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Implications of the shadow effect in theories of gravitation
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Following the idea of the theory of shadow states in quantum field theory, we construct a
Newtonian theory and a %hitehead theory of gravitation with shadow gravitational potentials.
As a heuristic approach, Einstein's theory of gravitation is modified by introducing the
shadow effect. This is achieved by using the effective mass distribution which arises in
the Newtonian theory of gravitation with shadow effect as the only nonvanishing component
of the stress-energy-momentum tensor of a static point source. It is found that in the
static spherically symmetric solution of Einstein's equations, with proper choice of the new
dynamical parameter, there is no surface of infinite red shift and the formation of a black
hole can be avoided, leaving a naked singularity at the origin.

1. 1NTRODUCTION

The theorems of Hawking and Penrose' and
Geroch' establish that in Einstein's theory of gen-
eral relativity spacetime singularities always arise
in gravitational collapse, Hawking' points out
that in spherically symmetric collapse the field
exterior to the collapsed star is described by the
Schwarzschild metric and has the following fea-
tures:

(a} There is a spacetime singularity.
(b} The formation of a black hole is inevitable.
(c) The singularity is hidden within the event

horizon (black hole) and is not visible to observers
who are beyond the Schwarzschild radius.
He also shows that (a) and (b) are stable under
slight perturbations away from spherical symmetry
and argues that it is physically reasonable to
assume that no naked singularities are formed
even in the case of nonspherical collapse. If
Hawking's conjecture is true, this might mean
that the occurrence of singularities in gravitational
collapse is relatively harmless in that these sin-
gularities cannot affect what happens outside the
collapsed object:.

It is interesting to note that the attitude towards
singularities in general relativity is quite different
from the attitude toward singularities in the the-
ories of the other fundamental interactions.
Whereas spacetime singularities in general rela-
tivity have led to new physics, namely the theory
of black holes, the divergences present in theories
of other fundamental interactions have generally
been taken as indicators of a breakdown in the
theories and have led to modifications aimed at
eliminating these infinities. In the classical the-
ory of the electron the infinite self-force due to

the singular electromagnetic potential excited by
the electron leads to the instability of the electron
and is usually eliminated through renormalization.
Unfortunately the renormalization procedure mere-
ly avoids and does not solve the problem. In quan-
tum field theory divergent quantities are usually
also el.iminated with the help of renormalization.
It is known, however, that apart from the ambi-
guities inherent in the renormalization procedure,
unrenormalized quantities in particle physics are
oftentimes as important as the renormalized
quantities.

It is often suggested that infinities are due to
the fact that we oversimplify the structure of
elementary particles by regarding them as struc-
tureless point particles and that incorporating
the structure of particles into the theory could
very mell eliminate the problem with infinities.
One such attempt involves the introduction of the
notion of fundamental length in the hope that in-
corporating a fundamental length into the formal-
ism would lead to a natural cutoff for the divergent
integrals in the calculations. Several authors~
have indicated that a fundamental length arises
naturally if gravitational effects are believed to
contribute significantly in nongravitational inter-
actions. For example, if an elementary particle
is prohibited from being a black hole, the size
of the particle must be greater than its Schwarz-
schild radius. Defining the Schwarzschild radius
of the particle as its fundamental length then offers
a unified explanation for the occurrence of sin-
gularities in all interaction theories. Indeed if all
elementary particles have finite extent, then in

principle, one would not expect infinities to arise
in these theories. Unfortunately, there is as yet
no workable theory in accord with such a picture

10 1085



1086 C. C. CHIANG, JOHN J. DYKLA, AND A. E. HWANG 10

available.
An alternate viewpoint is to adopt the attitude

that the occurrence of infinities signals a need for
a self-consistent, genuine finite field theory.
From this perspective the divergence problem in
quantum field theory is linked with the dynamical
problem of interaction instead of particle struc-
ture. Considerable progress tow ards constructing
a genuine finite field theory has been made in re-
cent years by using an indefinite metric and the
idea of shadow states. ' The finite theory with an
indefinite metric and shadow states was originally
designed for quantum field theory and has suc-
cessfully eliminated many of its divergences. When
extended to classical electrodynamics it ha.s been
shown that with the introduction of a shadow elec-
tromagnetic potential the electron is stable in the
point-par ticle limit. '

One can ask whether the introduction of the
shadow effect into the theory of gravitation can
solve any of the problems resulting from space-
time singularities. In this paper we examine the
implications of the shadow effect in the theory of
gravitation and determine whether it has any bear-
ing on black-hole physics. To introduce the notion
of the shadow effect we briefly discuss in Sec. II
the shadow effect in the classical theory of electro-
dynamics. In Sec. III the results of Sec. II are
extended to the Newtonian theory of gravitation.
In Sec. IV we examine the shadow effect in the
Whitehead theory of gravitation. Finally, in Sec. V,
using the effective-mass distribution which arises-
in the Newtonian theory of gravitation with shadow
effect, we solve the general-relativistic field
equations.

II. CLASSICAL ELECfRODYNAMICS

As mentioned in the Introduction there are suf-
ficient reasons to search for a genuine finite quan-
tum field theory instead of ignoring the divergence
difficulties by some renormalization procedure.
In the last few years it has become clearer that
it is possible to formulate a genuine finite quantum
field theory by making use of an indefinite metric
and the notion of shadow states. ' The main idea
is to introduce some auxiliary field, quantized
with the "wrong" sign for the commutation rela-
tions, such that the ill-defined divergent integrals
in the conventional theory become mell-defined
finite integrals. Moreover, the Green's functions
are chosen in such a way that the probability among
the physical states, i.e., those states without any
excitation of auxiliary quanta, is conserved. Thus
to ensure probability conservation, the symmetric
(principal value) Green's functions are used in
addition to the causal ones used in the conventional

theory.
It has been shown by one of the authors (C.C.C.)

that the runaway modes which appear in the dipole
approximation of the conventional theory of elec-
trodynamics do not occur if a massive auxiliary
photon field quantized with the "wrong" sign for
the commutation relations is introduced. ' A rela-
tivistic formulation of the 8 matrix for finite quan-
tum electrodynamics has also been constructed
by Chiang and Gleeson. ' An important question
here is whether the effect due to such an auxiliary
photon field has a counterpart in the classical
theory of the electron. Indeed it has been found
that with the introduction of a massive auxiliary
electromagnetic field with negative energy density
the electron is stable in the point-particle limit.
This is simply because the auxiliary photon field
provides an attractive force to stabilize the elec-
tron. The auxiliary electromagnetic field behaves
in a similar manner (apart from the Green's func-
tion) as the ordinary electromagnetic field, but
yields an attractive force between like charges.

Let us write down the Lagrangian for the system
consisting of an electron, an electromagnetic
field A~(x), and a shadow electromagnetic field
B„(x):

2= ~mx" xq —~ d'xE„, (x) F""(x)

d'x G„„(x}G "'(x)

+ ex" [A.~(x) +B„(x)j, (2.1)

ClA„= —4'„(x},
(Cl+M') Bq= 4 +jqv( )x.

(2.2)

(2.3)

Observe that there is a relative sign change be-
tween the A„and B„fields in the field equations.
And it is precisely because of this sign change
that the mutual effects of two charged particles
which arise by virtue of their coupling to A„and
B„are of opposite signs. We may say that while
the charged particles interact with both the elec-
tromagnetic field F„,and the auxiliary electro-

where the overdot denotes time differentiation
and F~, =~„A~-~A. „, G~ =~, Bq —~~B,. Note that
since A„and B„couple through the same coupling
constant, only the linear combination A.„+B&enters
into the interaction. The sign of the free-energy
term of the auxiliary field B„is opposite to that
of the usual one. The equations of motion satis-
fied by the electron and the fields can be obtained
by the standard variational method, The fields
satisfy the equations
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magnetic field G„, in the same way, they act as
sources for these two fields in opposite ways.

Since we will be interested mainly in the static
case in the theory of gravitation, let us consider
Eqs. (2.2) and (2.3) when the electron is at rest.
In the static case, (2.2) and (2.3} can be written
as

'V'Q» = —4v6(x),

(V'+1lf') 4, =4v6(x) .

(2.4)

(2.5)

(2.6)

Here Q& and Q~ are the time components of A.„
and B~, respectively. The solutions of (4) and (5)
a,re

III. NEWTONIAN THEORY OF GRAVITATION

V'q„= 4m ~p(r), (3.1)

where ~ is the gravitational coupling constant. As
in the static case in electromagnetic theory, for
a point particle with mass m, the gravitational
potential, solving (3.1), is

K &Pl

Owing to the linear superposition character of
the potentials, it is easy to extend the idea of the
shadow effect, as discussed in Sec. II, to the New-
tonian theory of gravitation. In Newtonian theory
the gravitational potential g„due to a mass dis-
tribution p(r} satisfied the equation

(2.7)
This potential is singular at r = 0. Following the
idea of the shadow effect let us introduce a shadow
potential g ~ which satisfies the equation

The total potential excited by an electron is then
given by

(V'+M') p~ = —4mp(r), (3.3)

0 = %~+Ca

1 e (2.8}

where M is a new parameter to be fixed. Solving
(3.3}yields the following shadow potential for a
point particle with mass m:

Note that P is finite at r = 0.
In the conventional theory, the potential (2.6) is

singular at r = 0. In order to obtain a nonsingular
potential, we may consider the electron as a.

charged particle with charge distribution

~age ""
0s=

The total potential is then given by

(3.4)

M' e '""
p()= (2.9)

It is simple to verify that the total charge for this
charge distribution is equal to 1; i.e.,

(3 5)

The shadow potential is a repulsive potential in

contrast to the ordinary attractive potential. As
in the case of electrostatic potential, the potential
g is regular at r = 0.

p(r) d'r = 1, (2.10)
IV. WHITEHEAD'S THEORY OF GRA VITATION

and that the corresponding electromagnetic poten-
tial is given by

e -Ny'

(2.11)

which is finite at the origin and is the same a,s
the P given in (2.8). Even though P»' and P are
described by the same expression their physical
significance is quite different. %ith the charge
distribution (2.9) the electron is not stable, but
with the point-charge distribution, the usual field
A„, and the auxiliary field B„, the electron is
stable, Whereas the potential P& is the sum of
the potentials due to a distribution of charge given
by Eq. (2.9) inside the electron, the potential P
is due to a point charge but with a different lyse of
force.

The gravitational theory of %hitehead is an
action-at-a-distance theory in which particles
interact through retarded gravitational tensor po-
tentials in the flat spacetime of special relativity
theory. ' The choice of the retarded effect, instead
of the advanced effect or a mixture of the advanced
and the retarded effects, is based on the common
belief in causality. The gravitational tensor po-
tentials are obtained by a direct generalization of
the static Newtonian potential to a four-dimen-
sional propagating potential. If we assume the
existence of the shadow gravitational potential in

the Newtonian theory as discussed in Sec. III, the
corresponding modif ication to %'hitehead's theory
of gravitation to include the shadow effect can be
done without any change in the basic assumptions
of %hitehead's theory except that of the unique
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choice of the retardation effect, which has to be
porperly modified in accordance with the idea of
the shadow effect.

Let m, denote the proper masses of a collection
of interacting particles and x, their coordinates.
The equations of motion for particles subject to
two-body interactions can be obtained by the vari-
ational method from the action function

m, x, ' ds, +-,'P
a abg

where Na' are the line elements of the various
particles in flat spactime, i.e.,

G., ds, ds, , (4.1)

= (dx,')' —(dx', )' —(dx,')' —(dx,')', (4.2)

and G„are invariant functions depending on the
relative coordinates and velocities of the particles.
To obtain the gravitational tensor potentials of
Whitehead's gravitation theory, let us choose the
following form for G,b.

with o. + P=1. Here the subscript A (A} means
that x," is a retarded (advanced) point with respect
to x"

and

(x,"—x,")(x, —x,„)=0

x'. —x'b&0 (x', —x'b&0)

(4.10)

(4.11)

and ups =(x,"—x,") g,„[w„=(x,"—xb) q»], where q"
is a unit tangent.

ln Whitehead's theory only the retardation effect
is considered, i.e., n ='t and P=O, and thus the
gravitational tensor potentials are

g g ff ~A m ( bb bll)R (~bv xbi
alftI lf u a ~ b~&

EVE

For the special case in which the particles b are
at rest relative to some Galilean reference sys-
tem, we have

I b mb (XaK»b )(K»ixl »bl)
hami Kl a ~ t

b b b

G„-—K, m, Kbmb x.x, O{(x.—x,) }x,„x„,
(4.3)

Rb mb (x„—xb„)
ZaK4 =Ka

b b

(4.13)

+ —2 ~ ~a Aapv +a +a ~a
' 1/ (4.4}

the dot denoting differentiation with respect to the
appropriate proper-time labels. With this choice
we may write Eq. (4.1) in the form

mb

For a two-body problem, namely particle a and
particle 5, Eqs. (4.13) can be expressed in terms
of spherical coordinates, and the line element
takes the familiar form

Vat,„„=K,mb 5 X, —X, ) X,„X„„dSb. (4.6)

Since

5(x ') = —4s 5(x), (4. I)

we see that

gapb 7)pii Aa g Ifbribb 5 {(»a xb) ) »be xbv dsb ~

(4.5)

The gravitational tensor potential of Whitehead's
theory, g,„,, can be obtained by solving the inte-
gral equation (4.5) with proper choice of the bound-
ary conditions. To do this, let us untroduce the
abbreviation

mq ~f2+ M, Kq rnid ddt

K,K„rPl~1+ ' ' ' dr' —r'( d6' +si n'& dg') .

(4.14)

As mentioned previously, the choice (4.3) of the
invariant function G„ in Whitehead's theory is
guided by correspondence with Newtonian theory.
Now, as in the Newtonian theory, we may introduce
the shadow potential to modify Whitehead's theory.
In analogy with (4.1) let us write the modified
action function as

A = b Q mb xb dsb+ b Q t t (Gbb+ Gbb) dsb dsb
a a, b

V b
—41fKbmb 5(x. —Xb) xb xb dsb (4.8) (4.15)

The general solution of (4.8) is easily found to be

(x! xb)s (»b —» b—)s
Va „=Kl m~ a

G„ is defined in (4.3}, and G,s, is the shadow-in-
variant function given by

G„—-K, ~gECb m, x, x, n(», —x,) x,„x„, (4.18)

a(x," —x,")„(x", —x,")„'
N~

(4.9)

where (x, —x, ) satisfies the equation

(0+M') n,(x, —x,}= 4z5(», —x„) . (4.17)
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Here M is a new parameter which can be regarded
as a dynamical parameter similar to a coupling
constant. As before, let us introduce the abbre-
via, tion

should take the sum of half retarded and half ad-
vanced solutions as the solution for V~»„.

For the special case in which the particles b are
at rest, we have

V„„„—K,-m, / n, (x, —x,) x» x„de, .S (4.18)

-Mrb

g„,= —o„-K,g K, mo ——
b b b

Then, with the aid of Eq. (4.17), we see that Ve»,
satisfies the differentio-intergral equation

x («aK «bK) («a| «5J)

rb rb

(Cl+M ) V,~q„= -4wK~ m~ 6(xg —xy) x»x» der ACK4 hQ p K5 mb
b

rb

(4.19)

The general solution of (4.19) includes retarded
and advanced effects with appropriate weights.
According to the idea of the shadow effect, one

1 orb

g =1-K Kb mb044 Q r r
b b b

For a two-body problem, the line element in
spherical coordinates is

(4.20)

NFb 1 e !leaf'b

1 -K,K rn —— dt2-2K, K m —— drat
rb rb b rb

-Mrb

1 + K,K~ m~ —— dr ' —r '
(d 8' + sin' 8 dP') .

rb rb
(4.21)

Y. EINSTEIN'S THEORY OF GENERAL

RELATIVITY
App 8v(TJU 2 gpll )

and in terms of Einstein's tensor

(5.2)

Although extension of the idea of the shadow
effect to Whitehead's theory of gravitation is
straightforwa, rd, incorporating this idea into
Einstein's theory of general relativity is somewhat
troublesome, due mainly to the nonlinear char-
acter of Einstein's field equation. However, so
far as the static solution is concerned, we may
use, as in the cases of the static theory of the
electron and the Newtonian theory of gravitation
discussed in Secs. II and III, an effective mass
distribution for the only nonvanishing component
of the stress-energy-momentum tensor. The
form of the effective mass distribution is chosen
in such a way that the linearized Einstein's equa-
tion with the effective-mass distribution should
give us the effective Newtonian potential (3.5).
We may therefore use the following effective mass
distr ibution

where
~se

pgooo o o

0 000
0 000
0 000

(5 8)

(5 4)

v 0 0

0 -e 0

o o
(5.5)

It is well known that for the static spherically
symmetric case, the metric tensor g„, may be
written in the following form:

e-Nr
p =—mM'

4m
(5.1)

0 0 0 —r' sin'6)

where M is a constant, m is the Newtonian mass of
the source, and r is the curvature radius. Whether
M varies from source to source is an open ques-
tion. Note, however, that M is constant for a given
m. With this choice of the effective mass distri-
bution we may proceed to find the spherically
symmetric solution for the Einstein equations.

Let us write down the Einstein field equations
in terms of the Bicci tensor

From (5.2), (5.4), and (5.5) we have

goo = —8m pe' (1 ——,
' e"),

R„=—supe" ~,

R» =0

R3, =0,

(5.6a)

(5.61)

(5.6c)

(5.6d)

where the Hicci tensor components can be directly
computed from the Christoffel symbols to yield
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= —2e" V" +&A, 'V'-2 V" +
2v

pp 2 2 2 r (5.7a}
value of M. It can easily be shown that we can
avoid the occurrence of this singularity by re-
quiring that

811=2 V 2X V +P V
] r r j 12 2A

(5.7b) 1
sM& —

~

m
(5.15)

and

A„=e "[I+-,'r(v' —X')] —1,
A» =A» sin'6),

(5.7c)

(5.7d)

-X Ir & r r ~ r2Ji! = —e ~ v" ——&'v'+- v" +—(v' —&')+—+-r r' r'

This gives us an upper bound on the strength or
equivalently, a lower bound on the range 8=1/M
of the repulsive interaction.

To find the time component of the metric let us
multiply (5.6b) by e" and add it to (5.6a). We
obtain

Then the Einstein tensor which is defined as

(5.7e) 2 v' 2A. '
2 e +r r =8' . (5.16)

has the following components:

(5.8}
Thus

v'= —X'+e 'p

gr +2 ~2 e xe-Nr (5.17)
(5.9a)

xG =—(e —1)-—11 y2 r ' (5.9b)

r I

C y2 e Vfr + Vr2 yrVl +1 g L 1 v —A

22 2 8 2

C» = 622 sm'8 .
(5.9c)

(5.9d)

Now we are in a position to find the solutions
for the metric tensor g„, . From (5.1), (5.4), and
(5.9a) we have

1 A,
' 1,e '""

e —,————,= —2mMr' r r' r (5.10)

The radial component of the metric may be com-
puted by multiplying (5.10) by r'. We find that

e =1+2Mme ""— (1 —e "");g» 2m

therefore

(5.11)

1

g„=— 1+2Mme ""— (1 —e "") . (5.12)r
Here we see that in (5.11) or (5.12), in addition

to the usual attractive part, —2m/r, there is a
repulsive part, 2Mme ""+2me "'/r. In the post-
Newtonian limit, i.e, for large r where the expo-
nential terms become negligible, (5.12} leads to
Schwar zschildlike solution

This equation can be solved by quadratures. While
the exact form of the solution is not available, we
may solve (5.17) by a numerical method. As shown
in Fig. 1, it is found that v -0 as r -~ and v- —~
as r-0. Therefore gpp 1 as r-~ and gpp 0 as
r-~. In contrast to the Schwarzschild solution
this model has no surface of infinite red shift and
avoids the formation of a black hole. An infinite
red shift does occur at the origin, where there is
a naked singularity and at which point the physics
is not quite clear.

The active gravitational mass can be defined as
M = 4sJo pr'dr. A direct calculation shows that
M agrees with the Newtonian mass m. Here we
see that by identifying m with the Schwarzschild
mass yields the same post-Newtonian limit g11
for both this and the Schwarzschild solutions.
These features suggest that all the gravitational
mass is associated with the effective density p
and allows us to consider the possibility that the

g„~ —1/(1 -2m/r) .
For small r, g» becomes

(5.13)

(5.14}g„~ —1/(1 —mM'r),

which is regular for r-0. Note that e given in
(5.11) might have zero value, depending on the

FIG. 1. General behavior of the solution for the metric
tensor goo (e~) tSee Eq. (5.5)l.
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repulsive interaction which corresponds to equa-
tion (5.1) is a universal feature of gravity for any

given mass.
In a separate paper" we have explored the con-

sequences of applying this solution to macroscopic
situations. It was found that our model is in agree-
ment with the Schwarzschild solution for the clas-
sical tests of general relativity theory, namely
the perihelion advance and the bending of light.

Furthermore, it was also found that for various
gravitationally bound systems condition (5.14) is
always satisf ied.
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