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The field equations of general relativity with spin and torsion (U, theory) are considered to describe
correctly the gravitational properties of matter on a microphysical level. By an averaging procedure one
arrives at a macroscopic field equation, which under normal matter densities coincides with Einstein’s
equation of conventional general relativity. For very high matter densities, even if the spins are
randomly distributed, Einstein’s equation breaks down and U, theory must be applied. It is shown how
the singularity theorems of Penrose and Hawking must be modified to apply in U, theory. All known
cosmological models in U, theory which prevent singularities are shown to violate an energy condition

of a singularity theorem.

1. U, THEORY AND ITS MACROSCOPIC AVERAGE

General relativity with spin and torsion (U, the-
ory)! is as consistent with experiment as conven-
tional general relativity (GR), because present
technology does not suffice to distinguish between
the predictions of the two theories. Therefore, U,
theory must be considered seriously as an alterna-
tive. (For reviews see, e.g., Ref. 2.)

In U, theory, spacetime is described by a non-
Riemannian geometry. The non-Riemannian part
of the affine connection, or torsion tensor S;;*
=Ty (4,7,...=0,1,2,3; square brackets denote
antisymmetrization), is linked with the spin angu-
lar momentum of matter 7, j’. The field equations
of U, theory are

Ri;- 38Ry =kZ,;, (1)

Si*+87S;" = 858, =k, %, (2)
where % is the relativistic gravitational constant,
6] the Kronecker delta, g;; the metric tensor with
signature (+, —, —, =), R;;=R,;,", and R,;,’ the
curvature tensor of the Riemann-Cartan connec-
tion

FJ:{{%} +Si:‘k‘51ki+5km (3)

and {}} is the Christoffel symbol of the metric.
=¥ and 7,;* are the canonical energy-momentum
and spin angular momentum tensors of matter,
respectively.®

If one substitutes (2) in (1), after some computa-
tion one arrives at the combined field equation'®
which has a pseudo-Einsteinian form:

RY{ D - zg"R*{ D=k5", (4)

o =0t k(47 Ty = 2T TR i,
L4] k ! k1
+387 (4T, T v T Tma)], (5)

where { } means that the quantities have been
computed from the Riemannian part, {}}, of the
affine connection and are the same as in general
relativity. The combined enevgy-momentum ten-
sor &'/ on the right-hand side, however, contains
spin correction terms implicitly in o'’ and ex-
plicitly in the bracket; these terms are not present
in GR. o' is the metric (and symmetric) energy-
momentum tensor defined according to Hilbert’s
variational prescription familiar from ordinary
general relativity.

There are several alternative ways'®*™® of
splitting up &/ in (4). For example, it is possible
to introduce on the right-hand side of (4) the can-
onical instead of the meiric energy-momentum
tensor according to the prescription

o = T itk ki g pid) (6)

Here Vi=V,+2S,', where V, is the covariant
derivative with respect to the affine connection
ri,.

It is crucial to note that spin in U, theory is
canonical spin, that is, the in/rinsic spin of el-
ementary particles, not the so-called spin of gal-
axies or planets. (Kopczynski’ takes a different
point of view.)

In the microscopic domain of matter, (4) and
(5) should be valid. But the quantities o*/ and 7,;;*
are microscopically fluctuating. Therefore, in
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order to obtain an equation for bulk matter, one
should compute a spacetime average of (4) and

(5), just as one does in deriving the macroscopic
Maxwell equations. This means that an “infinites-
imal” volume element must contain a large number
of atoms or elementary particles. Usually, the
average of the spin and the spin gradient will
vanish, but the same will not be true for the spin-
squared terms in (5). [For example, the last
term in (5), which is locally isotropic in a geo-
desic coordinate frame with respect to the Chris-
toffel symbols {f;} does not vanish.] Thus, after
averaging, one obtains a result like

<6,ij> = <o,ij> +k<*é‘g“Tm“ Tm“>
+ spin terms of the same order of magnitude.
(7

That is, even for macroscopically vanishing spin,
we do not recover exactly Einstein’s field equa-
tion. Rather, we get an energy-momentum tensor
corrected by spin-squared terms which are neg-
ligible at normal matter densities (see Sec. II).
We claim that the field equations (1) and (2) or
the combined field equation (4) are, at a classical
level, the correct microscopic gravitational field
equations. Einstein’s field equation ought to be
considered a macroscopic phenomenological equa-
tion of limited validity, obtained by averaging
Eq. (4). Thus, we would propose that U, theory
is a more natural starting point for a quantization
program. The final word on U, theory must come
from experiment, of course.

II. CRITICAL MASS DENSITY AND
SIMPLE COSMOLOGICAL MODELS

We would like to get some feeling for the mag-
nitude of the effects involved in macrophysics.
We use a semiclassical model of a spin fluid.®
Let the momentum density of the fluid be p;, its
spin density be s;;, and its pressure be II, and
let its elements be moving with 4-velocity u*. We
assume that the momentum density and the spin
density are transported with the velocity u®., We
obtain the energy-momentum tensor and the spin
tensor by going over from a momentary rest sys-
tem of a fluid element to an arbitrary moving
system:

Z=(pyc +Nu)u’ - 6311, (8)
Tt =5, u", (9a)
s;u' =0, (9b)

For cqnvenience, we drop the averaging signs
on (Z,/) and (7,;*), but bear in mind that all equa-
tions which follow are macroscopic ones.

The identification of the convective energy-
momentum and spin angular momentum tensors
on the right-hand sides of (8) and (9a) with the
corresponding canonical ones is by no means
trivial. It is suggested by the fact that their re-
spective conservation theorems look alike, but a
final proof can only be given by establishing a
Lagrangian formulation for a semiclassical spin
fluid.

If we define the rest mass density p =p,u* and
the square of the spin s*=2s;5", we get for the
combined energy-momentum tensor, from (5),
(6), (8), (9), and angular momentum conserva-
tion, *'¢

&' = (pc? +11 - kes*)u'u’ - (I - the?s®)g
~ 2c(ut +64) V] Hs ), (10)

where V{1 is the covariant derivative correspond-
ing to the Christoffel connection. The combined
rest energy density producing the metric field
then turns out to be

c'r”uiu,=pcz—%kczsz+2c's“v[{i}u”. (11)

Note that Vg,’}u,], the curl of the velocity, is an
exterior derivative, independent of the connec-
tion. The last term may also be written in the
form 2cu,Vi's ™,

As an example let us suppose the spin fluid con-
sists of neutrons with mass m and spin 3% As
noted above, we must imagine that the “infinites-
imal” volume element of the fluid already con-
tains many neutrons. The particle number density
is

n=%=(s2/ﬁ2)”2. (12)

Observe that (12) is valid whether or not the spins
of the neutrons are aligned. In the rest system

of a fluid element, with the help of (11) and (12),
we get the estimate

7°=pc?[1 - (p/p)]+5 - curl¥, (13a)
where

S -3

p-kh_z~10 gem™3, (13b)

§ is the spin 3-vector, and V is the fluid 3-veloc-
ity. The last term in (13a) vanishes for a spin
fluid without vorticity and also vanishes wherever
the spin-density fluctuates over a shorter char-
acteristic length than the local fluid vorticity.
This term may dominate in cosmological models
with both aligned spins and vorticity.

Depending on the equation of state Il =II(p), Eq.
(13a) tells us that beyond the huge matter density
p gravitational behavior of macroscopic matter is
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heavily influenced by spin terms, * if general rel-
ativity works at all under such hypothetical cir-
cumstances. This is consistent with a result of
Kerlick, ® who has shown that for neutron stars
(where p «< p) the effects of torsion are totally
negligible.

Extremely high matter densities may have been
present in the early stages of the universe. For
this reason, Kopczynski, '°7 Trautman, ! Stewart
and Hdjicek,'* Tafel,'® von der Heyde,® and Ker-
lick' have worked out different cosmological
models incorporating torsion. These models did
not develop singularities when the spins of matter
were assumed to be aligned and pressure was
neglected. According to our arguments in Sec. I
above, it is not necessary to assume alignment
of the spins, since the spin-square terms which
prevent the singularity do not vanish even for
randomly directed spins. Models with pressure’
are of no particular interest if we assume the
usual equation of state for collapsing nuclear
matter, because the pressure becomes negligible
at the high temperatures near the big bang. The
nonsingular models without pressure all have a
maximum matter density of the order of p esti-
mated in (13).

Why is it possible to prevent singularities from
occurring in U, theory? We would like to have a
general criterion rather than to rely on specific
cosmological models.®

III. VIOLATION OF AN ENERGY CONDITION IN
NONSINGULAR COSMOLOGIES WITH TORSION

The singularity theorems of Penrose and Hawk-
ing'® show that under very general assumptions
singularities cannot be prevented in general rela-
tivity. These theorems can be extended to U,
theory very easily, as the following discussion
will show.

It is convenient to consider three classes of
curves in a U, manifold:

Autoparallels @ (straightest lines) are curves
along which the tangent vector to the curve is
transported parallel to itself, under the transport
law associated with the connection I'},.

Geodesics § (shortest or longest lines) are
curves of extremal length according to the metric
tensor g;;. They are also curves whose tangent
vector is transported parallelly according to the
transport law of the Christoffel connection {};}.

Trajectories T are the paths of particles with
or without spin, and are in general neither @ nor
S but must be derived from the field equations or
conservation laws,

Spinless massive particles travel along time-
like §. This can be derived from the conservation

laws in U, theory. Photons travel along null §,
since Maxwell’s vacuum field equations are the
same as in general relativity. This means that
neither spinless particles nor photons feel or
produce torsion. The causal structure of a U,
manifold is the same as a Riemannian one. Thus,
timelike or null geodesic incompleteness is as
valid a criterion for singularities in manifolds
with torsion as in manifolds which are torsion-
free.

Now, the pseudo-Einsteinian form of Eq. (4)
allows us to generalize the singularity theorems
by substituting the combined energy-momentum
'/ for the canonical energy-momentum tensor
of general relativity. That is

(3Y - 3875 ¢,£,2 0 (14)
for all timelike vectors &', Thus, U, theory intro-
duces a different energy-momentum tensor of
matter into the singularity theorems (see also
Ref. 17).

The left-hand side of (14), using the velocity

vector ', can be calculated easily from (11) and
the trace of (10). It turns out to be

(6% - 3875 Yugu ;= zpc® + 310
— $kc?s? +2cs ”V?,}u” . (15)
The cited cosmological models which prevent

singularities have all been constructed from the
matter tensors (8) and (9) or specializations
therefrom. Since (15) is a consequence of (8)
and (9), it applies to all these models. Further-
more, in the models in question, the last term of
(15) vanishes, and the spin squared and the mass

density depend upon the age of the universe. As
soon as the spin density reaches a value such that

pc? +3M(p) <kc’s?, (16)

(15) becomes negative. For the spin fluid of
these cosmological models, spin is proportional
to the matter density in the same way as in (12),
basically as a consequence of the angular momen-
tum theorem.® Thus, (15) becomes negative at
the critical density p, when we neglect the pres-
sure.

Consequently, we are able to understand the
possible prevention of singularities in U, theory
from a unified point of view. Let us collect these
results in the following proposition.

Proposition. The singularity theorem of Hawk-
ing and Penrose in Ref. 16 (p. 266) applies to U,
theory upon the substitution

O‘u({ }) - Gy
(energy-momentum (combined energy-momentum
tensor of GR) tensor of U, theory).

am
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If the quantity (5'/ - 3g'/5,”) £, £, becomes negative
for any timelike unit vector &', the energy condi-
tion is violated and a singularity may be prevent-
ed.

The question of the singularity behavior of cos-
mological models in U, theory has now changed
from geometrical reasoning to a question about
ihe behavior of matter, and in particular its
combined energy-momentum tensor at very high
densities. It could well be that in the models
above, singularities are prevented because a
semiclassical description of matter is used which
is not appropriate under those circumstances.

Given the combined energy-momentum tensor
of matter, the proposition above will tell us

whether singularities may be prevented in U,
theory. Thus, future investigations will have to
concentrate on finding the combined energy-mo-
mentum tensor of matter near the big bang.
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