms
of a second-quantized field theory, attempts to
isolate the underlying field theory have always
been frustrated for several reasons.

First, there is the problem of multiple counting.
Any field theory, including this one, yields Born
terms which contain both s- and t-channel poles.
In the dual resonance model, however, one dual
diagram can be expressed either as a sum over
s- or t-channel poles; hence there emerges the
problem of multiple counting, which becomes quite
severe as we go to higher-point functions.

Second, there are formal difficulties in writing
down a second-quantized dual theory. As we shall
see in Sec. ID, there does not exist a simple can-
onical momentum to the field variable if we quan-
tize covariantly.
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FIG. 3. Another light-cone diagram of a 4-point am-
plitude: t -channel resonance exchange.

FIG. 1. Scattering of two pairs of strings into another
pair of strings (4-point amplitude).

And lastly, the gauge problem persists in the
second-quantized approach. The formulation of
gauges, crucial to ghost elimination, is difficult
to express in second-quantized form.

All these difficulties are resolved once we spec-
ify light-cone quantization. In particular, in this
choice of gauge, though it yields both s- and t-
channel pole diagrams as shown in Figs. 2 and 3,
the sum of these two diagrams yields the usual 4-
point beta function. The generalization to N-point
functions is straightforward once we know that
certain sPecific sums of li ght-cone diagrams equal
one N-point dual amplitude, thus resolving the
question of multiple counting. The other questions,
as we shall see in Sec. III, are also resolved once
the light-cone gauge is specified.

In addition to representing a significant departure
from all previous field theories, the second-quan-
tized formalism of the dual resonance mode1. has
several distinct advantages over the usual one.

First, the field-theory approach explicitly con-
tains a four-string interaction in the master La-
grangian, which reduces to the Yang-MiBs struc-
ture in the zero-slope limit. The usual dual reso-
nance model (DRM) contains only three-Reggeon
vertices, in which it is difficult to see how a Yang-
Mills theory can be reproduced to all orders. In
the usual DRM, we must tediously take the zero-
slope limit for N-point amplitudes before any
Yang-Mills structure is revealed.

Second, theorists have long assumed that the
usual DRM can be unitarized through the introduc-
tion of mu1tiloop diagrams, ' though there is no
formal proof outside of the tree theorem. The
field-theory formalism contains an explicit Hermi-

FIG. 2. A light-cone diagram of a 4-point amplitude:
s-channel resonance exchange.

tian Hamiltonian, which produces unitary S ma-
trices (exciuding the question of the tachyon).

Third, the question of the weights for the per-
turbation diagrams has never been resolved, ex-
cept at the single-loop level. ' The field-theory
formalism automatically fixes all weights for all
diagrams.

Fourth, isospin is introduced ad hog via Chan-
Paton factors in the usual DRM. In the field-theory
approach, the Chan-Paton factors emerge natural-
ly by assigning isospin indices to the master field
variable.

Fifth, the DRM has long been suspected of being
equivalent to an infinite-component field theory.
In the field-theory formalism, the Lagrangian ex-
plicitly displays this character.

This paper is divided up as follows. In Sec. II
we review the first-quantized formalism of the
relativistic string. In Sec. III we write down the
second-quantized field theory on the light cone.
In Sec. IV we calculate the Green's function, In
Sec. V we discuss the interaction. In Sec. VI we
discuss multiple counting. In Sec. VII we discuss
the four-string interaction. And in Sec. VIII we
discuss the measure problem and give concluding
remarks.

In summary, we wish to emphasize three im-
portant theoretical points made in this paper,
First, we are presenting a new type of field theory
which differs radically from all field theories pre-
viously studied, but which preserves the same
canonical basis. Like the usual field theories, this
field theory defined on a string possesses a re-
normalizable, unitary form with canonical quanti-
zation re1ations, Green's functions, and a Coulomb
gauge condition, except that the free Lagrangian,
instead of representing a few select elementary
particles, now represents an infinite set of par-
ticles lying on linearly rising Regge trajectories.

Second, this field theory is the second quantiza-
tion of the dual resonance model. The DRM,
though it has met with considerable success in
providing a theoretical framework for strong in-
teractions, lacks a rigorous unitary formulation.
There exists no proof of the conjecture that sum-
ming over all topologically distinct Riemann sur-
faces with equal weights generates a unitary dual
amplitude. Now that the model can be expressed
in terms of a field theory, the questions of uni-



MI CHIO KAKU AND K. KIKKA%'A 10

tarity and weights can be studied in exactiy the
way usual field theories deal with the problems of
unitarity.

Third, in this paper we present new results on
the geometrical nature of the relativistic string.
%e prove that the three-Reggeon vertex function
can be rigorously shown to be the amplitude for
the breaking of a classical string. Ne also show
the necessity for a hitherto unsuspected four-
string interaction term.

Finally, we wish to comment on the reason why
this multilocal fieM theory is consistent with
causality. Traditionally, nonlocal field theories
have been plagued with the problem of introducing
interactions which do not violate relativity. In our
model, however, the problem of causality does not
appear for two reasons.

First, the quantization procedure is defined on
relativistic strings, whose classical, free behav-
ior is known to be consistent with causality. Vfe

can also demonstrate Poincard invariance in both
first- and second-quantized forms.

Second, the strings intexact with each other only
at points. For example, the 3-string interaction
only takes place when the end points of two strings
join to form a third. Likewise, the 4-string in-
teraction takes place when two strings touch at an
interior point.

II. FIRST QUANTIZATION

Before considering the question of second quanti-
zation, it will be instructive to reexamine the
first-quantized approach to the theory of the rela-
tivistic string.

Nielsen, Nambu, and Susskind4 formulated the
DRM in terms of a first-quantized coordinate
X„(&r, t}, which obeys the two-dimensional wave
equation

eo 1/2

X„(o,7) =x„(7')+g (ate "'+a„e"') — cosno,
tt~ z

(2.4)

n '"
P„(cr, r) =—p„(r)+( i)g-(a„e"' a,-e "') — cosnv,

ft- z

such that
(2.6}

[P&(&),X (& ))= fg-q c(c—c ). (2.6)

The Hamiltonian in this first-quantized approach
can be written as

H = v da [:P„'(o) + (2v)'X„"(o}:],
0

(2 't)

so that the Nambu equation of motion can be written
as

(2.6)

CIX'g —(X X')
(2.9)

The Hilbert space spanned by the harmonic oscilla-
tors a~ represents an infinite set of linearly rising
Regge trajectories. Notice that, however, the
Lorentz metric creates resonances with negative
metric, i.e., ghosts.

A great step in reformulating the gauge problem,
which sheds much light on the underlying field-
theoretic nature of the DRM, was made by Nambu,
Mansouri, Goto, and Chang, ' who reexpressed
the model with the Lagrangian

8 8 , X„(c,f) =0, (2.1)
Since this Lagrangian is invariant under arbitrary
reparameterizations

which sweeps out a two-dimensional Riemann sur-
face, with t going from — to + ~ and o' going from
0 to m. From the Lagrangian

c- cr'(a, t),
t.- t'(c, t),

we are free to choose two gauge conditions

(2.10)

(X —X' )
4m

e 8X =—X X'=—X
8g P~ 0 8g P~

we can introduce the canonical momentum

5I~(")=6(sX gsf)
~

(2.2)

(2.3}

X X'=0,
X2+X'2 =0. (2.11)

%e notice that the moments of these gauge condi-
tions [which are sufficient to linearize the La-
grangian to give back Eq. (2.2)) give us the Ward
identities of Virasoro':

Variations of L near the boundary 0'=0, m enable us
to write X'(0, f) =0=X'(v, f) and hence decompose
X~ and P~ as follows:

(2.12)

(2.13)
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X2+X'2 = 0,
X X'=0,

(2.14)

where
~ X) is an on-shell state of the dual Hilbert

space.
The proof that the Ward identities (2.13) are suf-

ficient to eliminate ghosts caused by the negative
metric was completed by Brower~ and also by
Goddard and Thorn. ' Because Lorentz invariance
is never broken and because the Ward identities
are imposed on the states themselves, we see that
this approach corresponds to the Qupta-Bleuler
formulation.

The Coulomb gauge formulation was finally com-
pleted by Goldstone, Goddard, Rebbi, and Thorn
(GGRT), who revealed the importance of the string
interpretation of the DRM. Their essential obser-
vation was that a relativistic s«i' X„(e) can be
represented in terms of only its transverse com-
ponents, and hence the question of ghosts never
appears. Their constraints

ing 8, to be the upper half plane and the z„ to be
real Koba-Nielsen variables, we can perform the
functional integrations by compl. eting the square,
and me arrive at the usual N-point integrand. They
showed that this formulation is equivalent to a
Hamiltonian formulation in which the operators
are all transverse, i.e., ghost free. Though their
functional approach makes use of the Nambu-Goto-
Chang-Mansouri (NGCM) Lagrangian (2.9) and the
light-cone gauge of GGRT, their formulation lacks
an intuitive string picture originally implied in the
work of GGRT. (To reproduce the loop diagrams,
we must sum over distinct topologies R„which
must represent planar, nonplanar, and nonorient-
able topologies, and j is the loop number. )

The final step in the first-quantized string pic-
ture mas comp1. eted by Mandelstam, "who found the
conformal mapping which maps the upper half
plane onto light-cone surfaces much like Figs. 2
and 3, which immediately allows a string inter-
pretation. His mapping,

X,=—(Xo+Xo,)' F2

=ZT=t

p =g a; In(z -z, ),

n,- =0,
(2.17)

g 2$+N -p

9=o

SX„(o,7)

g, , L(o, r)

(2.15)

where L = (-2w) 'u-g, can be eliminated by choosing
the gauges

II 5([X„(o,7)+X'„(o,r)]') 5(X,—5'), (2.16)

and then properly accounting for the Faddeev-
Popov determinants. In (2.15) P„,„represents the
external momentum attached at (o, r) =z„. By tak-

are sufficient to determine all coordinates in terms
of the physical operators X(a), thereby eliminating
the redundant longitudinal modes. In the GGRT
gauge, the Nambu equation of motion, (2.8), is
now replaced by an integral over only transverse
modes. Of course, choosing a noncovariant gauge
forces one to check that the Poincarb generators
once again satisfy the correct commutation rela-
tions. They found that the commutator [M „M,]
can only be equal to zero if the dimension of space-
time is 26.

Interactions mere first introduced into the string
picture by Gervais and Sakita„' who showed that
the ambiguities in the functional expression.

can be easily checked to produce a mapping of nar-
row, parallel strips which join and split, much
like relativistic strings. He was then able to iso-
late the three-Reggeon vertex function" in this
formulation and prove that both Lorentz invariance
and conformal invariance depended critically on
the space-time dimensionality being set at 26.

The importance of Mandelstam's approach be-
comes evident in the second-quantized approach.
We will see, in the next section, that the pertur-
bation series produced by the field theory pn
strings is in one-to-one correspondence with dia-
grams which have the topology given by the pre-
vious mapping.

Notice that, though the string picture presented
so far resembles a second-quantized theory be-
cause of the presence of an infinite number of
harmonic oscillators, it is actually only a first-
quantized theory, because we are only quantizing
the coordinate X„(o). There are an infinite num-
ber of oscillators only because they represent the
normal modes of the string, i.e. , because the first
quantization is performed over an extended object.
The lack of a second-quantized field theory is
obvious by looking at Eq. (2.15), where we must
sum over an infinite sequence of topologies. A
second-quantized theory would have a master
Lagrangian from which all topologies can be de-
rived. In a first-quantized approach, like this
one, we must insert the topologies in by hand.
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III. SECOND QUANTIZATION ON THE LIGHT CONE

In the transition from the usual first quantization
of quantum field theory to second quantization, we
impose canonical equal-time quantization relations
not on the coordinates but on the fields themselves.

Much the same approach will be taken for the
quantization on relativistic strings. Vfe begin try-
ing to introduce a field functional 4[X] of the string
variable X„(a) B.ecause this master field 4[x] is
a functional of the string variable, it loses explicit
dependence on the parameter 0.

%'e divide the interval on which the string is de-
fined (o = [0, su]) into an infinite set of points (o„
o„o„.. . , a„}. The functional 4 is then a function
of all string variables taken at al/ points along the
interval:

5Z
8(ee [X]/SX,(a)) ' (3.2)

where the Xo(o')'s represent an infinite of "times"
defined along the string. Notice that the canonical
momentum then displays a dependence on the string
parameter o, and hence there is no one-to-one
correspondence between the field functional 4 and

its momentum conjugate. For this reason, quantiz-
ing the relativistic string in a Lorentz-covariant
fashion leads to profound problems of definition.

The lack of a mell-defined canonical momentum to
the field variable is immediately resolved in the
light-cone formalism of GGRT. It we take the

gauge conditions (2.14), then we see that the mo-
mentum

5Z
5 (8@[X]/sx,)

(3.3)

can now be unambiguously defined, and that there
is now a one-to-one correspondence between the
field variable and its momentum conjugate. Pre-
viously, there was an infinite number of "times, "
each time corresponding to a coordinate Xo(a&) de-
fined at a point r, in the string interval. Choosing

@[X]= 4(x„(o,),X„(o,),X„(o,), . . . , X„(o„)).
(3.1)

Because coordinates taken at al/ points along the
interval appear in the functional, the functional
loses explicit dependence on the interval param-
eter o.

At this point, there is a technical difficulty which
emerges when trying to define a unique second-
quantized procedure, mentioned in the Introduc-
tion. If the I'~~rangian S for the second-quantized
string contains the field functional 4[x], then the
canonical momentum to the field functional should
be given by

c, [x]

=(f.,+m,2)4, [X], (3.4)

which is the ghost-eliminated version of Nambu's

Eq. (2.8). Guaranteeing condition (3.4) ensures us
that the usual Hamiltonian in the first-quantized
approach continues to produce translations in time
for the field 4.

The next condition that we wish the second-
quantized approach to incorporate is equal-time
canonical quantization relations. A desirable fea-
ture of our Lagrangian approach would be

rl [x]= i4 "[x],
which would produce

[4,,[z„r,],e,' [X„r,]],

%'e wish, therefore, to write down a master La-
grangian which will preserve the Schrodinger equa-
tion of (3.4) (which ensures that we reproduce the
usual spectrum of states and the usual Hamiltonian
in the first-quantized approach) and a Lagrangian
which will yield (3.5), so that canonical quantiza-
tion relations on the string can be written down.

Ne now write down the master Lagrangian:

g=20+Z, +22+2~ (3.7)

the light co-ne gauge fixes a common time for the
entire string.

Now, we remove all dependence of the field func-
tional 4 on longitudinal components. Though we
started originally with C [X]=@[X,X„X ], we use
conditions (2.14) to eliminate X, and X . The
functional still has a dependence on the zero modes
of X . Then we take the Fourier transform with
respect to the zero mode of X, so the field de-
pends on P, , VFe now take the region of the param-
eterization of the string to be [0, sa] (a =2p, }for
later convenience when we have breaking strings.

Before simply writing down the I agrangian, per-
haps it is instructive to first identify the field-
theoretical features which must follow from vari-
ations of the Lagrangian. This will give us an ap-
preciation of the various components of the second-
quantized Lagrangian.

First, we wish the Lagrangian to give us the
Schrodinger equation on a string:
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00 2 KP+ 2

dp, &fa uX 4~t [X]i 4~, [X] n-«'4 ~~ [X] —,+,X"(o) 4~ [X]
0 +

(3.8)

(2, is elaborated in Sec. V and 2, in Sec. V1I.
which is related to the Pomeron contribution will
be discussed in a subsequent paper. ) We first
notice that II is indeed independent of 0, so that the
conjugate momentum to the field functional 4 is
simply its own Hermitian conjugate, i.e., Eq.
(3.5). And we also notice that the Euler-i. a-
grange equations for the free Lagrangian yield
the Schrodinger equation defined on a string,
Eq. (3.4).

Much as in ordinary field theory, we can ex-
pand the field into functions of the classical solu-
tions of the equations of motion. The Schrodinger
equation (3.4), written in terms of each oscillator
mode, simply reproduces the equations of the har-
monic oscillator, so we can write the field func-
tion 4 in terms of Hermite polynomials. In anal-
ogy to ordinary field theory, we now write the
solution to the field which satisfies both the equa-
tions of motion and the canonical commutation
relations:

dp
A)+ p („& )}f) p („(l)}(x,&,', X~)(«)

«

(3.9)

[A), , p, („«)},A, q( (i)}]

where

f~ z(„(&)}(x,x(,'), X )

«= j. ~= I

xexp[i(p x -X,E(p„p, {n(,"])}j,

(3.11)

X('(a) =x('+ 2P &(,' cos(lu/a),

and i is the transverse Lorentz index, & is the
label for the excitation level of the string, and

is the number + of excitations in the ith Lor-
entz direction in the 1th level. Notice that the
Schrodinger equation, which is actually a super-
position of an infinite number of harmonic-oscil-
lator equations, yields eigenfunctions which are
Hermite polynomials. In order to prove the canoni-

cal equal-time commutation relations, we need
only the commutator between the operators A

[Eq. (3.10}], and the completeness relation for
Hermite polynomials:

~/V 2 60 Xjf g PV 0 +V O'~+P Q
0

(3.13)

consistent with the Coulomb gauge (2.14}can be
shown to satisfy the correct commutation relations
if the dimension of space-time is 26. %e use the
fact that if M„„are first-quantized operators act-
ing on fields O and 0, then the second-quantized
generators Ã„„=OM„„O satisfy the same com-
mutation relations as the original M„„ if

[0, 0 ]=1. (3.14)

It is then straightforward to show that we can define
second-quantized Poincare generators consistent
with the Coulomb gauge and covariance if we
define

At this point, we must emphasize the difference
between the little a„, the harmonic-oscillator
creation operator found in first-quantized dual
models, and the large A that appears in the
second-quantized formalism. First, the string
X is no longer an operator in our formulation. a„
in the conventional formulation creates simply one
oscillation mode of the string X; it does not rep-
resent the string itself. The A~, on the other hand,
creates an entire string, with excitations labeled
by the indices {n(,')}. The ground state of the oscil-
lator A is called

~ 0)) and should not be confused
with the ground state ~0) of the usual oscillator a .

Now all that remains to be proved in the free-
field theory is Lorentz invariance. Because we
have explicitly taken the gauge conditions (2.14)
before we quantized the field theory, we must be
sure that we can define Poincare generators such
that the correct commutation relations are un-

changed by the choice of gauge.
%e shall explicitly construct the second-quan-

tized Poincare generators through a simple tech-
nique. Previously, in the work of GQRT, it was
shown that the first-quantized Poincare generators
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g„= dp, sacr 4~ X p„4, x,
0

dp» sx @'p X M~„4p X,
0

where

P„= do P„Q,

jP = —,+,X"(o)
'

do, (3.15)
2p sX(g)~ 2w)

M~p = g ,'X~ (T gp 0' -Xp 0' P~ g) ~~ .' d{x.
0

We have now shown how to construct a second-
quantized canonical field theory defined on free
strings.

Before writing down the three-string and four-
string interaction terms, it will be instructive to
first construct the Qreen's functions of the field
theory. The three- and four-string interaction
terms arise naturally from a detailed discussion
of the Qreen's functions of the free theory.

N'. GREEN'S FUNCT1ONS

The construction of the Green's functions of the
theory sheds much light on its relationship to path
integrals defined over Riemann surfaces. We wil1.

show that the Green's functions for the freely
propagating string simply reproduce the functional
average over a rectangular Riemann surface with
sources at either end. In this fashion, we simply
reproduce the results of Qervais and Sakita, '4 ex-
cept expressed in a second-quantized formalism.

If I 0)& is the ground state of the operator A,
then the Qreen's function for the field theory is

«0I 4, [x„.,]et [X„., ]I o»

(where H is the second-quantized generator appear-
ing in the Poincare group generators, not the first-
quantized operator of the Schrodinger equation).
Expanding this, we now have

(&0I+~ p (I(())/a q (m(g)) I 0&&

1
~ ~

p» ~

~
~l ~

~

~

~
~
~t

~
~t

~„(&)~~~(s) ~

" II IIH(„(())(x(I')e '"~& 'exp[i(p x -x, E(p, p [n,'}))]
i eS"- j. 1 I&= j.

x H(~(j))(x~g, )8 QA exp[-z(q'I —X+2E(qp, q, ]Iy )))]

-I
= Jg exp . ,I, , cosh (x~g +kg ) —2x~g* x g

E

I ((sinh(ITln)

-(D-2)/2

(4.2)

The above expression, representing the amplitude
for propagating a string prepared in state x(,", over
to a string in state s,~, is simply the solution to
the path-integral problem, the functional average
over a rectangular Riemann surface (of length T,

T„and height -2wP+) with sources x„', and x,~~ at
either end. To clearly reveal this structure, it
will be instructive to review the highlights of the
work of Gervais and Sakita. In their work, they
showed that the propagator of the dual model can
always be written as functional averages over
Reimann surfaces, which in turn can be reduced to
the problem of finding the Neumann function de-
fined over that surface.

Let us begin with a Lagrangian

1 ~X'
L ———-I"

at

found in the first-quantized formalism. Now

take the functional average over a surface, so
that we are now calculating the amplitude for
propagating a string x(,', at time 7, over into a
string x «» at time 7,. The prescription for the

amplitude is

SX , 7 exp dv dcrL
T1 0

xII ()(X(o, r, ) -X,(o))5(X(o', r, ) —X,(o')), (4.3)
Qy 0

where o and both assume all values from 0 to
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~e. The functional integral is evaluated by the usual means, by completing the square:

x(a, )-x(v, r) ~ 2 f )((a, v; 8, r')z(tr', v')du'dr',

(
82 a2

,+, N(a, ~ o', r') = —n 5(o —a')5(r —T'),
(4 4)

BX(a, T) exp LdadT+ J(a, T) X(a, r)dadr
J

&X g, 7' exp Ldgd7' exp J g g ~ pf g y g

We now can quote our desired result: The Fourier transform of (4.3) yields terms like

ff Cf

exp P, (a) f)/(a, 7„a', r, )P,(a')dada', f(a, T) =[p,(a)5( —T,)+p, (g)5(7 —r, )]/~p
0

(4.6)

The exact expression for the Neumann function is not hard to find. We simply expand the Neumann func-
tion in terms of the free-string eigenfunctions and then match boundary conditions. We easily find the
unique solution

N(a, ~; a', ~') =-
& max(~, r')
oo I

+ h
f fi)g g )/ Cf f. rl / iI «f (-nT -Ng +ggyg-yg Ty) /~

+ e+rt(r) r 2)a/( s- ()))-)')/~+a n(r --) )/~)

+ gt. tl(~+ ~') -«2-n 7l 1/' ll
JS ~ (4.V)

Putting the expression for the Neumann function back into the integral, we arrive back at our original so-
lution. In other words, we have now shown that the single-string Green's function for the second-quan-
tized theory is simply the first-quantized functional average over a Riemann surface with sources.

In summary, our main result for this section is

(4 g)

V. INTERACTIONS

In the previous section we have shown that the
Green's function is simply the functional average
over a rectangular Riemann surface with sources
at either end. Given the one-to-one correspon-
dence between Green's functions and Riemann sur-
faces, it is then tempting to conjecture that the
interaction term, responsible for splitting a string
into two smaller strings, is simply in a one-to-one
correspondence with the infinitesimal Riemann
surface which represents the splitting of a propa-
gator into two smaller propagators, as in Fig. 4.

We are led, therefore, to construct an interac-
tion term which is the limit of the Neumann func-
tion defined over the wedge-shaped region of Fig.
4 as the width goes to zero:

3

llm X)X Q~ 7' exp L dgd, 'T g]q7') —X) g) ) .
f=l Q) (5.1)

In this integral, a string starts at "time" 7, and
propagates until it splits into two sma11.er strings
at T=0, which then propagate further on to "times"
~, and 7', . We take each string i to be of length xe, .
We will take the parameterization shown in Fig. 5:

0& 0'(&
l

wo.'(l,

o, = a, (0& a, & xl u) l ),

a, =a, +xi+, l (0&a,&xi&, l),
3

gn, =o,

The product over g& is taken to mean a product
over all points defined in the region 0«, & sl a, l.
The functional integral can be explicitly taken and
yields terms like
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& le& I

exp

&

label

x II do, p(o, ) ~ N(o„r„o„r,)p(o~)
0

(k = 1, 2), (5.3)

where N is the Neumann function defined over re-
gion A. On the other hand, our intuition tells us
that, as a string breaks, it must do so such that
there is a smooth transition between the original
string X, and its broken pieces X„X,. The string
picture motivates us to believe that a string, with

X,(c,) =X,(c,)8(v i a „ i
—o,)

+X,(cr, )8(o, —m( u, ~) . (5.4)

Vfe are led, therefore, to consider the following
action, which will generate a Riemann sheet cor-
responding to interacting strings:

boundary conditions X' = 0 at the edges, propa-
gates until there exists a point in its interior such
that X' =0, where upon it may break into two
pieces at that interior point. Continuity leads us
to suspect that the limit of the integral in (5.1)
should somehow reproduce the condition

6f
&, =kg II 2

'„,sx, (c,)5(p„-p„-p„)e,' [x,]c,' [x,]e, [x,]

x II ~(X (o,) —X (&,)8(&) u, )
—o ) -X (c,)8(o, —vl o', I ))+H c. , 0«& v Io, I . (5 5)

Though the functional integral given in (5.1) will
generate the Riemann surface which can break and
join strings, our string picture motivates the ac-
tion in (5.5). In order to reconcile these two dif-
ferent viewpoints, we must show that

5g, (o,) -X,(o,)8(w) u, ]
—o,) -X,(&r,) ( 8,o- (vu, ) ))

lim X) X o', 7' exp I.dudT
~x a .3 R

x IIII'(x(o„r,)-x, (o,)). (5.6)
0)

The proof that the Neumann function defined over
the Riemann surface corresponding to a breaking
string is identical to a 6 function defined over the
breaking string (when the interaction times ap-
proach each other) requires rather involved calcu-
lations, so the proof will be presented in Appendix
A." The plan for the proof is as follows: As in the

I

case of freely propagating strings, we must con-
struct the Neumann function over the corresponding
finite Riemann surface. By expanding the Neumann
function over a complete set of eigenfunctions of
the free string, and then by matching boundary con-
ditions over the various regions of the Riemann
surface, we are able to construct the unique Neu-
mann function defined over that region. %hen we
compare this result with the calculation performed
by attaching three different propagators onto the
three strings appearing in the 5 function and then
integrating over the set of intermediate string
eigenfunctions, we find that the two results are
exactly identical. Thus by letting the interaction
times in the Neumann function gradually approach
each other, we recover the original 5-function in-
teraction. (The procedure of explicitly construct-
ing the Neumann function by expanding over com-
plete eigenfunctions of the free string is quite a
general program„and can be applied to all light-
cone topologies, N-point functions, and multiloop
diagrams. )

Also, in Appendix 8 we will outline yet a third
method of defining the interaction between three
strings. It is not hard to show that the following

FIG. 4. A vertex diagram; splitting of a string in bvo.
The functional integration is performed over the region
&, then the limit 7; -0 is taken. FlG. 5. The parameterization of strings.
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equations, which represent the mapping of one string
onto two smaller strings, can be solved exactly:

The advantage of this proof is that we obtain the
interaction vertex directly in terms of the familiar
harmonic oscillators. Vfe will show that the re-
sults are identical.

The calculation outlined in the first part of this
section was performed in the eigenstates of the
relativistic string, not the usual eigenstates of the
first-quantized Hamiltonian. Therefore, to com-
pare our results with the results of Mandelstam,
who first constructed the vertex at infinite sepa-
rations of interaction times and then reduced the
vertex to finite times by adding multiplicative fac-
tors such as e ~-~'» '&', we must be careful not to
confuse the difference in our basis states. By let-
ting the interaction times in our finite-time vertex
go to positive and negative infinity, we can show
that we recover the vertex of Mandelstam.

(For our present discussion, we will temporarily
omit discussion of the four-string interaction,
since this vertex does not affect critically our
discussion of the question of multiple counting and
the formal perturbation series. ) Once we know

the structure of the three-string interaction term,
we can insert this term into the standard Feynman-
Dyson expansion of the S matrix:

where

y(7) ev Hg e rs- (5.8)

%e leave it as an exercise to show that we re-
produce the usual Wick expansion when the Lagran-
gian , is inserted into the S-matrix expansion.
The net effect of inserting the vertex (5.5) into the

perturbation expansion is to have a set of light-
cone Feynman diagrams composed out of two-
dimensional Riemann surfaces. The propagators
are represented by finite rectangular regions,
while the vertices are simply the infinitesimal
Riemann surface corresponding to the breaking of
a string. By integrating over a complete set of
eigenstates of the intermediate string, it is possi-
ble to smoothly construct the functional integral
over the surface formed by joining together small-

[X,(a, ) -X„(a,)e(a I ~, ( a, )

-X,(a,)e(a, —w( a, ()] ( V) =0,
(5.7)

F,(a,)+p, (a,)8(~l ~, I
—a.,)

+p, (a.)&(a.- rl a, l )ll &) =0.

er surfaces. The Varick expansion creates surfaces
which can, piece by piece, be joined together by
summing over a complete set of string eigenstates
to produce the functional integral over Riemann
surfaces corresponding to multiloop amplitudes
and higher-point functions. In other words, there
is a one-to-one correspondence between the Rie-
mann surface representing N-point functions or
multiloop functions and each term in the perturba-
tion series.

As in ordinary field theory, the Nick expansion
gives us the standard decomposition of each term
in the perturbation expansion into vertices and

propagators. In the usual fieM theory, the ver-
tices are points which connect propagators defined
between space-time points. In this field theory,
the vertices are wedge-shaped regions which join
propagators defined between two extended strings.
The fundamental difference between this field-
theory perturbation and the usual one is that now

the topology of each Feynman diagram is the topol-
ogy of extended strings which propagate and split
into smaller strings, while the usual field theory
reproduces the topology of points which can prop-
agate and split into other points. In both cases,
we functionally integrate over all Feynman paths
to calculate the propagator; only the topology is
different.

The final resul. t of contracting over all states is
an amplitude which agrees with Mandelstam's
original light-cone formula (3.1). The only differ-
ence is that he explicitly accounts for the "self-
energy" term which arises in this dual field theory
because the string has a finite extension. In our
formalism we can eliminate this infinite contribu-
tion by dividing our field functional by an infinite re-
normalization constant. In addition we must note
that our formalism gives a relativistic result, even
though we have separated the transverse and longi-
tudinal components from each other. As in Mandel-
stam's original paper, the longitudinal contribu-
tion to the amplitude arises when we correctly in-
terpret the term exp(P w).

VI. MULTIPLE COUNTING

Though we have now shown that the interaction
in Eq. I5.5), when inserted into the S-matrix ex-
pansion, yields a functional average over an entire
surface like Fig. 6, we still must show that the
counting of this field theory reproduces the count-
ing found in the usual dual theory, and that it is
consistent with the counting found in the zero-
slope limit" of the model, i.e., the p' theory (or
the Yang-Mills theory, "if we include isospin and
the four-string interaction).

First, let us discuss the four-point function and
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FIG. 6. Construction of scattering amplitude. Green's
functions and vertices are joined together to form a
light-cone diagram.

upper half plane onto the surfaces found in four-
point functions. In other words, our perturbation
expansion gives us expressions for the Neumann
functions defined over surfaces appearing in Figs.
2 and 3, but it is much easier to simply transform
the upper half plane into the corresponding sur-
face. Mandelstam has given us the conformal
mapping of the upper half plane onto stringlike
surfaces, which are all that we need to discuss the
counting problem:

the problem of multiple counting. When the pre-
vious interaction given in Eq. (5.5) is expanded in
the S matrix to second order in the coupling con-
stant, we find 12 diagrams in the series, corre-
sponding to four sets of s-, t-, and u-channel
poles. I et us first study the behavior of the s and
t graphs, as shown in Figs. 2 and 3.

It is possible to functionally integrate over all
intermediate states in the perturbation expansion
to get an exact expression for the Neumann function
defined over a Riemann surface given in Fig. 6,
but the cal.culation is tedious and yields little in-
sight into the counting. A much simpler, but en-
tirely equivalent approach, is to use the Neumann
function defined over the upper half complex plane,
which is known, and then conformally map the

p = u, ln(z —1)+ u, ln(z —x) + u, ln(z ),
u„u, & 0),i u, & 0, u„+u, &

( u, ). (6.1)

We know from the usual Koba-Nielsen forma1ism
that the region of integration 0 «x «1 is sufficient
to produce the four-point beta function. The ques-
tion we will now investigate is whether the above
mapping reproduces the s-channel diagram or the
t-channel diagram.

To gain insight into the topological. structure of
the mapping, we first must find the points u, and

u, in the ~ plane which correspond to the turning
points in the p plane. To find these points, we
take the derivative of p with respect to ~ and set
the result to zero:

—=0 ~u„=— Q,x+u, +u, +u,xa [(u,x+u +u, +u,x) +4u, u x]"}, P u,. =o. (6.2)

&=a6~ a& 1

p —ts(u~) + u2 ln(ac —e }+ u, inc,

p ivu, +(u, +u, )lne.

(6.3)

When u, + u, 0 (i.e., when the "length" of string 3
is greater than the "length" of string 2), then the
region corresponding to the separation between

When x is close to 1, then the turning point situated
between strings 1 and 2 necessarily must go to
negative infinity, because then the images of ~ =1
and & =x become arbitrarily close to each other in
the p plane. Therefore, when x is close to 1, the
turning points in the p plane are infinitely far a-
part from each other, so we are in the region cor-
responding to the s-channel diagram, s=(P, +i', )'
(Fig. 2).

When x is close to 0, however, the limit becomes
very subtle. I et x be an arbitrarily small quantity
&, and let us investigate the image of ~ in the p
plane when z is also small, but larger than x (i.e.,
in the region corresponding to the separation line
between strings 1 and 2):

X=6 )

~ =-a&, a& 1

p in(u, +u-, +u, )+u, ln(ae+~)+u, in&,

p inu~+ (u2+ u-, ) in& .

(6 4)

For arbitrarily small x, we see that the separa-
tion region between strings 3 and 4 goes to nega-
tive infinity, so the turning points again go past
each other, corresponding to the t-channel pole
diagram.

When a, + a, =0, then the limit when x goes to

strings 1 and 2 goes to positive infinity, so that
the turning points Pass each othe~ in the complex
p Plane, corresponding to a t-channel diagram
(Eig 3). We se.e, therefore, that the mapping (6.1)
is sufficient to generate both s- and t-channel pole
dl.agrams.

When u, +u, & 0 (i.e., when string 3 is smaller
than string 2} then we are interested in the region
when x is small and positive and ~ is also small,
but more negative than -x (this corresponds, in
the p plane, to the region of separation between
strings 3 and 4).
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zero corresponds in the p plane to the situation
when the turning points simply collide and then
come to a halt. Therefore, in this situation, there
is no t-channel diagram. As Mandelstam has
shown in his previous paper, in this situation the
&-channel diagram alone is sufficient to reproduce
the entire dual beta function.

To summarize our result, we find that a careful
study of the integration region given by the Koba-
Nielsen variables in the mapping given by Mandel-
stam yields both the s- and t-channel pole dia-
grams which are produced in the second-quantized
field-theoretical approach. %e suspect, therefore,
that the multiple counting difficulties of the dual
model are resolved once we know that certain sums
of light cone di-agrams, given by the field-theoret-
ical aPProach, yield one dual diagram.

The generalization of this result to higher-point
functions is not difficult. I et us assume that we
have the mapping (Fig. t) for an (K+1)-point func-
tion,

p =g ol (zn- )xP+n& ln(z —x&),

such that

t,„.(t, ) to negative (positive) infinity in any order
we please, by simply allowing successive pairings
of Koba-Nielsen variables to approach each other
in the z plane. %e still must show how it is pos-
sible to send the turning point t,„.(t~) to positive
(negative) infinity in any order we choose.

Let us examine the region in the ~ plane defined
by a point x as x approaches z„, (x=z„,+e). This
point mays onto the region corresponding to the
separation of the ith and (i+ l)st strings in the p
plane. If all the other ~'s are kept fixed, then the
point & is mapped into the point

j
(2~+& Inf + zw gQ~, at~+&+ 0,

l=g

so that the turning point t&„most likely lies close
to negative infinity. If we can find a configuration
of Koba-Nielsen orderings which wi11 map the
point x to positive infinity, then we will have
proved that the turning point t„,approaches posi-
tive infinity.

Now, let m, be an integer such that t has an
imaginary part slightly less than the imaginary
part of E,+,.

Then

ck g
Its

& V-1

0 g
oL al

oL v+ I

FEG. 7. A many-point tree diagram.

The region (x„x„,) in the z plane has an image in
the p plane corresponding to the separation region
between strings 4' and 4+1. The limit x~-&&„,
therefore, is responsible for sending the turning
point located between strings 4 and 4+1 to nega-
tive infinity if 4+ M and positive infinity if 4& M.
In other words, by allowing the Koba-Nielsen vari-
ables to come arbitrarily close to each other in
successive pairings, then it is possible to send the
turning points, in any order we please, to negative
(positive) infinity for turning points located be-
tween the hth and (0+1)st strings for h& M (h& M).

For convenience, we will label the turning point
in the p plane which separates the ith and (i+1)st
strings by t;„and the jth and (j+1)st strings by
t& (i& M, j ~ M + I). In the above paragraph, we
showed that it is possible to send turning points

Now take the Koba-Nielsen ordering such that all
variables z, (l =i+1,m) all lie within order e of x,
i.e. , x=&j„+&—=~j„+e=— '&=—~ +e such that
the original ordering is not destroyed. Then the
map of the point x in the p plane is

Q) ln x —2) +2Ã Qg

Q) in& +2lT Qj .

The mapping of the point & now approaches posi-
tive infinity, and hence turning points &j for 2& M
can now be sent to both positive and negative in-
finity independent of the ordering of the other points.
[In this proof, we obviously do not want to change
the ordering of the turning points, except to send
t„, to positive infinity. As all the variables from
&j„to & are collapsed to within order & of each
other, we must first make sure that this limit does
not alter the orderings of the turning points
t„(i+2&n = m —1), which can always be done by
taking first the limits on the various &„ such that
the orderings in the p plane are unaffected. ]

%'e have now shown that, for an arbitrary N-
point function, we can always change the relative
orderings of the turning points in any way we wish,
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so that we include all possible orderings of N-
point topology.

Perhaps an easier way to demonstrate this is to
take the decay amplitude, so that we have one string
on one side decaying into many strings located on
the other side of the Riemann surface. In this
decay amplitude where one string decays into N-1
strings, there are (N-2)! ways in which to pair
off the Koba-Nielsen variables in successive fash-
ion, and hence (N-2)! ways in which to draw pla-
nar light-cone diagrams. But the topology of each
light-cone diagram defines a definite pole struc-
ture, and hence can be put into one-to-one corre-
spondence with the pole diagrams which make up
a dual diagram.

To be more precise in our language, let us de-
fine a "dua1. diagram" as one diagram of the orig-
inal dual model with one definite ordering of ex-
ternal lines which is factorizable in all dual chan-
nels. Let us define a "light-cone Feynman dia-
gram" as the various pieces which make up one
dual diagram, such that each light-cone Feynman
diagram corresponds to a unique pole decomposi-
tion of the original dual diagram. The number of
light-cone Feynman diagrams which add up to
make up one dual diagram is equal to the number
of independent, noncrossing triangulations of an
N-point polygon, "i.e.,

(2N- 4)!
(N- 2}!(N —1}!

Let us define a light-cone diagram as the (N-2)!
different diagrams we find when we analyze a
planar decay diagram in the light-cone formalism.
I et us define a Feynman diagram as the usual
function obtained from a Q' theory.

Since there are (N —1)!/2 possible cyclic order-
ings of N points, then (N- 1)l /2 dual diagrams add

up to form an 8 matrix. Each dual diagram, in

addition, can be decomposed into P& Feynman, or
light-cone Feynman diagrams. In the zero-slope
limit, each dual diagram reduces to P„ light-cone
Feynman diagrams and each Feynman diagram in
the S matrix receives contributions from 2" '
light-cone Feynman diagrams.

Ne showed that each cyclic ordering of

appoints

contains (N-2)! light-cone diagrams. Since we
would like each light-cone (l.c.) diagram to corre-
spond to a l.c. Feynman diagram, because each
diagram represents a unique pole structure, we
must be able to reduce the (N-2)! light-cone dia-
grams into a smaller set of P„ light-cone Feynman
diagrams.

The discrepancy between (N- 2)l different light-
cone diagrams for one particular ordering of ex-
terna1 lines and P„different l.c. Feynman dia-
grams is resolved once we notice that not all of

the (N-2)! orderings correspond to diagrams with
distinct pole structure. For example, in Figs. 8(a,)
and 8(b) we have two different light-cone diagrams,
but they do not exhibit distinct pole structure.

There is a simple rule for determining if two
light-cone diagrams fall within the same equiva-
lence class. If we have two light-cone decay dia-
grams which are identical in topology except for
the relative orderings of two turning points t, and

I„, then the two diagrams belong to the same
equivalence class if there is a s such that

Ref„& max(Ref„Ret„), s& v& u

where the real part designates the interaction time
of the turning point, and all turning points come
from negative infinity.

It is not hard to see that any 1..c. Feynman dia-
gram can be uniquely represented in terms of one
of the equivalence classes of light-cone diagrams,
and that each equivalence class of light-cone dia-
grams can uniquely be represented in terms of one
l.c. Feynman diagram. Therefore, since both sets
include each other, then they must be identical
sets.

It mill be instructive to give examples of how
the complete counting problem can be solved for
the dual diagrams as well as for the zero-slope
limit.

For example, in the case of the four-point func-
tion, the light-cone expansion yields 12 light-cone
diagrams, each representing a light-cone Feynman
diagram. Because two l.c. Feynman diagrams can
be added to form one dual diagram, we wind up
with six dual diagrams, corresponding to two (st),
(su), and (tu) diagrams Now t.ake the zero-slope
limit. Each dual diagram breaks up into two Feyn-
man diagrams, so we eventually get 12 Feynman
diagrams. But because of the factor g/2 in (5.5),
we now recover exactly the usual (IF)' counting for
the four-point functions, i.e. , three diagrams.

In the case of the five- (six-) point function, the
light-cone expansion yields 5 (14) pairs of light-
cone Feynman diagrams for each ordering of the
external lines, or 10 (28) total light-cone Feynman
diagrams. Since there are 12 (60) cyclic order-
ings, the light-cone expansion yields 60 (840) pairs
of !.c. Feynman diagrams, and since it takes 5 (14)
l.c. Feynman diagrams to make one dual five-

(o) (b)
FIG. 8. The two distinct light-cone diagrams Figs. 8(a)

and 8(b) form a single light-cone Feynman diagram.
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(six-) point function, we now have 12 (60) pairs of
dual diagrams, twice the usual case. Now, if we
take the zero-slope limit, we obtain 120 (1680)
Feynman diagrams, which is too many. The fac-
tor g/2 brings down the number of Feynman dia, —

grams to the correct value of 15 (105).
In the N-point case, there are 2[(N- I)!/2]P»

light-cone Feynman diagrams and (N- I)! dual
diagrams. The factor g/2 brings down the number
of Feynman diagrams to the correct [(N- 1)!P„]/
2N 2

In summary, iteration of the vertex (5.5) gives
twice the usual number of dual diagrams as in the
usual counting except the factor g/2 gives each
diagram weight 2 "".When we take the zero-slope
limit, this factor 2 ' is precisely the factor
needed to reproduce the counting found in a Q'

theory.
Notice that our weights for trees are different

from the usual counting, so we find that our weights
for loops are also different, viz. , we find no non-
orientable diagrams present in our counting. This
result is still compatible with the usual unitarity
arguments, because we are not taking intermediate
states to be of positive charge conjugation. The
factor (1+0)/2, where 0 is the twist operator, can
be dropped in our formalism. The zero-slope limit
is also preserved in our formalism without non-
orientable diagrams, because the orientable and
nonorientable dual diagrams contribute Feynman
diagrams in exactly equal numbers. By taking the
weight of orientable diagrams to be twice the usual
one, we achieve exactly the usual @' counting up to
the first loop. More on the counting problem for
loops will be postponed until a later work. (For an
explanation of the effects of the twist operator Q,
see the latter part of Appendix A. )

VII. FOUR-STRING INTERACTION

In the previous sections we have seen how to
second quantize the free theory of relativistic
strings and to introduce vertex functions which
permit one string to split into two smaller strings
at some interior point. This three-string interac-
tion is sufficient to give the correct counting of
diagrams and the correct Neumann functions for
the Riemann surfaces corresponding to ~-point
functions, but it is not sufficient to give the entire
region of the Koba-Nielsen variables.

We are forced to admit a four-string interaction"
into our field theory for several compelling rea-
sons. First, if we closely analyze the region of
integration specified by the Koba-Nielsen vari-
ables, as specified in the mapping given by Mandel-
stam, we find that there is a region of integration
which corresponds to a Riemann surface which

cannot be decomposed into a simple propagator
with two interaction vertices. We will find that this
region of integration maps onto surfaces which
have a continuously deforming topology. Second,
if we are to successfully reproduce an infinite
component field theory from our original Lagran-
gian, and if we are to recover a Yang-Mills inter-
action when isospin indices are added to our field
functionals, then we are forced to consider the
addition of a four-point interaction which will sat-
isfy the properties of second-kind gauge-invariant
theories. A four-string interaction would incor-
porate the necessary four-point interactions need-
ed to give local gauge invariance.

The intuitive reason for the four-string inter-
action lies in the fact that the string may interact
with another string at points which lie in the in-
terior region of both strings. In the usual picture,
one string propagates in time, until it breaks at
some interior point, whereupon two smaller
strings continue to propagate. In this new set of
diagrams, two strings propagate freely, until they
come in contact with each other at some point in-
terior to both strings, whereupon they merge and
change topology (see Fig. 9). Because the inter-
action point at which the two strings merge can
vary along the length of the interiors of the strings,
we conclude that we must integrate along the in-
teraction point (this does not correspond to an in-
tegration over "time, " and hence the four-string
interaction is still fixed in 7). The fact that strings
can merge at points interior to both strings intro-
duces a new feature to the dual model. While the
old first-quantization methods only explicitly re-
vealed a three-Reggeon structure, which implicit-
ly contained four-point structure when analyzing
four-point dual functions in the zero-slope limit,
the second quantization of the relativistic string
contains this interaction in the Lagrangian itself.
Furthermore, if spontaneous symmetry breaking
is to be incorporated into the string model, then
it is preferable to have a 4' interaction rather than
a 4' interaction.

The mathematical reason for requiring a four-
string interaction lies in the fact that the previous
Lagrangian. studied up to now, with only three-
Reggeon couplings, does not produce the entire
region of integration of the (tu) graphs. Using

FIG. 9. Mechanisxn of four-string interaction.
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perturbation theory to second order in the coupling
constant, we showed that it was possible to pro-
duce s-, t-, and u-channel diagrams. %'e demon-
strated that the s-channel diagram could be added
to the t-channel diagram, to produce one complete
dual diagram. By carefully analyzing the Ri.emann
surface generated by the mapping of Eg. (6.1), we
demonstrated that this map is sufficient to generate
both the s- and t- channel graphs, and that there
is no topological ambiguity in defining the transi-
tion between the s- and t-channel graphs. I.ike-
wise, s- and u-channel graphs can be added in
much the same way to reproduce the Riemann sur-
face of the (su) dual four-point function.

For the (iu} channel graphs, however, there are
serious problems in resolving the ambiguities
arising out of defining the transition between the
t and u graphs. In Fig. 10, for example, we show
the surface corresponding to the t-channel light-
cone diagram. Notice that the turning points, when
they approach each other, eventually collapse into
a.single point and cannot go past each other, as
was the case when deforming the s-channel graph
into the t graph. Qn the other hand, Fig. 11 de-
scribes the u-channel light-cone diagram, which
also has the same ambiguities when the turning
points gradually collapse with each other into a
point.

%hen the turning points of both graphs eventually
collapse into the same point, we arrive at the con-
figuration given in Fig. 12, which seems to be the
same for both the t- and u-channel diagrams. It
is tempting to speculate that the t-channel graph
collapses into a configuration like Fig. 12 only
momentarily, and immediately transforms into
the corresponding u-channel graph. Unfortunately,
this conjecture is incorrect, because the topologi-
cal structure of the t- and u-channel graphs differs
radically, and so there must be a continual de-
formation of one graph into the other. ln other
words, the four-string interaction corresponds
to the continuous deformation of the t-channel
tojology into the u channel through the configura-
tion shoran in Eig. 2Z. The continuous deformation
of one topology into another can only be described
by a Riemann surface in which four strings are
intimately intertwined.

3"

FIG. 11. A light-cone diagram with a ~-channel pole.
The diagram represents the Reimann sheet structure of
the mapping (7.4) for x2 & x & 1.

The change of one topology into another can be
described as follows. In the t-channel graph of
Fig. 10, the turning points gradually approach one
another, until they collapse into a point A (see
Fig. 12). Then the two turning points merge into
one point, which then journeys from .4 and moves
down the Riemann surface, until it eventually
arrives at point 8, whereupon the two turning
points once again separate and reproduce the topo-
logy of the u-channel diagram. The intermediate
region where the turning points are momentarily
merged into one point (called C} corresponds to the
four-string interaction. As C moves continuously
from point A (I-channel diagram) to the point B
(u-channel diagram}, this point represents the
point where strings are rearranged, so that it
acts like a "zipper'* which interlaces a new sheet
structure as it moves down the path. The path of
this point, from point A to C, represents one

particular connection of sheets, while the path
from C to 8 represents another.

It will be instructive to trace the Riemann sheet
structure of the vertex. I.et us begin at a point
which lies on sheet 1 in Fig. 13 and journey down

this strip until we intersect the path (ACB) If.
we intersect the path (ACB) at a point which lies
above C, then we enter sheet 3. If we intersect
the path (ACB) at a point below point C, then we
will enter into sheet 4. I.ikewise, if we begin our
journey Rt a point on sheet 2, then if our journey
intersects the line (ACB) at a point above (below)
point C, then we will enter string 4 (3). Thus, the
point C acts like a "zipper" which continually re-
aligns the sheet structure of the Riemann surfaces
as it moves from point A to I3.

Now that we have carefully mapped out the

FIG. 10. A light-cone diagram with a t-channel pole.
The diagram represents the Reimann sheet structure of
the mapping (7.4) for 0 &x &x&.

FIG. 12. The Riemann sheet structure which shows
the transition from Fig. 10 to Fig. 11„ for x& &x &x2.
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(0 & v~ & rr
f ar f ),

vr=v& (0&cr4&rrfa&f},

v, = v, + rr(n, —
f n, f ) (0 & v, & rrn, ),

cr, = v, + rr(n, —
f a, f ) (0 & cr, « tr

f a, f ),
Ql, Q'2&0~ A3~ @4&0,

a;=0,
1=1

a, & fa, f&n, , a, & fa, f&a, ;

FIG. 13. The Hiemar~ sheet structure of a 4-string
interaction term.

Biemann surface structure of the four-string in-
teraction, we can write down the correspondence
between strings. As before, we can decompose
strings 1 and 2 in terms of the strings 3 and 4

as follows:

X,(v, ) =X,(cr,) 8(cr, —v,) +X,(v, )8(v, —o, ),

X,(v, ) = X,(v, )8(v, —v, ) +X,(v, )8(v, —v,),
rr(a, —

f n, f ) & v, & rr
f n, f

.
The parameterization is defined in Fig. 14. Notice
that eventually we must integrate over the point v,.
It is not hard to incorporate the topological struc-
ture of the above equations into a four-string
interaction:

2, =-,'g' QSX,(v, )
dP+)

(~, )rr2 6(P+r+P~ P+~ —P~}4y [Xi]4r~ [X,]Or [X,]br, [X,]

, I

dv, II 6(X,(v, ) —X,(v,}8(v,—v, ) —X,(v, ) 8(v, —v, ))
(~,-t~t)

&: Q 6N, (v, ) —X,(v, ) 8(cr, —v, } —X,(v, ) 8(o, —o,))+H. c. (7.3)

Now that we have shown the origin of the four-
string interaction and have presented the inter-
action in second-quantized form, we will now

carefully discuss the light-cone mappings which
produce these interactions.

As before, we start with the Mandelstam map-
ping, only now we will take

p = a, In(x —1) + n, In(x —x) + a, In(x),

n„o., &0, e, &0,

Ql & A3 & Q2~

N'l & Q4 & Q2~

now bofIr lie in the region between 0 and x (for one
particular value of x) and both in the region be-
tween -~ and 0 (for another value of x). I}efore,
the (st) configuration placed one turning point
between 1 and x and the other between -~ and 0.
In the (tu) configuration, both turning points u,
and u, are located in the same region, and hence
can collapse into the same point to produce four-
string interactions.

Let xl and x, be the values for x for which the
discriminant vanishes (x, &x,). When 0 &x &x„
then the two turning points u, and u, are located
as follows:

n;=0.

Kith these conditions, we can produce either the
t- or u-channel graphs, depending on the value of
x. As before, the turning points are given by
Eci. (6.2), but now we will be interested in the
region where the term under the square root van-
ishes, because the mapping differs tremendously
from the conditions given in (6.1). With the new

restrictions on the ~'s it is not hard to show that
the two turning points in the ~ plane, I, and u.,

FIG. 14. The parameterization of the 4-string inter-
action term.
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-'g1 & Q1 & g~ & 0, (V.5)

When x, & x & 1, then the turning points are located
as follow's:

0 &Q~&Q2&x,

if x=x, then- &u, =u, &0,

if x=x, then 0&@,=u, &x.

(7.5)

(V.V)

The region x, &x&x„ then, corresponds to the
Hiemann surface interlocking four Riemann strips.
In this region, u, and u, become complex (u, =u,').
One of them descends into the lower half plane,
which is not included in the & plane that we are
studying. The other complex point migrates in
the upper half plane in a path which links the re-
gions (-~, 0) and (0, x). The image of this point
in the p plane is the point C we referred to earlier
in our discussion. The image of the path taken by
the point u which migrates in the upper half ~

plane is the path taken by the "zipper" (ACB)
We, of course, wish to have a vertex which is

local in "time, " so that the four-string Lagrangian
is not a function of &. When the path (ACB) is
actually calculated by using Eq. (4.5), we find
that the real part of the complex point C changes
as C moves from A to B, i.e., the four-string
interaction given by the previous mapping is not
local in ~. For the four-point function, however,
this need not concern us, because we can always
translate the Hiemann surface an arbitrary dis-
tance in &, and hence force the path A.CB to be a
straight vertical line. Because the four-point
Hiemann surface is infinite in extent, and because
we are only interested in differences in the inter-
action times, we are free to translate the infinite
strip any finite distance. For the four-point func-
tion, therefore, we encounter no problems in
using a four-string vertex local in 7'.

For the higher-point functions, however„ there
remains the delicate point of whether the line A.CB
can be arbitrarily fixed with respect to the other
turning points. The field-theory perturbation with
a four-string vertex local in & tells us that we
must be able to integrate over al/ relative orienta-
tions of the real parts of the turning points and
also over alE relative orientations of the turning
points with respect to the vertical line ACB. It
is not obvious that the mapping given in Eq. (2.17)
yields Hiemann surfaces which are in one-to-one
correspondence with the set of diagrams which
include all the various relative orientations of the
real parts of turning points with the line A.CB.

In the case of the four-point function, there was
a finite B,ne segment over which x could range
which would map onto four-string interactions. In
the five-point function (one planar vertex sewn

onto a four-string interaction), there are two inte-
gration variables x and y. The integration region
which corresponds to the four-string interaction
is a two-dimensional region in the xy plane. In
general, for an &-point function, there are N —3
Koba-Nielsen variables which describe an (N —3)-
dimensional space. The region corresponding to
one arrangement of four strings can be represent-
ed by a closed (1V —3)-dimensional surface in this
Koba-Nielsen space.

Vfe must prove that the orientations defined by
the field theory are sufficient to parameterize the
entire (N —3)-dimensional closed surface and not
only parts of it. In other words, the line ACB
may be a curved line in p space when the relative
positions of the turning points are kept fixed, but
this does not mean we must abandon our local
four-string vertex given in Eq. (7.3). The solu-
tion to the problem is to take a different repara-
meterization of our variables such that if we fix
the position of C, then the other planar turning
points assume all possible relative orientations.
Another way to state this is the following: If we
fix the relative orientations of the planar turning
points, then there must exist a parameterization
of ACB such that A CB goes in a vertical line.

In conclusion, if we were to take the mapping
in Eq. (7.4) and try to solve for the path ACB, we
will find that, in general, this path is curved,
while our four-string vertex given in Eq. (7.3)
yields only vertical lines, i.e., lines local in &.

This is not a problem, because there exists a
parameterization of the region of the four-string
vertex such that ACB is a straight line with re-
spect to ail possible orientations of the other
turning points.

To prove that we can always take a paramet-
erization such that the line A. CB is a vertical line,
i.e., with fixed ~, is equivalent to showing that
the real part of point C can be made to vary in-
dependent of the orientations of the other turning
points, so that all possible orientations are ob-
tained. A simple way of seeing this result is to
reexamine the mapping in Eq. (2.17). While we
originally started with the choice ~& as independent
variables, we can always take new variables as

7„.. . , v„, i.e., the relative distances between
the real parts of the interaction times. The
Jacobian transformation from the set (e~) to the
set (r, ) is a smooth one, so all the r's can be
made to vary independent of each other. In addi-
tion, we know that the limits placed on the integra-
tion region for the (s,'s) are mapped into regions
in the 7 space which correspond to taking each
interaction time from -~ to +~, Because the
path taken by the "zipper" point is the path taken
by one of the turning points (after they have col-
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lapsed), we can be sure that the point C can be
made to vary independently from all other T;, so
that me have shown that all possible orientations
are possible. The orientations we prefer to
choose, of course, are those in mhich the line
A. CB is fixed in T with respect to all orientations
of the other turning points.

The next question that we must answer is: Are
there five-, six-, and higher-string interactions?
Have me really exhausted the set of all Hiemann
surfaces which cannot be generated by three- and
four-string interactions? The answer is that
three- and four-string interactions are sufficient
to generate all trees.

Because, in order to have a multistring inter-
action, several pairs of turning points must col-
lapse into each other and become complex vari-
ables in the upper half plane, we discard the lower
half plane solution. Then these complex turning
points must stick together in the upper half plane.
But since me know that the Jaeobian for the trans-
formation produces a one-to-one mapping, me
are not allowed to have these turning points co-
incide for a region of the integration range, or

,else the 7 variables would not be really indepen-
dent of each other.

In closing this section, we wish to comment on
the Yang-Mills structure of our four-string inter-
actions. Since the light-cone gauge has been
chosen in our quantization formulation, the inter-
actions of the first excitated states (spin 1, mass-
less) have to be compared with the Yang-Mills
theory quantized in the same gauge. It is not
difficult to convince ourselves that both the iso-
spin and the helicity structure of four-interaction
coincide with those of the Yang-Mills theory in-
vestigated by Tomboulis. " In doing this however,
the following points must be taken into account:

(1) In defining ( t.3), the correct symmetriza-
tion (1 + II)/2 combined with the Chan-Paton factor
must be done,

(2) In the light-cone gauge, the polarization
factor is independent of momentum".

e"(0, i)e„(q,j ) = 5„.

(3) A certain part of isospin factors in the Yang-
Mills theory, which does not appear in (7.3), can
be eliminated by using the relation for the struc-
ture constants

acffE~ —6&~6+~ = -Capg~gce y

which is true for any simple group. The detailed
discussion on this problem, however, mill be
shown in a later article.

VIII. MEASURE AND CONCLUDING REMARKS

It is not hard to use the perturbation machinery
defined in this paper to produce explicit expres-
sions for multitree diagrams expressed in terms
of Neumann functions over the corresponding
Biemann surface. In effect, we have reproduced
Mandelstam's Eq. (3.1).

But there are a few yet unresolved points that
have to be made. The first unresolved question
is the Lorentz invariance of our three-Heggeon
vertex function. Mandelstam has recently shown,

by dividing up the string into a series of points,
that the application of a Lorentz transformation
on the three-string vertex has the correct pro-
perties only if the dimension of space-time is 26.
(Previously, he demonstrated the Lorentz invar-
iance of the finite-time vertex function; this new

calculation is for infinitesimal times. ) The rel-
ativistic invariance of the four-string interaction
remains unresolved.

A more pressing question is the problem of
measure. Unless we can calculate the measure
explicitly, me cannot claim to have fully derived
the &-point functions of the original. dual model.
Unf ortunately, when calculating +-point functions
in our formalism, there remains a determinant
of the Neumann function defined over the N-point
surface. Since our field-theory prescription began
with an integration over the "time" variables, and
since we mould ultimately like to obtain the usual
Koba-Nielsen variables, then me suspect that the
determinant of the Neumann function is, indeed,
the Jaeobian of the transformation from one set
of variables to another.

There are several reasons for suspecting the
Jacobian of the transformation to be equal to the
determinant over the Neumann function. First,
we know that if the o s are set either equal to
zero or to the l.ength of the original strip, then
the determinant reduces to 1, no matter in what
order the limits are taken (assuming, of course,
that the limits do not change the topology of the
diagram). There is also another function of the
parameters that reduces to a trivial result when

the a's are taken to be either zero or the length
of the strip, in any order consistent mith the to-
pology, and this is the Jaeobian. Second, another
reason for believing that the determinant repro-
duces the Jaeobian is that Mandelstam evaluated
the four-point interaction explicitly in his formal-
ism with operators. The same calculation, of
course, could have been performed by functional.
techniques, in which case we would have found
that the determinant arising from the functional
calculation corresponds to the Jacobian coming
out of the operator approach. But because he
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took a very symmetric configuration, we certainly
cannot conclude that this is a general proof.

One last unresolved question is the problem of
constructing a Lorentz-invariant second-quantized
Lagrangian. Simply taking a trivial covariant gen-
eralization of (3.8) uilf certainly Not produce the
correct Lagrangian, because this new Lagrangian
does not have the gauge invariance which allows
us to take the gauge (2.14) in the first place. Con-
struction of a gauge-invariant Lorentz-invariant
Lagrangian is a highly nontrivial problem. And

because the canonical momentum conjugate to 4
is a function of o, there are also profound ques-
tions of interpretation.
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APPENDIX A

In this section our goal is to prove Eq. (5.6},
i.e., the statement that the 5 functions which de-
fine the breaking of a relativistic string are equal
to the functional integral over the Riemann surface
corresponding to the two-dimensional surface of
interaction as the width of this surface goes to
zero. Once we have established this result, then
the cumbersome procedure of solving directly
for Neumann functions can be dropped in favor of
the 5 functional technique, which very quickly
gives us the solution to the &-point functions and
the multiloop amplitudes. In fact, the 5 functional
technique allows us the chance to formulate gen-
eral rules for writing down the general solution to
any light-cone topology by inspection. It is pos-

sible to state, but without proof, the general
structure of all the matrices that occur when cal-
culating Neumann functions over quite general
light-cone surfaces.

The plan of the proof is quite simple. First, we
will actually perform the integrations over the 5

functions by attaching three distinct Green's func-
tion propagators onto the three various strings.
By functionally integrating over the intermediate-
string states, we will obtain the amplitude for
splitting relativistic strings taken at arbitrary,
finite interaction times. Second, we mill actually
construct the Neumann function over a wedge-
shaped Hiemann surface w'hich defines the inter-
action taken at finite times. The construction of
the Neumann function is achieved by expanding
the Neumann function into normal-mode eigen-
states of the free string and then by matching
boundary conditions. Because we know that the
boundary conditions are sufficient to determine the
Neumann function, and because we know that the
Neumann function is unique, w'e have now calcu-
lated the unique result, which agrees exactly with
the calculation performed by integrating over the
5 functions.

Later, in Appendix B, we will calculate the
interaction vertex by yet another procedure, by
explicitly solving Eq. (5.7). This technique of
constructing the vertex is yet another method
which yields the same result as the previous two
methods. The advantage of this technique is that
the equations are well posed and lead to solutions
in terms of the usual harmonic oscillators.

We begin the calculation by attaching three
Green's function propagators onto the three strings
defined in the 5 function. We will represent the
string at the instant of interaction by X, while the
string taken at finite times will be represented by

X': Let

G(x,', T„x„o)=((oI 4, [x,.', i, ]c,' [x„o]]o))

(~-2) i2
exp[-p, («', —«, )'/2r;]

4@v')

n

„,L w sinh(s~, /a)
(B-2) /2

exp]- . (, [(x', „'+«; „')cosh(sr, /a) —2«,'. „«,. „]], (Al)
slnh 87;y Q)

We now construct

3 oo

v(x, , „...,) = II D ux, „G(x..., ; x, , o)II 5g,(,) -x,(,) e( I, I -,) -x.(,) &(, — I, I )) . (A»
1=1 &=0 r7

The product over 6 functions can be expressed as

X)Po, expi da, Po, , o, —X, o, 6[n 0., —o, —X, o, 8a, —m e, (A3)
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Let

X((og) = x) + Q 2x( „cos(FLQ;/ag)

P s(o&) = p& + Pp& n cos(nov a&)
, SA ~

(A4)

and define the functional Fourier transform of E[X„X„X,] by

P[P„P„P,]= II sX&E[X„X„X,]exp i

o, =o, (0&a, &wa, ), a, +a, = a„

do, g P, (o,) X;(o,)8,(o)
C=l,

(A6)
o, =o, +ma, (0«o, &va, ), nq&O;

—8,(o) =- 8(w a, —o,), —8,(o) = 8(o, —ra, ),

Then, the Fourier transform of (A3) reduces to

115 p, „—I A'„'„p, )5(i, „—QA„,„p, )
rn= 0 fft"- 0

(A6)

where the overlapping matrix A" is defined by

A"
lT CM 3

A. " =
ma 3

&n 0-
ga.

t Pg 0'3 Pl 0'~
cos ' cos —' da. , n m c0

Q3
7

cos —dQ= 0,

cos dQ' = sin

(A7)

Ao o= a;/a3, ag &0, ai+ a2 = a3.

Using (A6), one can show that the Fourier transform of (A2) is

V(P,', „' r. ..}
3

+2+ P, A, )
—8; '~P';

k=1

(A8)
L

g j

ildp, „,pr Q (p; c,.—'s, -
p; (r, P~c, ' s ~, , P, ,

n L 4=1

3

=(detM)' "~'exp —Q (P';I&;, IP,'),

where

l Ps) =(Ps, P(, zs Pi, 2~

with

1
M = Q A3(C(—S( 'A;p. (All)

-1
N)~ =5] —4;,M A. ,)—S, (A10)

pr}„.=a~„.,
(C,)„=5„cosh(«~/a ~),

(S,.) = 5„sjnh(nvz;/Ia, ) .
The overlapping matrix A„ is defined by (AV}

[(A»)„=5„]. In the last expression of (A8),

N]] -S,. —A)~M A3;9) —C)—8), 1, , 1

In (A9)-(A11), the zero-frequency part of
(I/~)S~ ' is defined to be 1. Now that we have
derived an explicit form for the finite-time inter-
action vertex, we still must show that this result
is identical to the calculation performed through
defining Neumann functions in the finite-time
Riemann surface.

Our notation will be defined through Fig. 5. %e
will divide the Riemann surface into three areas,
each corresponding to one of the three strings.
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Because the Neumann function depends on the
values taken at two independent points, we will
split the Neumann function into nine separate
parts, depending on which of the three regions
the two points are located. In addition, there will
be a tenth term, corresponding to the singularity
which corresponds to the logarithmic diverging
term.

Our plan is simple. We first expand the Neu-
mann function into eigenfunctions of the free string
which satisfy the conditions

8—N(g 7" cr' r')
as = 0, Fels ',

as=ffni if '&0

for all o'', 7' within the Biemann wedge. Then we
will simply match boundary conditions as a', 7'
roams throughout the Hiemann surface, keeping
cr, 7 fixed. And finally, we will match the first
derivative of the Neumann function throughout
the Beimann surface.

We start with the following expansion for the
Neumann function:

N(g'$'; g$) =No(cr', t', g, $)

+ P, v,', () X,, P, cr&, (, ), A13)

where

N(g, r; g'—, r') = z
7 F I&7 2&7s

(A12)

l P, (g;, &,)) = cosrr g; coshn(&, —7', /a, ),

with g;=g/cr; and $r =r/cr;, and

(A14)

N, (p', p)= Q-cos(ncrI)cos(ng, )6(,[e " 'r ' +e ""' r' )'e'"" "' ]- m»(~;, ~ )
n=l

(A15)

2
Its —+».C. =»»Ci&»+»s. C.~»y

a„c,»„= C,»„—X,-'

A2sCs»s2 = C,»,2+ —K, '

Q~

OIs

A„C,» = C,»„" its

(A16)

(A17)

[one finds the same overlapping matrix A„as
defined in (A7)]. The new matrix &; is given by

with 6(3) =6(1)=-5(2)=1. The expansion of N(p', p)
with respect to (A14) guarantees the boundary
condition (A12) except along the lines r; =0, where
the three Neumann functions are to be glued (see
the region 8 in Fig. 4).

Hecluiring N(g'„$,'; g„—e) =N(a,', $r'; g;, + e), for
example, one obtains constraints over (A13}
(e -0):

s ~N3& = 2f~r

-A,p, NN, 2 =2K, ' —NS2N„,

A,p, NN„=S2NN„,

A,p, NN3) =S,NN&2.

Because of the identity

&s &s
1 =Asi A„+As2 —A2s

(A21)

(A22)

Xss=2I|, s
—-1+Ss 'C, M ' —1 —S,

where M is defined in (All). Then, taking N, in
(A13} into account, one can show that, if $,

' = ~„

only six are independent among Eels. (A16)-(A22).
One can, therefore, solve them with respect to%, , .
Using (A16) and (A20), for example, one obtains

(Ar)„= 5„e"

Next, requiring the continuity of

(2'', +N„NS, )A„=N„NS, ,

(2K, +N~, NS, )A32 =N, 2NS, ,

(A19)

(A20)

which agrees with (A9). Similarly, all other re-
lations in (A9) and (A10) are obtained.

As a consequence of the above arguments, the
equivalence of the dual model vertex expressed by
the Neumann function to the overlapping condition
has been proved. Q.E.D.

In the above discussion we considered only an
unsymmetrized vertex function. The symmetriza-
tion of the vertex, however, can be easily ac-
complished by twisting some of the strings which
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appear in the vertex, i.e., if the ith string is to
be twisted, the parameter o, in (A4) and also in the
step functions should be replaced by mnf —vf. This
procedure simply replaces the overlapping matrix
(A"}„ to (A")„(-1) . The rest of the discussion
is valid without any change. %'e stress that we
have the option of adopting either the untmisted
or the twisted (with definite charge conjugation)
vertex, but the only model mhich is physically
relevant is the model mith symmetrized vertices
and isospin.

APPENDIX 8

Then, one can confirm that I V,) should obey

X,(c,)I V,)=0

because of (Bl). Furthermore, from (B2) it is
easy to show that

P,(c,) 8,(o) I V,&
= P,(o,) 8,(o) I V.&

=0

The expansion formulas

In this appendix me mould like to show another
simple derivation of vertex functions. The method
we use is an extended version of the one developed
by Goto and Naka, "jn their bjlocal field theory.
The advantage of this method is that the continuity
conditions (or overlapping conditions) enable us to
obtain the representation of the vertex function in
which the energy matrix is diagonal.

Let us assume that a string X,(o) breaks into
X,(o) and X,(o) at v=0, say, then the vertex func-
tion (at v. =o} should satisfy the following condi-
tions:

[x,(o,) —x,(o,)8,(c}—x,(c,)8,(o}]Iv& = o,

8, ((z) =-8(((I n, I
—o,),

SO
X(((F) = x(+ Q 2x; „cos 5

n=l

nv
P;(c) =

I
p, + p p; „cos-

f n=l 5

show that (B5) and (B6) are equivalent to

(a., „+a.,' „}I v,&
= o,

(a, „-a,'„)I v, )=o,

(a, „-a,'„)I v,)=o,

1 (
xf (2 })/2 (a( a )

p,.= (~a)"'(a(,.—a&',.)/f.

(BV}

(B9)

8,(c)-=8(c, —v
I a) I }; (Bl)

[P,(o,) + P,(o,) 8,(g) + P,(o,)8,(c)] I V) = 0, (B2)

where

[P,(o), X,(o')] = i5 (o —v'-)8„.

Let us introduce a new state I V,& by

The solution to (B8) is now given by

I Vo&=exp[-,'[(a) Ia, )+(a, Ia, ) —(a, Ia, )])I0).

(Blo)

Substituting (Blo) into (B4) and eliminating all the
annihilation operators, one obtains

I ~)=~*uIl Q ("I';)-)( ll i)
21

a,
1 ~2 & & 3, a, + a, ~ 3; f31 ~2 & &» a,

j=l 2- ~ f=l 3, 5 5,3

where

+ a, gA, (A(,» a, IO)exp — Tr ln 1+ A, , A.;,ssP1~2A32i=l 3 f i 3 f~l
(B11)

with A3 f being the overlapping matrix. The four-
string interaction vertex can also be constructed
by the same method.

APPENDIX C

The explicit expression for the four-string inter-
action has been obtained by attaching four Green's

functions to the 5 function vertex and then by func-
tionally integrating over the intermediate-string
states. Here, however, we mill calculate the
four-string interaction by using the methods of
Goto and Naka.

For the sake of brevity, we will only present
the highlights of the calculation. %e will omit
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the integration over the zipper" variable, and we

will drop some contributions due to zero modes:

A; & 0, Ql + Q2 = OI3 + Q4, Ql & A3 & 0['2,

e, &e, &n„0&v] &ma, ,

8,(o)-=8(a, —a,), 8,(a} 8(a, -o,)

&f(Q& —cl~) & a(& & war~ &

[X,(a, ) -X,(a,)8,(a) -X,(a„)8,(a)]!V)=0,

[X,(a,) —X,((r,)8,((r}—X,(a,)8, ((r) ]!V& = 0,

[P,(a,)+P,(a,)8,(a)+P,(a,}8,(a}]!V)=O,

[P,(a,)+P,(a,)8,(a)+P„(a,)8,(r }]!V)=0,

I )') -=exp I- &rr(p(, )[r((rr )rr(rr) r( (rr)rr(rr)& r' (rr )(X(")rr (rr) 'X (rr)rr (rr)&&)(r. )

x,(rr, )(l&')=r
rr v) r(, (rr, )I&'.)=0,0, a&

2 4~!V) = exp —g P (a; —a,"!M„!a, + a& ) V, ,
t=l j=3

X2(a,)!V)=i y ( )2

~ X,(a,)!Vo) = 0, 1
p

— 3 ~ 13 14

p, (rr. )(l r»=-'
&

&') p.(u. )(l »'. =O,
5R, a, )

1~!V&=exp 4 o. M„s MB o(
Bn op

P&(a.)I V&=-r—
5X,(a,)

~P~(a.) I Vo&=o

m! Vo&=exp ——Q
4=1

5~j

1 asj

(o,'Io()+-g (o,'Ior') Io),
j=3

d0'1COS COB

i=1, 2; j=3,4,

—
2 g (o,'I a;) +

2 g ((r,' I o,') '
I o&

+14 0 ~ ~14 +0~

~13 = 00 &13 = &Q'1 ~

!

o„=rr(o(& —o.,), br3=a„
~24 0 0 ~24 +4 0

x exp[--,'(D —2) Tr 1n(1+4M RM(&„)].

%'e adopt an unconventional, but obvious, summa-
tion convention over u and P.
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We derive the quantum-mechanical operator equation of motion for a point electron and show that (i)
the electrostatic self-mass of a point electron is zero in quantum mechanics; (ii) the equation of motion

does not admit runaway solutions; (iii) the correspondence limit of the solutions of the quantum-mechan-

ical equation likewise does not display runaways; and {iv) the solutions do not violate the principle of
causality in quantum mechanics.

The Lorentz-Dirac theory of a classical non-
relativistic point electron, interacting with its
self-field and subject to an external force F(f),
leads to the equation of motion' '

d'R(f) -, d'ft(f) 2e'd'ft(i)
dt' dt' 3c' di'

where m, is the mechanical mass of the electron
and Sn is its electrostatic self-mass (divergent
for a point electron). This equation is beset by
the well-known difficulties that it admits runaway
solutions (exponentially growing accelerations
even in the absence of external forces) and violates
causality (when the runaways are eliminated by
the imposition of suitable boundary conditions,
the electron accelerates before the force acts).
While these results mar the internal consistency
of classical electrodynamics, the view is often
adopted that since preacceleration occurs on such
a short time scale (10 "sec for an electron) the
noncausal effects belong in the domain of quantum

theory, to which one must turn for a resolution of
the problem.

To prove that runaways are not present in quan-
tum theory one would have to show that no Heisen-
berg-picture operator in the theory has an expo-
nentially growing time dependence. This result
has not been established for the standard Hamil-

tonian' governing the interaction of a nonrelativis-
tic point electron with a quantized electromagnetic
field, "on which the conclusions of this paper are
based, and it is not our purpose here to give such
a proof. Instead, starting from the operator form
of Maxwell's equation and the Lorentz force qua-
tion which follow from the Hamiltonian, we derive
a quantum-mechanical operator equation of motion
for a point electron which reduces to Eq. (1) in
the correspondence limit (i.e., S-0) and show
that (i) the electrostatic self-mass of a point elec-
tron is zero in quantum mechanics, (ii} the equa-
tion of motion does not admit runaway solutions,
(iii) the correspondence limit of the solutions of
the quantum-mechanical equations likewise does
not display runaways, and (iv} the solutions do not
violate the principle of causality in quantum me-
chanics. These calculations thus show how nonrel-
ativistic quantum electrodynamics is compatible
with requirements (no runaways, etc. ) which pre-
sumably folio~ from the general principles of
quantum mechanics and in addition possesses a
physically reasonable correspondence limit.

The results in the quantum-mechanical case are
best understood by comparison to the classical
results for an extended charge distribution. For a
spherically symmetric static charge distribution,

Eq. (1) is replaced by'


