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A new procedure for computing electromagnetic fields in curved space-times is presented. With this
procedure, the problem is reduced to solving one complex linear scalar wave equation. Many
space-times of astrophysical importance may be treated in this manner, including black-hole and

neutron-star spaces and cosmological models.

I. INTRODUCTION

A major source of difficulty in integrating the
electromagnetic field equations in a given curved
space-time is the coupled structure of the Maxwell
system, which consists of eight partial differential
equations in six unknowns. Standard devices for
the flat-space treatment which successfully de-
couple the equations fail in general relativity,
since space-time curvature leads to a more
strongly coupled system. One such device, how-
ever, has not been fully exploited in the context
of curved spaces: the Debye or two-component
Hertz potential formalism. It is the purpose of
this paper to show that the Hertz formalism can
be extended to all curved space-times, and that
the Debye formalism can be extended to a wide
and astrophysically interesting class of spaces,
in each of which the potential obeys one (de-
coupled) linear scalar wave equation.! Included
are, for example, the Friedmann cosmological
models, the Kerr and Schwarzschild solutions of
black holes and neutron stars, the Gdel universe,
Taub-NUT (Newman-Unti-Tamburino) space, the
Bondi and Kantowski-Sachs universes, and other
universes of various Bianchi types. In fact, the
results of Ellis? and Wainwright® show that this
method applies to every perfect-fluid model with
local rotational symmetry. Mathematically, the
class of space-times to which the scalar Debye
formalism has been extended is the generalized
Goldberg-Sachs*~® class: every algebraically
special geometry, in the sense of Petrov,” which
admits a shear-free congruence of null geodesics
along the repeated principal direction of the Weyl
tensor. (One must omit from among these the
spaces with strong background electromagnetic
fields, as required in the test-field approximation.)

In Sec. II we summarize the Hertz and Debye
potential theory in flat space and formulate the
problem of generalizing to curved spaces. Section
III couches the theory in the covariant language of
differential forms; the notation and powerful

10

theorems of this formalism provide the desired
generalization of the Hertzian scheme. Section IV
translates these results into the standard tensor
notation, both to assist the reader unfamiliar with
forms, and also to facilitate the eventual use of
the fully explicit Newman-Penrose® (NP) formal-
ism. In Sec. V, translation of the above results
into the concise and explicit NP formalism enables
us to construct a decoupled linear wave equation
for the scalar Debye potential in the generalized
Goldberg-Sachs class of space-times. Examples
for important spaces are given in Sec. VI. The
aim of Appendix A is to illustrate the procedure

of explicitly writing differential form equations

in a definite Cartan frame, which is of use at
several points in the text. Appendix B is intended
to enable the reader unfamiliar with the spinor

or the NP spin-coefficient formalisms to under-
stand the latter from a purely tetrad- or Cartan-
frame viewpoint, and to calculate spin coefficients,
necessary in the applications, by standard Cartan
methods. These methods provide a straightforward
procedure for computing spin coefficients with a
minimum of calculation.

II. HERTZ AND DEBYE POTENTIALS IN FLAT SPACE

This section is a brief summary of the flat-space
theory and is largely based on the paper of Nisbet?;
the reader is referred there for a more detailed
discussion. We mention only those results nec-
essary for the subsequent generalization.

Hertz® introduced a potential for the Maxwell
field while investigating electric dipole fields;
the true covariant bivector nature of this potential
was noted considerably later by Laporte and
Uhlenbeck.!® This type of bivector (antisymmetric
second-rank tensor) potential is related by second
derivatives to the physical field, hence by first
derivatives to the familiar four-vector potential.
In fact,

0=-%-B,, X:-La:; +V xBy, (2.1)
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are the relations in question. The notation is
standard; we choose ¢ =1 and denote the Hertz
bivector by _ﬁE and ﬁ, according to the natural
electric and magnetic labeling of components. The
conditions imposed upon the Hertz potential by

Eq. (2.2) and the Maxwell equations

IxE+ 2B -0, ¥.B-0,
ot
. (2.3)
- oE - =
X _—_—= . =
VXB-—= =0, E=0
are just
0P,=0, OB, =0 (2.4)

in the source-free vacuum case (where Ol
=02/8¢?~V? is the d’Alembertian operator).

A new type of gauge freedom, termed by Nisbet
“gauge transformations of the third kind,” is
associated with the Hertzian potentials. Here we
consider gauge transformations of the sources,
that is, those gauge terms which may appear as
sources in Eq. (2.4) while preserving the source-
free property of the Maxwell field itself. These
turn out to be bivectors of the form

= - = G =
Qr=VxG, Qu= -—BT—Vg

and (2.5)

ﬁE= —%Vtx —_V’w, ﬁM=—_V.X\_K7,

where (G, g) and (W, w) are arbitrary four-vectors.
In this scheme the wave equations (2.4) for the
potentials are modified to become

0B, =Qz+Rs, OB, =Qu +Ru; (2.6)

the new fields given by

(2.7)
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may be verified to remain source-free by substi-
tution into the Maxwell equations (2.3).

Nisbet’s® reduction of the Hertz bivector to two
purely radial vectors (Debye'! potentials) utilizes
the gauge transformations just discussed. In this
representatlon the potent1al is given by PE
=7 Py, B, =7 P, (with # the unit radial vector), and
the gauge bivectors are obtained from Eq. (2.5)
with G=W =0 and g= 2Py /r, w=2P,/r. The func-
tions P; and P, are the Debye potentials and Eq.
(2.6) implies that they each obey the wave equation
(which differs in the radial operator from the
scalar d’Alembertian operator)

_By Ly 11 b oy ] u)

66—+ +
ot ar? r2 sin6 36 86  sin’6 8¢?®

=0. (2.8)

The solutions, which are of the form ¢

=e ¥t yz, (k)Y (6, ) with z,(kr) a spherical
Bessel function and Y7'(6, ¢) a spherical harmonic,
give rise to the static (2 =0) and dynamic electric
(Py=0) and magnetic (P =0) multipoles of order

1 when inserted into the prescription (2.7) for the
electromagnetic field.'> Only the monopole field
is missing in this scheme, since the differential
operations (2.7) annihilate the =0 solution to

Eq. (2.8).

We emphasize the essential role played in the
treatment sketched above by the gauge terms g
and w. For, if the d’Alembertian operators of
Eq. (2. 6) are com_guted explicitly upon the Debye
choice PE =# Py, P, =% P, of Hertzian vectors,
the resultant expressions each contain three com-
ponents; only by adding the specified gauge terms
to the right-hand side does one reduce two com-
ponents of each equation to identities and the third
component to Eq. (2.8).

A remarkable economy is achieved by the Debye
potentials: The arbitrary source-free Maxwell
field is specified by two scalar functions which
obey a single separable second-order wave equa-
tion. Roughly speaking, one might expect that
since a zero-rest-mass field possesses two
degrees of freedom, no more economical repre-
sentation of the Maxwell field is possible.

With the intention of formulating a covariant
generalization of the Debye potentials, one may
consider the two-potential representation from the
following viewpoint. By a suitable choice of bi-
vector direction in space-time—the ¢ direction
(and its dual 6¢ direction)—one has succeeded in
“diagonalizing” the Hertz potential, in the sense
of Synge."® That is, one has found the principal
directions (and values) of the Hertz bivector. Of
course, one may in this sense “diagonalize” any
bivector, with the resultant principal directions
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algebraically dependent upon the bivector itself.
Remarkably, the Debye scheme shows that all
source-free Maxwell fields may be represented by
Hertzian bivector potentials with the same princi-
pal directions, independent of the Maxwell field,
and determined a priori.

The problem of covariant generalization of the
Debye scheme may thus be viewed as the search
for a special bivector direction in space-time,
determined a priori and presumably geometrically,
independently of the details of any particular
Maxwell field.

We shall see how the generalized Goldberg-Sachs
theorem*~® provides special directions of the re-
quired sort in a wide class of space-times.

III. DIFFERENTIAL FORMS

The reader totally unfamiliar with the language
of differential forms may omit this section; the
chief loss will be a certain lack of motivation for
some of the formulas of the next section, which is
provided here.

Once the results of Sec. II are translated from
the three-space vector notation into the notation
of differential forms,'*~!° the framework will be
provided for investigation of the curved-space
problem, since the latter is a covariant notation.
Comparison of this section with Sec. IV may con-
vince the reader of the superior adaptation of the
present notation over standard tensor analysis
for problems of this sort (where antisymmetric
tensors play a central role).

We make use of the operators x, the Hodge dual;
d, the exterior derivative; 0= xdx, the co-deriva-
tive; and A=d0 + 8d =dxdx + »dxd, the harmonic
operator. The operator A has the property of
reducing in Minkowski space (or flat three-space)
to the d’Alembertian (or Laplacian) operator.

The flat-space equations of Sec. II are now pre-
sented in the differential-forms notation; once an
equation is written in this formalism, it is fully
covariant. That the translations are correct may
be verified by explicitly writing out the equations
below in some Cartan frame. This procedure
is illustrated in Appendix A for selected equations.

In terms of the Maxwell 2-form f=31f, ,w’a w”,
where f,, is the Maxwell tensor and w*, =0, 1,2, 3
are the basis forms, the Maxwell equations (2.3)
become

af=0,
6f=0.

(3.1)

The equations (2.1) relating the Hertz bivector
(2-form) P to the four-vector (1-form) potential
A become

A=0P. (3.2)
The analog of Eq. (2.2) giving f in terms of P is

f=d6P=-6dP, (3.3)
the equality of the last two expressions requiring

AP=0, (3.4)

the analog of Eq. (2.4). Now the fact that an f
given by Eq. (3.3) is a Maxwell field [i.e., satisfies
Eq. (3.1)] is a trivial consequence of the identity
d?=0—the exterior derivative applied twice an-
nihilates any form. That is, we have

df=d(d6P)=0,
6f=6(-08dP)=0,

(3.5)

where we have used the corollary 6°=0 [a con-
sequence of x®=z the identity, the sign depending
on the dimension of the form, so that &°
= (xd*)(xd%) =+ xd*x=0].

The 2-form gauge terms (2.5) are

Q=dG,
R=xdW,

(3.6)

where G and W are arbitrary 1-forms. The wave
equation (2.6) with gauge terms is therefore

AP=dG+ xdW, (3.7)

so that the gauge-transformed field (2.7) becomes
f=dé P-dG

=xdW-0dP . (3.8)

That the transformed fields (3.8) still obey the
Maxwell equations (3.1) is again a trivial applica-
tion of d?=6%=0.

Equations (3.7) and (3.8) represent a fully co-
variant generalization of the Hertz potential scheme
to all curved space-times.

The Debye two-component reduction of this
formalism in flat space may now be summarized
as follows. We use the spherical orthonormal
Cartan frame w®=dt, w'=dr, w?>=7rdb, w*
=7 sinf dp; we choose the Hertz 2-form to be of the
form P=Pyw’sw!+ P,w?r w®, and select gauge
1-forms G=(2P;/r)w°, W=(2P,/r)w®. Then, just
as in Sec. II, Eq. (3.7) results in the wave equation
(2.8) for each of P, and P, (see Appendix A), and
Eq. (3.8) yields the standard electromagnetic
multipoles.

It should be remarked that the entire Hertzian
scheme as generalized above to curved spaces
would fail if the world were Riemannian (as
opposed to pseudo-Riemannian), for, if space-
time were a compact Riemann space, a result in
Hodge theory'**'® would say that AP =0 if and
only if dP and 6P vanish. But then the prescrip-
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tions (3.3) for the Maxwell field would be identical-
ly zero.

IV. TENSOR NOTATION

There is no unique translation of the formulas
of Sec. II into tensor notation; in particular, many
second-order tensor operators reduce in flat
space to the wave operator of Eq. (2.4) (two ex-
amples are the contracted second covariant
derivative operator, and the operator which we
in fact adopt below). There is, however, a unique
translation of the formulas of Sec. III into tensor
notation, since the forms language is covariant;
we choose this unique prescription. In effect, we
are allowing the operators defined on forms to
make the choice for us. The reader who has
noted the elegance of the formulas of the previous
section (based on powerful properties of the
operators in the theory of differential forms) will
see the motivation for this choice.

For relations between the operators defined on
forms and the covariant derivative operator of
conventional tensor analysis, Ref. 16 is especially
recommended.

In the present notation, the Maxwell equations
(2.3) or (3.1) become

Vufu)\+ vquu"' kauu =Oa
V¢ fw =0,

(4.1)

where V, denotes the covariant derivative. The

J
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Hertzian bivector potential P,, is related to the
four-vector potential A, [see Egs. (2.1) or (3.2)]
by

Ay==V'Py . (4.2)

Equations (2.2) or (3.3) giving f,, in terms of P,
become

fl”-/ = —VuV)‘P)‘,, + VUV)‘PMI
=V \V'P, -V V, Py, + V'V, Py, . (4.3)

The last equality specifies the wave equation
analogous to Eqs. (2.4) or (3.4) to be

-V\VP,, +(VIV,=V, VNP, + (V,7*-VV, )Py, =0.
(4.4)

It is readily seen via the Ricci identities that the
last two terms are proportional to the Riemann
tensor, so that the operator of Eq. (4.4) could not
be preferred over the contracted second covariant
derivative (the first term alone) purely from the
standpoint of a generalization from flat space.
Thus an investigator working in the tensor formal-
ism might not have succeeded in finding the op-
erator of Eq. (4.4).

The fact that the field tensor (4.3) obeys Eq.
(4.1) is no longer proved by inspection as in the
notation of forms. We present the proof.

For the first set of Maxwell equations [the first
of Eq. (4.1)] we choose the first of Eq. (4.3) for
f,, and express it in terms of A, [Eq. (4.2)], so
that f,, =V,A,-V,A,. Then

VUfV at va)\u + V)\fu v =Vu VUAX_Vu VxAv + V,,V)\Au -"Vu Vu A)‘ + V)\VM AU—V)\VU Au
=(V, Y, =9,V ) A +(VaV, =V, VA4, +(V, VA=V\V, ) A,

=R$,,As+ Ry AAo+ RJxy A, (by the Ricci identities)

=3Rnyy1A45=0 (by the cyclic symmetry of the Riemann tensor).

Similarly, for the second of Eq. (4.1) we express f,,, by the second of Eq. (4.3) and introduce a potential
B, ,, whose four-divergence (as opposed to A, whose curl) gives f,,. Thus

BX“,J:V)\P‘“,—VMP)\U + VUPXu

and f,, = V' B, ,, together yield the second of Eq. (4.3) (note the total antisymmetry of B, ,,). Now the
Ju AH Au

second Maxwell equation gives

V”fu,,=V“V)‘BM“,

=i (Pt vr-vrvH )By,, (by the antisymmetry of By )

=%(R°>‘)‘”Bow +R%, X“Bxuv +RY, )‘“Bxuo) (by the Ricci identities).

The first two terms each vanish since the first
factor is symmetric and the second antisymmetric
in o, o (or o, x for the second term). The third
term is

r

1 ohp_ 1 by
_ZRUoXuB u"—zRv[o)\u]Bc H

by the antisymmetry of B°M and also vanishes
by the Riemann tensor symmetry R, ;=0
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The gauge terms of Egs. (2.5) and (3.6) in tensor
notation are

Q,,=9Y,G,-V,G,,
Ry, ==-V*Wy,,,

(4.5)
iny
where G, and W), are arbitrary tensors, except
that Wy ,, is totally antisymmetric (W is essentially
the dual of the arbitrary 4-vector or 1-form with
the same kernel letter of the previous sections).
With gauge terms included, the wave equation
for the potential becomes [Egs. (2.6) and (3.7)]

~-V\V*P,, +(VMV, -V, VNP, , +(V,V -V v, )P, ,
=V,G,-9,G, -V Wy,
(4.8)

and the gauge-transformed field tensor [Eqgs. (2.7)
and (3.8)] is given by

fuv ==Y, 9 Py, + V,V*Py , =V, G, + Y, G,
= VXVXPU ,,—V)‘VMPM, + VXVVP)‘# —v)\qu v
(4.7)

Using a proof similar to that given above for the
field (4.3), one can show that the transformed
field still obeys the source-free Maxwell equations.

Equations (4.6) and (4.7) comprise a covariant
generalization of the Hertz potential formalism to
all space-times.

The flat-space Debye two-component reduction
of the potential is now given in tensor notation.
In the natural spherical coordinate basis for ten-
sors, we choose Py, =—P,;=Pp; Pg,=~=Pyy
=y%sind P,; all other components vanish. For
gauge terms we take G,=2 P, /r, other components
zero; and W,,,=2r’sinf P, /r, other components
given antisymmetrically by permuting indices, or
else vanish. Again, the statement is that with
these choices, Eq. (4.6) yields the wave equation
(2.8) for each of P;, P, and that Eq. (4.7) gives
the standard electromagnetic multipole fields.

V. DEBYE POTENTIALS IN CURVED SPACES

With the covariant machinery for the Hertzian
potentials having been set up in the last two sec-
tions, we are in a position to formulate a two-
component (or one complex component) reduction
of the potential analogous to the Debye scheme in
flat space. The problem consists of finding
special bivector directions in space-time so that
Eqgs. (4.6) or (3.7) yield decoupled wave equations
for the corresponding components of the potential
for some choice of gauge terms (4.5) or (3.6). In
this section we show that in a class of space-times,
the Weyl tensor provides such special bivectors
through its principal directions. These are, as

required, defined geometrically by the space-
time itself and independently of the Maxwell fields
to be computed.

The considerations which lead to the principal
null directions of the Weyl tensor for specifica-
tion of the preferred bivectors are as follows. In
flat space, the asymptotic form of a spherical
radiation multipole is a null bivector field, with
principal null direction just the radial propagation
4-vector.®*® This is associated in a simple way
with the special bivector of the Debye potential
[namely, w% w!=3(w’-w')a(w®+w!), where
w°+ w! are the null propagation vectors]. We
conjecture, then, that in curved space, we seek
those bivector directions associated in this way
with propagation vectors of (source-free) null
Maxwell fields. But the Mariot?! -Robinson®*
theorem states that these propagation vectors are
just the tangents of shear-free null geodesics; in
fact, Robinson’s theorem?: characterizes them
as such. Finally, the Goldberg-Sachs**® theorem
makes the connection between shear-free con-
gruences of null geodesics and repeated principal
null directions of the Weyl tensor (for vacuum
space-times): The former are the integral curves
of the latter. Thus one is guided in the search for
a special bivector in curved space to choose a
null tetrad (Cartan frame) with one element
aligned along the repeated principal null direction
of the Weyl tensor of an algebraically special
space-time. The preferred bivector will by these
considerations presumably be the exterior product
of two elements of such an aligned null tetrad.

In order to check whether one has obtained de-
coupled wave equations as individual components
of Eqgs. (4.6) or (3.7), a fully explicit formalism
is necessary. For this reason and because of the
key role played in the formulation by null vectors,
we adopt the NP® formalism for the following
explicit computations and for a concise statement
of the final results.

In this treatment, the approach to the NP formal-
ism will be from a purely tetrad- or Cartan-frame
point of view, so that the reader with no knowledge
of spinors or NP formalism but familiar with the
tetrad or frame formalism will have no difficulty
proceeding.

It should first be remarked that all formulas of
Sec. IV may be reinterpreted from a frame view-
point with only the conceptual change that each
index be understood as a tetrad index. With that
in mind, the translation of the equations of Sec.
IV into the NP formalism becomes purely mechan-
ical, with the dictionary of changes in notation
provided in Appendix B. The covariant derivatives
of the last section are given by the standard frame
or tetrad formulas, for arbitrary tensors T of



10 ELECTROMAGNETIC FIELDS IN CURVED SPACES: A... 1075

indicated rank,
vﬂTu = wﬂ(Tu )—nop')/ppBTc ’

VBTuv = ("’B(Tu v )-TI""Y‘,,J 8Ty =1 oPYp uBTuc ’
(5.1)
VT n = Wp(Tyun) =1%oy 8T oun

-n OpruBTp,o Pt/ ] Opr)\ BTuvu )

where the matrix n*” for raising frame indices in
an NP null tetrad is

0 -100
-1 0 0O

"=l o o 01| WvsL234. (.2
0 0 10

The Ricci rotation coefficients y,,5, or linear
combinations of them, are relabeled by individual
letters in the NP formalism (these are the spin
coefficients); this scheme is given in Appendix B,
as are the individual labels for the frame deriva-

J

tives w, (the intrinsic tetrad derivatives). The
reader is warned about a redundance of notation
in the literature: A represents both the harmonic
operator and one of the NP frame derivatives;
0 represents both the co-derivative on forms and
one of the NP frame derivatives; context, how-
ever, will make it clear which meaning is intended.
In an NP null tetrad aligned so that the vector
! is oriented along the repeated principal direc-
tion of the Weyl tensor, we choose a Hertzian
bivector with one independent complex scalar
component given by P,,=P,==-P5, = (and
P,,=P,,=-P,, =7 as required for real components
in real frames), all other components zero. A
direct computation shows that for this choice,
Eq. (4.6) with suitable gauge terms yields a de-
coupled equation for the scalar potential . To
see this, we compute the left-hand side of Eq.
(4.6), writing all sums out explicitly, making use
of Eq. (5.1) and the NP notational scheme of
Appendix B. The three independent components
(all others are related to these by antisymmetry
or complex conjugation) are found to be

nm: =2[(A-y+y+L)D+2e—p)-(6+a+F -T)6+28-7)]¢,

Inor mm: —[(D+€+€+p-p)(6+2B-T)+(=6+ a-B-T-7)(D+2e-p)] Y =2[(D+€ +€=p)T=(6 +T—a +B)p]

Im: 0,

where terms proportional to x and o have been
omitted (k=0=0 is the shear-free null geodesic
condition on [); the second expression for the

In component is derived from the first by the use
of several of the NP equations.® The choice of
gauge terms G,=W, 5, =279 +27J, G;=W,,5=2py,
G,=W,,,=2Py (other components obtained anti-
symmetrically by permuting indices, or else zero)
is seen to decouple the equations, for, with these
gauge terms, the three components of the right-
hand side of Eq. (4.6) are

nm: A&7 +y +R)p-(8 + a +B-T)T] Y,
Inormm 2[(D+e+e-p)r—(6+T-a +B)pl, (5.4)
Im: 0.

Comparison with Eq. (5.3) shows that the In and
Im components are identically satisfied, and that
the nm component yields a single decoupled wave
equation:

[(A-F +y + B)(D +2€ + p)-(B +a +B-T)(6 +2B +7)] ¢
=0. (5.5)

This linear equation may be treated by separation

(5.3)

r
of variables in important space-times.

The complex scalar y contains all of the infor-
mation of the Maxwell field. Indeed, the Maxwell
tensor is given explicitly in terms of the solutions
for by Eq. (4.7) (with P,,, G,, and Wy,, as
specified above in terms of y):

@o=fim=[—(D-€ +€-p)(D +2€ +p)]¥,

0,25 fin+ fam)=[~(D+€+€)(E +2B +T)
+(m+T)(D+2€ +p)]7,

@,=fan=[-B +a +B~T)(8 +2B+T)+M(D+2€ +p)] T,

where the ¢ notation is the NP labeling of the tet-
rad components of the field, as specified. Thus,
the Maxwell field is computed by strvaightforward
differentiation of the solution of a linear scalar
wave equation.

Just as in flat space, the monopole field is not
included in the solutions (5.6), although it may
easily be computed in any particular geometry.
That one complex potential (rather than the two
real potentials of the flat-space formulation) is
sufficient to yield the arbitrary field tensor is
made plausible by the following consideration. In
the two-real-component scheme, the second

(5.6)
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component yields Maxwell fields dual to those
yielded by the first (“magnetic” vs “electric”
multipoles). In the null tetrad treatment, however,
the duality operation is accomplished merely by
the multiplication of a given scalar potential § by
7 (this follows from the facts that the dual of the
bivector I m is just il m, and that the dual of
the potential yields the dual of the field). Hence
if a given Maxwell field is obtained from a scalar
¢ satisfying Eq. (5.5), then its dual is obtained
from another solution of Eq. (5.5), namely iy, by
linearity of the equation. In short, a scalar po-
tential along an independent bivector direction is
not necessary to specify the dual of a field, unlike
the flat-space case.

The coordinate components of the Maxwell ten-
sor are given in terms of the NP components of
Eq. (5.6) by standard basis transformation pro-
cedures:

Fu u:2((p| +51)n [ul vt 2(pel[umu]
+ 20,1 1,m y + 20 ,m 0,
+ 2@ mpyny+ 2(Q—@) mpm (5.7

where antisymmetrization is denoted by the square
brackets.

Equation (5.7) gives Maxwell fields in regions
free of electromagnetic sources; since they are
exact solutions, including near-zone fields, they
may be matched to bounded sources by standard
methods. Extended sources may be treated by
Green’s-function techniques as in flat space,*
and by a curved-space extension of the method
of stream potentials (see Ref. 8).

Finally, it should be remarked that in Type D
space-times admitting a Debye potential scheme
as in Eqs. (5.5) and (5.6), an additional formula-
tion is possible. The basic framework is still
that of the previous sections; the difference is
that the potential is of the form P ,=P;,=-P,, =¢
(with P, = P,z = —P5,=§ required by reality of
physical components). Or, the new scheme may
be derived from Eqgs. (5.5) and (5.6) by application
of the transformation /-~ n, m ~m of the NP
formalism. The justification is that in a Type D
space-time admitting shear-free congruences of
null geodesics along each of the two repeated
principal directions of the Weyl tensor, the vec-
tors I and n, if oriented along these special direc -
tions, are equivalent. The alternate equations are

[(D+E-e=p)(A=2y—p)-(6 +T-a-B)(B-2a-m)]yp=0,

_ - (5.8)
¢,=[-(6-B-a +m)(6-2a-M]7,

¢ =[-(a-y-y)(6-2a-T)-(1 +T(A-27y-2)[F, (5.9)
@,=[-(A+y=y+p)(a-2y-R)]P.

We emphasize that in this scheme, all of k, o, A,
and v are assumed to vanish, so that each of / and
n is required to be a shear-free null geodesic
direction. In these space-times, either the scheme
(5.8), (5.9) or the scheme (5.5), (5.6) is sufficient
for computations; it is not necessary to use the
two formulations together. The choice will pre-
sumably be made on the basis of which of Eqs.
(5.5) or (5.8) is the easier differential equation to
solve in any particular application.

For completeness we present a third scheme
which, like the second, is valid in Type D space-
times with null geodesic congruences along each
of the repeated principal directions of the Weyl
tensor. Unlike the wave equations (5.5) and (5.8),
the corresponding equation in the third scheme,
Eq. (5.10), is not separable in important spaces,
and is thus less likely to be useful in applications
than the above two treatments. In the third
formulation the wave equation and Maxwell field
components are

[-(A=y-F +E-p)D+(6-a +3-7-7)6]4=0,  (5.10)
@o=[(6=a-B+T)D +(D-€ +€-p)d] 7,
@, =[(A=y-F+ L-u)D+(6-a +3+7+7)8]F, (5.11)
@, =l(a+y-7y+1)5+(B+ a +B-T)A] Y.

where the Hertzian bivector potential is given in
terms of the scalar ¢ by 3(P,,+ Pg,)=¢.

The space-times covered by the alternate formu-
lations, Eqgs. (5.8) and (5.9) and Egs. (5.10) and
(5.11), in practice include the Kerr and Schwarz-
schild geometries, as well as the matter-filled
cosmologies mentioned above, which Wainwright®
has shown to have both the required Petrov Type
(D) and the required congruences of null geo-
desics. The vacuum Type D spaces are auto-
matically included by the Goldberg-Sachs theorem.
All of these are of course included in the first
formulation [Eqs. (5.5) and (5.6)].

VI. ILLUSTRATIONS OF THE METHOD

Although the physical-frame Debye potential
formulation of flat space (Sec. II) may not always
have as elegant a generalization to curved space
as does the null-frame scheme (Sec. V), it may
nevertheless be extended to important space-
times. In particular, we show below that its
extension to the spherically symmetric Schwarz-
schild and Friedmann space-times yields the so-
called vector (more correctly, bivector) spherical
harmonics representation of the field. Where the
symmetry of the space-time allows such a treat-
ment, it is preferred over the null-frame scheme
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since the wave equation is real, and the Maxwell
field is given directly in physical components.

We illustrate the Debye potential method in
Schwarzschild** space (black holes, neutron stars),
the Friedmann®® universe models, and the Kerr?®
solution (rotating black holes, neutron stars).

A. Schwarzschild space (Petrov Type D)

Israel?” and Anderson and Cohen®® have found
the static multipoles; Mo and Papas®® have studied
the dynamical case. In fact, Mo and Papas have
introduced Debye potentials for spherical space-
times, though from a three-vector analysis view-
point. Below we relate their scheme to ours, and
compare our results with those of Refs. 27 and 28.

In the orthonormal frame

w°=Adt, w'=Bdr, w’=rdb, w*=rsinfde,
(6.1)

where A*(r)=B~%(r)=1-2M/r, with M the gravita-
tional mass in geometrized units, we choose

P =P w’ w'+Pyw’s w® and gauge terms G
=(2P,/Br)w®, W=(2P,/Br)w°. Then Eq. (3.7) yields

+L(_1_i ing 28, 1 u> -0,

sin6 26 > 36
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just the vacuum case of Eq. (6) of Ref. 29, for
each of P, and P,. Separation of variables leads
to y=e ™R, r) YN0, ¢), where R, (r) must in
the dynamical case be found by numerical integra-
tion of

A i(é i@.) 1i+1) A
- B

B dr\ B dr r?

k°R + R=0. (6.3)
In the static (k=0) case of Eq. (6.3), the functions
R,,(r) may be expressed in terms of Legendre
functions.?"*?® In fact,

R,o(r)=72;V(;_M ‘1> [P' ( 1‘::7)J . ‘:}.r ’

where replacement of the Legendre function P; of
the first kind by @, of the second kind yields the
linearly independent solution. The solutions con-
taining @, are well behaved at infinity; those con-
taining P, are well behaved at the horizon; linear
combinations of the two kinds can be matched to
physical source distributions. It should also be
remarked that approximation techniques have
proved useful in solving radial equations like

Eq. (6.3) in the Schwarzschild geometry.?%2° |In
the flat-space limit M- 0 (A-~ 1, B~ 1), Eq. (6.3)
of course becomes the wave equation (2.8) and
R,, (r)~rz,(kv), where z,(k7) is a spherical
Bessel, Neumann, or Hankel function.'®] In terms
of these functions the fields are, in physical
components in the frame (6.1), as given by Eq.

(6.2) (3.8),
El: l(,'l,-':l) e_‘k‘le(Y)Y;"(e,qD), Bl=0,
_ e~ikt g4 9 m _ Eme=tkt n 6.4)
E,= 55— Ry 55 Y70, 0)], B,= o R YT, 0),
i me Rt i bo-ikt
tme d m ike 3 rom
3% Brsind dr [Ry)]YT(6,0),  By= Ar Ry (7’)56‘ (Y7, ).

r

authors. Schrodinger®! has studied the spatially
continuous electromagnetic modes, which might
be termed the bivector hyperspherical harmonics,
of the closed Friedmann model. Infeld and Schild3?
have analyzed all electromagnetic multipole fields,
including those with singularities corresponding

to point sources at the origin, in the closed uni-
verse model. Lifshitz®® has considered the vec-
tor harmonics, which differ slightly from the
source-free Maxwell fields, and has obtained
solutions for the =1, m=0 (aligned dipole) case
(his “most symmetric vector” harmonics) in the
closed and open models. Here we sketch the
treatment of this problem by the Debye potential
method, and we present all multipole fields in the

These are the electric multipoles (except for 1=0,
which is E,=1/7%), both static and dynamic; the
magnetic multipoles are obtained similarly from
Eq. (3.8) and are related to Eq. (6.4) by inserting
an independent solution ¢ to Eq. (6.2) for P,, and
performing the duality operation E,; - B;, B;—~ —E,.

B. The Friedmann universe models (Petrov Type O
or conformally flat)

In this section we treat the three types of
Friedmann or Robertson-Walker universes of
positive, zero, and negative spatial curvature.
This problem has been considered by other
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thvee curvature cases in terms of elementary
functions.
Again, the calculation is performed in the ortho-

normal frame obtained by normalizing the spher-
ical coordinate basis:

LAWRENCE S. KEGELES

w’=am)dn, w'=aln)du,
w?=am)f (u)dé,

where the three curvature cases are covered by
the choices

) (6.5)
w*=an)f (u)sintd ¢ ,

S
sinu, O<us<nm positive

fw)= u, Osu<o for spatial curvature- zero
sinhu, O<u<w , negative

(these models are closed, open, and open, re-
spectively).®® The radius function a(n) also de-
pends upon the curvature case, and can be found
in Refs. 34. We choose the Hertzian 2-form po-
tential P =P, w’ w'+ P, w?s w® and gauge 1-forms

G=(2f ,/af )Py w°+[(a*),/a’| Pg ',
W= (2f ,/af )Py 0 +[(a%),,/a°] Py w' .

Then Eq. (3.7) yields the wave equation, for each
of Py and Py,

sin6 % + 1 M) =0,

86  sin’6 ap? )
(6.6)

which is separable and can be solved analytically
in terms of elementary functions. Solutions are
of the form y=e~*"f (4)Z,, ()Y (6, ¢), where the
f(u) is factored out for notational convenience and
the Z,, (u) obey

-

zero-, or negative-curvature cases, respectively.
In the flat case where f(u)=u, Eq. (6.7) is just
the spherical Bessel equation, as expected from
conformal properties of the Maxwell field.

A solution Z, («) to Eq. (6.7) with =0 yields a
solution with 7#0 by the operation®®

dl

m Z g ()
we therefore turn attention to the Z ().

For the positive-curvature case the independent
solutions for Zy(u) are e*'**/sinu or sinku/sinu
and cos ku/sinu, with static (¢ =0) limits « /sinu
and 1/sinwu. Suitably normalized linear combina-
tions of these will yield the unit multipoles with
sources at #=0 and continuous at » =7, those with
sources at u =7 and continuous at # =0; and the
traveling waves. The harmonics, or globally
continuous modes, follow from Z,(«)=sinnu/sinu,
with n=2,3,4, ..., as seen from the Sturm-
Liouville problem associated with Eq. (6.7).

sz (u):[_f(u)]z (68)

1 d 2() dZy, . [G _ 1+ 1)] Z, (0)=0 For the negative-curvature case the Z(u) are
f2(u) du du R 2 (u) 1k ’ e*** /sinhu or sinku/sinhu and cos ku/sinhu,
6.7) k+0, with static limits #/sinhu and 1/sinhu.
’ The fields themselves as given by Eq. (3.8) are.
where G,=k’-1, k?, or k?+1 for the positive-, for electric type,
_ L({I+1)e" n _
E,= 2mf @) Z,@)YT7(6,9), B, =0,
~ikT L
€ d 9 m kme
=< & = B,= SZ¢ m(g 6.9
E, 2Mmf @) du [f(u)Zlk(u)] Y] [Yx (6, 9)], 2% 22()sinb Z, W)Y (6, 9), (6.9)
. -{kN ; -ik7
ime d ike 9
Ey= e 2. m(g =2z (w)—[Y™e
3 az(n)f(u)sine du [f(u)zu(u)] Y{ ( , ‘P), Bg ag(n) ;k(u) Y] [Yx ( ,(ﬂ)]

The magnetic multipoles follow likewise from Eq.
(3.8) or may be obtained from the dual (E; - By,
B, - -E,) of the above fields, with an independent
solution ¥ of Eq. (6.6) for P,,. The “monopole”
electric field is E,=1/a*(n)f*(u), other components
zero.

As an illustration of the above fields we consider
the I=1, m=0 case in the closed model [ f (x)
=sinu] with 2=2, 3,4, ... (the aligned dipole

r

harmonics). For this case Z,, =sinnu/sinu, n
=2,3,4,..., sothat Z,, =—sinu(d/sinu du)
X sinnu/sinu, from Eq. (6.8). Then Eq. (6.9) gives

1=

2e~4nm d <sinnu

- cosé,
a*(n)sinu du \ sinu )

e~ d . d <sinnu
= a (sinnu

————— —— sinu -
a*m)sinu du du \ sinu

) sinf,



ine”'"" d [sinnu\ .
= —— — - sing ,
a*(n) du \ sinu

n=2,3,4,... (other components vanish) .

These are to be compared with the most sym-
metric vector harmonics of Lifshitz (which lack
the B, component since they are vectors rather
than bivectors); all other multipoles, continuous
or with singularities for point sources, follow
equally readily from Eqgs. (6.8) and (6.9).

It should be remarked that in their investigation
of the above fields in the closed universe, Infeld
and Schild noticed that their solutions for the four-
vector potential, derived by conformal transforma-
tion methods, could be obtained by differentiating
a single complex scalar. Their scalar ¢, whose
significance has not been entirely clear, is re-
lated to our potentials by ¢ =Py + iPy.

C. The Kerr solution (Petrov Type D)

A new and complete treatment of Maxwell fields
in the Kerr geometry is provided by the Debye
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potential method.

In vacuum Type D spaces, previous authors®®~32
have obtained decoupled wave equations for each
of the three complex field components by working
directly with the field tensor itself in null frames.
It has been shown that two of these three equations
are separable,®*3® and that by integrating (non-
separable) Pfaffian differential equations, one
may obtain the remaining two components in terms
of a given one.*

The present scheme yields all three field com-
ponents by straightforward differentiation of the
solution of one separable wave equation, which we
now derive. No simple scheme for decoupling in
orthonormal frames seems to be possible here,
so the general results of Sec. V will be used. In
order to write Eqgs. (5.5) and (5.6) explicitly in
coordinates, we shall need a choice of coordinates
and of null frame (which is arbitrary except for
the direction of !); we follow Teukolsky®’ in his
choice of tetrad®® and of Boyer-Lindquist*° co-
ordinates. In these coordinates the Kerr metric is

ds*=—=(1-2Mr/Z)d t*~[(4Mar sin®0YZ | d t dp+ (T /A)dr*+ £d6*+ (sin®6)[r?+a+ (2 Ma®r sin%6)/Z] dp?, (6.10)

where Z =r?+a®cos®6 and A =y*-2Mr +a® (not to be confused with the NP operator A) and M and a are the
mass and rotation parameters of the black hole or neutron star. The nonvanishing spin coefficients are®’

p=-1/(r-iacosd), B=-2732p cotd, w=2"'2igp’siné,

T==-2"Y%qppsint, u=p’pA/2, y=p+pplr-M)/2,

(6.11)

a=1-0;

the intrinsic derivatives are D=1"8/0x", A=n"3/0x", and 6=m"8/0x¥, with u summing over coordinate
indices. and with Boyer-Lindquist [¢,7, 6, ¢] components of the tetrad vectors given by

I"=[(r*+a®)/a, 1,0,a/48], nt=[r*+a? -A,0,q]/22,

m*=2""2[ig sin6, 0, 1,i/sinb] /(r +ia cosb).

(6.12)

With the substitutions (6.11) and (6.12), the wave equation (5.5) becomes

Ve

[(73+a2)z —azsinzf]ﬂ + AMar 0%y
A IYE A atog

2, a a _ 8
PN S S A _L_z[a(r M) i 08
A sin®6

ar® sin6 90 36

2 1
+(._1§ ~ sin?6

2%y

ap*®

8y [W_—az)_ ; ]% 1.

8(p+2 N 7 -ia cost 5t * sim%0 p=0. (6.13)

1t is useful to note that Eq. (6.13) for the potential ¢ is the same as Eq. (4.7) of Ref. 37 for one of the
Maxwell field components (and is separable). We emphasize the distinction in the role played by ¢ in
Teukolsky's treatment (where ¢ =p~2¢, and thus gives one NP component of the Maxwell tensor) and the
present formulation [where ¢ gives all three NP components via the operations (5.6)]. For a discussion of

solutions to Eq. (6.13), see Refs. 37, 41, and 42.

The field tensor components (5.6), with ¢ in the product form y=e™**¢'™?S(6)R(r) and with the substitu-

tions (6.11) and (6.12), reduce to
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@o={{Aa"1r*+a®) Pw? +A 20’ m> =20 2a(r* +a*) mw +2i A2M (r*—a®)w

-2iA %a(y-M)m-3,,2 +2iA" {am-(r*+a®)w) 8, §,

@,=-2""2(r-ia cos6) ' (iA"a sinb(r? +a*)w? +iA"'am3csch

—iA~lesch[a?(1+8in%0)+ 2 ]mw + i A (r? +a?)w cotd

+ 20" r-ia cosf) 'aMrw sin6—iA~*amcotf

(6.14)

+ A~ cscO(r—ia cos6)” (-2 Mr)m—(r—ia cosb) 'cotb +8,,°

+ [aw sinf-mcsch +cotd—i(r—ia cosd) 'a sinb] 3,

+ A" (r? +a®)w-am]-(r-ia cosé) '} 8,) P,

@,==3(r-iacos6) 2 [a*w?sin’*0 +m3csc?0-2amw +2a w cos6—~cSc0 + 8 44°+(2aw sin6-2mesco +cot)d,] T .

The “monopole” field in the Kerr geometry is
given by3¢

¢,=(r-tacosh)?, ¢@,=¢,=0.

In the general case, the solutions for S(6) and
R(r) must be numerical; for the static, axisym-
metric case (m=w=0), the arbitrary 2’ pole fields
have been obtained analytically.*?

It has been shown by Brill and Cohen*® that the
space-time exterior to a slowly rotating spherical
body is just the Kerr metric, to first order in the
rotation parameter; hence the fields (6.14), keep-
ing first order in a, may be used for applications
to pulsar electrodynamics or any other phenomena
associated with rotating neutron stars.

Applications of the method to other space-times
of astrophysical interest are in progress and will
be published elsewhere.**

VII. DISCUSSION

The flat-space method of electromagnetic Hertz
potentials has been generalized to all curved space-
times. The covariant formulation of this procedure
has provided the framework for an extension of
the Debye potential scheme to an astrophysically
interesting class of spaces, where it gives a new,
direct, and practical method for constructing
Maxwell fields by solving one decoupled linear
scalar wave equation. This formulation allows
realistic problems in relativistic astrophysics
associated with neutron stars, pulsars, black
holes, and global (cosmological) phenomena to be
investigated by direct computation.

In each space-time already studied explicitly,
it appears that the most general Maxwell field
(always excepting the monopole) is obtained by
this procedure [i.e., that the fields (5.6) corre-
sponding to the general solution of Eq. (5.5) are
complete]. We conjecture therefore that it is
the case in every space-time in which Eq. (5.5)
is valid; the development of a formal proof is in

—

progress.

The wave equation (5.5) has proved to be sep-
arable in all spaces thus far examined in detail.
Stewart and Walker®® have shown, using a method
developed by Held,*® that their wave equations,
valid for all vacuum Type D spaces, are separable
in certain of these spaces, without using co-
ordinates; their argument is couched purely in a
new null-vector formalism* similar to NP. Pre-
sumably the question of the separability of Eq.
(5.5) [which may readily be written in this new
“GHP” (Geroch-Held-Penrose) formalism] could
be addressed by these methods.

The proof of the completeness of the fields (5.6)
and the separability of the wave equation (5.5)
would yield the result that the construction of
the general Maxwell field in this class of space-
times is reduced by Eqgs. (5.5) and (5.6) to the
solution of ordinary differential equations.

Results strictly analogous to the spin-1 results
of this paper have been obtained for zero-rest-
mass fields with other physically interesting values
of spin and will be presented elsewhere.
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APPENDIX A

The aim of this appendix is to illustrate the
procedure of taking equations in the differential-
forms notation of Sec. III and writing them ex-
plicitly in a definite choice of Cartan frame. This
will enable the reader unfamiliar with forms to
derive such equations as Egs. (6.2) and (6.6).

As a simple application we write the homo-
geneous Maxwell equations df=0 [the first of Eq.
(3.1)] in the Cartesian coordinate frame in Min-
kowski space, which is w®=dt?, w!=dx, w’=dy,
w3=dz. In terms of the basis 2-forms the Max-
well 2-form is
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S=fodtadx+fodtady +fodt adz +f,dxady +fdxadz +fydyadz, (A1)
with the physical correspondence
E;=fi0, B,=fs3, By=fy;, Bs=fy5- (a2)
The definition of the exterior derivative!*~!° gives
Af=fo, ydyadtadx+fo dzadtadx +fo dxadtady+fy,, dz dtady
+faxdxadtade +fg ydyadtadz +f, dt adxady +f,, . dzadx ady
+fis,edtadxade +f 3 ydyadxadz+fp ydt adyadz +f,,  dxadyndz

=0. (A3)

Examination of the 012 component, for example (by antisymmetrically combining terms), gives

_a__%Jr_a:o, (Ad)

just the z component of VxE +ai§/at=0; the other components of Eq. (A3) are just the remaining three
homogeneous Maxwell equations.

Next the wave equation (2.8) will be derived from Eq. (3.7) by the procedure outlined at the end of Sec. III.
Since Hodge duals of forms will be taken repeatedly, it is convenient to summarize this operator on a basis
of orthonormal forms on a space-time:

wlrwrw’rwd=1,
*1=—w°Aw‘Aw2Au)3,
*wohw'=whe?, *'=w'hwiiwd, *wliwire’=w’
*0%h = —w'hw?, *wl=wlhw?iw?, *w'h wiiwd=w!,
*0o W= W %, *WP=WCAwiaw!, *w'rwiaw!=w?, (a5)
*0lh w2 = w00, *w=wlrwlaw?, *wlrw!rw?=w?,
*wla w?=wlrw?,
*wiawd=—wlaw.
where
d5® == (@) + (@) + (@) + (W) .

To simplify the calculation we may take P=Pyw’rw!, G=(2P,/r)w° W=0; the equation for P =P, w?s w?,
G=0, W=(2P,/r)w° is then obtained just by taking the Hodge dual since A and x commute. The choice of
frame is w°=dt, w'=dr, w?=rdf, w*=rsinbd¢. First we compute ddP, with the notation P =y, so that
P=yuwrwh

* P =jw?aw?=yrisinfdbde,
dxP=y v*’sinbdt ~dord @ +(7?),,sin0dr add ad@ =, @°rw?rw® +r72(Y7r?) , w' s w?aw®,
xdxP=9 ' +r2(yY7r?) , 0=y dr +r2Yr?) ,dt,
dxdx P=y yydtadr +§ 10d0adr +§ s,d@adr
+r 2@y ], dradt+r=2(r*y,¢) , d6adt +r™2(r%y ), d@ adt .
Thus
dSP={y . -[r2@r*),] ,}wlaw!-r73 (2 q) , w®rw?
—(3sinb)"'(r?y ) , WA~ o AW = (r Sin6) MY w! Aw? . (A6)

In similar fashion we compute 6d P:
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P=z/)thdr,

AP =y qd0adt adr +9 od@adt adr =1~ waw’aw! +(rsinf) ™ (Y ,Jwsw'rw?,

»dP=r""Y ow-(rsind) 'y, ,w’=9 ¢sind de -(sind)"'y ,db,

dxdP =1 g;sinb0 dt adp+y g,8in0dr~de +(} ¢sinbd) odbrde
—(sinb)~'(y,p )dt Ad6—(sinb)~'(, 4, )d7 A d8—(sin6) ™ (¢, ,,)d @ » d6 (AT)

=r 1,0 W WP +r7 Y o, w'aw® +(r’sind) (Y, ¢sinb) pw’a w®

—(rsind) (Y, p¢ )4 wi~(r sinb) " (Y, o, Jw' A W= (#*sin?6)" (Y, y )4 WP,

0d P = -[(r*sin6)~*(y, ¢8inb) o+ (r*sin®6) "1 (Y, yo)] W aw!

+ 771 g, wAw? +(r Sin6) 1Y, gy JWOr WP + 7Y g Wl AW + (r SING) (Y, o Jw A w® .

Also, for G=(2y/r)w° we have

dG=20r™") ,dradt+ 27~ odordt +27"YY ,d@adt

==20y7r™") ,wlaw'-27"%Y w4 w?-2(r*sind) " (Y, o w4 w3 . (A8)

The left-hand side of Eq. (3.7) is obtained by adding Eqs. (A6) and (A7) and is found to be
AP=dSP+8dP =y, -r 2(y7?),,),, - (r’sin6) 1 (p,¢sinb) o -#?8in*6)"'(y,44)] W '

=277y, 0w’ w?=2(7*sin6) (Y, o )w’ w* . (A9)

Equating this to dG from Eq. (A8) gives

2 2 2
By 2y 1 2 ooy 1 2% o

3t? " a7r® " »?sind 86 36~ 7%sin®6 8 ¢*

(A10)

for the w’s w' component; the remaining components are identically satisfied and hence put no further con-
dition upon y. Equation (A10) is just the flat-space wave equation (2.8); the Schwarzschild equation (6.2)
and the Friedmann equation (6.6) are derived in a similar manner.

APPENDIX B

In this appendix the dictionary for translating
null-frame notation into the NP notation is pre-
sented for use in Sec. V. In addition the Cartan-
frame method for computing Ricci rotation co-
efficients is sketched and is advocated as a simple
method of computing the spin coefficients for any
reader intending to make applications of Egs. (5.5)
and (5.6) in specific space-times.

The Ricci rotation coefficients of the frame,
which appear, for example, in Eq. (4.6) through
the use of Eq. (5.1), are denoted in NP notation®
by the following:

Yo S€+E, Vi =K, Vg =T,

Yie =Y+, Y12 =T, Yo ==V,

Yiea =& +B, Y143=Ps  Yaas = —H,

Yia=@+B, V14a=0,  Yass =N, (B1)
Y31 =K, Va3 = =T, Yaq =€,

Y132 =T, Y2z ==V, Y32 =YY,

Y133 =0, Yasa ==X, Yasz=0=B,

Y134 =P Yasa ==K, Yaes =E—a,

r

and are antisymmetric in the first pair of indices.
The intrinsic frame derivatives, which occur in
the same equations, are denoted by

w,=D, w,=A, wy=5, w,=06. (B2)

The correspondence between the numerical in-
dexing and the labeling by I, n, m, and m of co-
variant tetrad indices, which have been used here
interchangeably, is just 1,2, 3, 4—1,n,m,m,
respectively.

The Cartan procedure for computing Ricci ro-
tation coefficients of a tetrad [hence the spin coef-
ficients via Eq. (B1)] is now presented. It is first
necessary to lower coordinate indices on the tetrad
vectors to obtain the dual 1-forms -n,dx", -1, dx*,
m,dx", and m,dx", where u runs over the co-
ordinate indices. These frame 1-forms we denote
by w!, i=1, 2, 3,4, where i runs over frame (tetrad)
indices. Then Cartan’s first structural equations
give

dw'=-w! rw’, (B3)

where the connection 1-forms w‘j may be expanded
along the basis 1-forms w! to give

w'y=vt 0k, (B4)
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and the 7‘,,, are just the Ricci rotation coefficients.
Hence Eq. (B3) may be rewritten

dot=—yt0frw’ . (B5)
Unfortunately the y‘jk’s have no special symmetry
in the indices j and k, so that they cannot always
be found from Eq. (B5) by inspection. This dif -
ficulty is solved by introducing auxiliary quantities
C,;', which are by definition antisymmetric in j

and &, so that they may be found by inspection
from

dw'=3Cplwrw* . (B6)

What remains is to relate the y‘,k to the known
quantities C;,'. From Egs. (B5) and (B6) we have

('jx +3 Coy' ! a 0* =0,
which by the antisymmetry of w’ » w* gives
Y t2Cht =vh +3CH
Therefore
Vi =r'e=Ci - (B7)

Lowering the ¢ index [which must be done with the
tetrad matrix n;; =n*/ given by Eq. (5.2)] and

permuting the indices in Eq. (B7) results in
Vige==2 Cija =Cois =Ciat) , (B8)

where use has been made of the antisymmetry
properties of the C’s (Cy;; =—C,,;) and the ¥’s
(Yij2=-7;1)- Equation (B8) is the desired result
and gives the spin coefficients through the inverted
form of Eq. (B1), which is

=3y 124~ Y344y A= Vs P =V 13

a=
B=2(V15=Y3a3)s K= Yoz 0 =7%133
y= (B9)

1
3V 122 Yaa2)y V= =Y2420 T =V 130
1 _ _

=30V 21~ Yaa1)y T=~Yoa1, K=Vy5;-

The use of Egs. (B6), (B8), and (B9) in conjunction
is highly recommended as a labor-saving scheme
for computing the spin coefficients.

The reader who wishes to apply Egs. (5.5) and
(5.6) to new space-times will also require an
understanding of the principal directions of the
Weyl tensor (see, e.g., Refs. 7, 47, or 48) in
order to align the tetrad vector /; the remaining
tetrad elements are chosen to satisfy the quasi-
orthonormal conditions l*n=-1, m*m=1, all other
scalar products vanish.

*Work supported in part by the U. S. Atomic Energy
Commission under Grant No. 3071T.
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