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as ~r* ~- ~. If R, are unstable solutions we have
from (18)

-(d 8, — q2 + U, A, =0.& A, (21)

Therefore,

~A,
+V, ~ft, ~',

(22)

since, by the exponential decay of R, for large
~

r" ~, no boundary terms survive in the integration
by parts. From (22) it follows that uP is real and
therefore (by the instability assumption) that &u is
purely imaginary. However, ~'&0 is clearly im-
possible if U, and U are non-negative functions
of r in the range x, ~r «~. By stra. ightforward

algebra one can show that U, and U are indeed
non-negative [on (r„~)j for each value of L & 2
and for all e and m such that

~
e

~

&m. Consequently
the assumption of unstable normal-mode solutions
obeying the specified boundary conditions leads to
a contradiction.

A similar a,nalysis can be given for the I.=1
modes in which only electromagnetic radiation
can occur. The I.= 0 perturbations are spherically
symmetric and thus are tangent to the Heissner-
Nordstro*m family of solutions. They merely allow
for small changes of the charge and mass parame-
ters.
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Electromagnetic scattering from a black hole anti the glory effect*
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The scattering of electromagnetic radiation by a black hole is discussed and further results on this
problem are presented. It is shown that the backward glory effect is absent in the Schwarzschild field
as well as in the Kerr case when plane electromagnetic waves are incident along the axis of symmetry
of the field. A cosmological distribution of Kerr black holes could result in the polarization of the
cosmic background radiation for which a crude estimate is given.

I. INTRODUCTION

Evidence for the existence of a black hole may
be obtained through the detection of electromagnet-
ic radiation that is scattered from it, Though opti-
cal means are not very promising at present, the
scattering problem is of interest since a collapsed
object that is not accreting fresh matter scatters
radiation merely by its gravitational field. This
problem has been partially analyzed in a previous

publication. ' The purpose of this paper is to ex-
tend that analysis, to show that the backward glory
effect is absent in the Schwarzschild field, and to
give an estimate of the effect of a cosmological
distribution of black holes on the polarization of
the background radiation.

It has been shown' that the electromagnetic field
equations can be cast into the form of Maxwell's
equations in flat spacetime but in a "medium" with
dielectric and permeability tensors' (e.„.) and (g,, ),
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and a gravitational vector potential G, where

~aj =&o
As+ =Azz, —— .

&
(1+cos&)Q(gk, cos&),

1
(8)

ij
= -(-g)"'

goo

&oo
(2)

The constitutive relations of the medium are then

Ei —(Q x H)i,

B;= y, ;, H) + (Q x E)( .
(2)

(4)

The Maxwell's equations can then be written in the
form

II. SCHWARZSCHILD BLACK HOLE

I.et A be the scattering matrix for plane electro-
magnetic waves in the field of an uncharged black
hole. It has been shown' that this matrix is diag-
onal in the circular polarization basis. That is,
as referred to local polarization bases, an incident
right circularly polarized wave is scattered into
an outgoing right circularly polarized wave, and
similarly for left circularly polarized radiation.
A» and A~~ are the corresponding amplitudes for
these processes. For a Schmarzschild black hole

8
—. Vx F =—S+4mg,i Bt

V 5=4sp, (6)

where F is the Kramers vector F =E+fH and 5 is
given by

ss ='u +i +'(Q" F)r ~

The conformal invariance of Maxwell's equations
is made manifest in this formulation. Indeed, it
can easily be seen' that experiments using electro-
magnetic waves can determine the metric only up
to a conformal factor.

This method of treating electromagnetic phenom-
ena is of interest since, besides its explicit con-
formal invariance, methods familiar from the flat-
spacetime theory can be easily adapted to the
curved spacetime of Einstein's theory. Hence it
can be shown' that no double refraction can occur
in a gravitational field. The problem of the dis-
persion of electromagnetic waves in a gravitational
field becomes tractable as mell. ' Another result
on the glory effect will be given in the present
paper. The spherical symmetry of the Schmarz-
schild field and the axial symmetry of the Kerr
field lead to the conclusion that the backward glory
effect is absent in the Schmarzschild case and also
for electromagnetic waves incident on a Kerr black
hole along its axis of rotation.

Q = P (28+ 1)[A~'"exp(2i&~) —1]Q~ (cos&) . (9)

The differential scattering cross section is then

dG

» (1+cos&)'
~
Q(', (10)

and the absorption cross section is given by

o„,= vk 'Q (24+1)(1-R~).

In these formulas 4' is the wave number, p, is the
mass of the black hole, and 6) is the angle between
the incident and outgoing propagation vectors.
Qz (z), Z = 1, 2, . . . , are polynomials of degree 4 —1
and are completely determined by the requirements
that Q~(1) =1 and

r (1 +&)'Q~(&)Q~ (&)« = 4~
-1

J' J' 2g 1
J' J (12)
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PEG. 1. Plot of the reflection coefficient Rz, J=1,2,
for the scattering of the 2~-pole radiation from a
Schmarzschild black hole vs the product of the mass
of the black hole and the frequency of radiation.

A~ and 6~ are the reflection coefficient and the
phase shift for a spherical wave of angular mo-
mentum J, respectively. Approximate formulas
can be deduced for these functions" but exact ex-
pressions are not available. Thus their depen-
dence on the frequency of the wave has been de-
termined numerically. Figure 1 gives A~ as a
function of p. 4' for 4=1, 2. Similar graphs for ~~
are presented in Fig. 2. More details on A~ and

~J are given in the Appendix. It can easily be seen
that the polarization properties of an incident plane
wave are unaffected by passing through the gravita-
tional field of the Schmarzschild black hole.

It follows from the Appendix that both the for-
mard differential scattering cross section and &,«
are divergent due to the long-range gravitational
interaction between the wave and the black hole.
A mell-known property of a black body is that for
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FIG. 2. Plot of the phase shift 6z, J =1,2, for the
scattering of the 2~-pole radiation from a Schwarzschjjd
black hole vs the product of the mass of the black hole
and the frequency of radiation.

, o,«-o,b, . This is not the case for a black
hole, however, since for &p» 1y abs =27&&

The analysis of null geodesics in the Schwarz-
schild field has revealed the possible existence of
the glory effect in black-hole physics. ' That is,
when electromagnetic waves are incident on a
Schwarzschild black hole, the (classical) differ-
ential scattering cross section is infinite in the
backward direction. In this approach the back-
seattered rays can be thought of as coming from
"rings of brightness" located at' 5/p—3"', =0.151,
0.00028, . . . , where 6 is the impact parameter.
These correspond to rays that take a m, 3m, . . .
loop around a black hole and return to the source.
Each of the branches makes two equal contribu-
tions to the classical differential cross section
when 6) is very close to r. These contributions in-
terfere, however, in the wave picture. ' lt can be
shown that the backseattered waves should inter-
fere destructively so that there is no backward
glory effect. In fa,ct d&,«/dQ =0 for 8= rr accord-
ing to the wave picture. This ean be seen using a
theorem' in classical electromagnetic theory
which states that if the scatterer is rotationally
symmetric about the axis of incidence of the plane
wave, then the diagonal elements of the scattering
matrix (in the circular polarization basis) are zero
in the backward direction and the off-diagonal ele-
ments are zero in the forward direction. The re-
sult can be applied to the scattering by a black
hole since the gravitational field can be replaced
by a scattering (and absorbing) "medium" in flat
spacetime. This conclusion can easily be drawn
from the photon picture as well since the rotation-
al symmetry of the scatterer about the axis of in-
cidence implies the conservation of angular mo-
mentum about this axis. Thus, the helicity of the
backscattered photon should be opposite to that of
the incident circularly polarized photon. This

contradicts the fact that helicity is conserved in
black-ho1. e scattering. Hence the amplitude for
backscattering is zero.

III. KERR BLACK HOLE

1-
—. V —~G x F = -2~&A F
2

where P2 and G are given in Schwarzschild isotropic
coordinates by

"(+)= (++ P ) /+ (+ — 0),

G(r) =2
&(&-k~ '

(15)

Here & & 1 has the interpretation of the index of
refraction for the Schwarzschild field. It diverges
at the stationary limit and n-1 as r-~. The vec-
tor potential also diverges at the stationary limit
but for r» p. it assumes the familiar form

g 2JeH"'' r3

Thus, to first order in a/p, the photon interacts
with a "gravitational magnetic field" which is pro-
duced by the "gravitational magnetic dipole mo-
ment" (due to the "mass current") of the rotating
black hole. It follows that photons of opposite ini-
tial helicities are scattered differently in the Kerr
field. This is to be compared with the fact that
there is a spin-spin part to the interaction of a
test particle of internal angular momentum J
with a black hole which to lowest order in &/p. is
of the tensor type'"

& '[3(Ja„r)(J.r) -r'Ja„~ Jj.
The polarizing property of a Kerr black hole is
probably maintained for very low frequencies

It is of interest to consider the possible influ-
ence of black holes on the polarization properties

The scattering amplitude matrix is diagonal in
the Kerr case, and thus when plane waves are in-
cident along the rotation axis of the black hole the
differential cross section is zero in the backward
direction. The diagonal elements are not equal in
general and this leads to the result that the polar-
ization properties of the incident wave are affected
by the black hole. ' For an unpolarized incident
plane wave, the final polarization is given by

lA~„ l

' —lAI. ~ l

'
IAR„ l'+ lA~~ l

which is proportional to a/g, where Js„=ga is the
angular momentum of the black hole. When a«p. ,
Eq. (5) for waves of frequency ~ = k can be written
to first order in a/g in the Kerr field as
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of the microwave background radiation. After the
recombination era when the radiation decouples
from matter, its polarization properties could be
affected by the gravitational field of black boles.
Let us assume that initially unpolarized radiation
undergoes single scattering by Kerr black holes
and is then incident on a polarimeter. Let
A»(k~, k;) be the amplitude for scattering of a
right circularly polarized plane wave incident on
a Kerr black hole in the k, (e„@,) direction and
received in the k~ (6&, @z) direction by the polarim-
eter. The coordinate system is chosen such that
6) is measured from the rotation axis of the black
hole. A similar definition holds for A«(kz, k;).
For a g'iven 4z, the degree of circular polarization
of the observed radiation is given by"

TO

P(u, k~) = ~ p( ~ A» ~

' +
~ A~ I, ] ')N(T, kg)«d 0;,

T

(18)

where P is given by (13) and h' is the density of
black holes which are assumed to be identical and
rotating in the same direction. The integrations
in (18) are to be carried out over the incident di-
rection and the cosmic time from the recombina-
tion era to the present. The scattering amplitudes
(and hence P) in (18) are functions of the frequency
~ = [1+z(T)]~0, where & is the red shift and ~o the
observed frequency of the radiation.

A crude estimate of the importance of P for
black holes of mass p. can be obtained by consider-
ing 5 =—4sg' f oN«since for uriJ. » 1 the scatter-
ing cross section is proportional to y. '. For a uni-
forru spatial distribution of black holes of density
close to the present critical density and using the
cosmologieally flat Einstein-de Sitter model we
find that 6 is given by

the primeval radiation. The present experimental
upper limit on the degree of linear polarization of
the background radiation at a wavelength of 3.2 cm
is' -6 &10 '. It should be borne in mind, however,
that the galaxy probably makes a contribution to
this measurement of polarization. "

In the simple Rees model the polarization of the
Rayleigh-Jeans part of the background radiation
spectrum is independent of frequency. This pro-
vides a test for the model. It is therefore of in-
terest to have experimental determination of the
dispersion of polarization of the background radi-
ation.
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APPENDIX

The reflection coefficient 8» and the phase shift
6» are defined for the scattering of the 2 -pole
radiation from a Schwarzschild black hole. It can
be shown' that the scattering problem is reduced
to the one-dimensional equation

~, +(k' —U)/=0, (A1)

wltIl

J(4+1) 2p
'

y

and
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for valuable discussions and Professor F. S. Craw-
ford for helpful communication. I am greatly in-
debted to Philip Marcus for his assistance in
carrying out the numerical work reported in this
paper. Part of this work was done while the au-
thor was at Arya-Mehr University, Tehran, Iran.

5=pH [(1+as)"'—1]. (18)

Thus ~ increases linearly with p. and for s„-10'
and p. -10'M -10"M we get 5=0 5&10 '0-
0.5 &&10 '. The smallness of ~ indicates that the
effect of black holes on the polarization of the back-
ground radiation is probably negligible, though it
is difficult at present to draw definite conclusions
about the effect of a cosmological distribution of
collapsed objects. Thus, the possible existence
of this polarizing (or depolarizing, if the radiation
is initially polarized) effect should be kept in mind.

There are other processes which couM lead to a
polarization of the background radiation. Espec-
ial1y attractive is the suggestion by Rees" that
anisotropic expansion of the universe before the
radiation was last scattered would lead to temper-
ature anisotropy which on repeated Thomson scat-
tering could result in the linear polarization of

rx=r+2p. ln ——1 +c,
2p

where c is a constant. The scattering amplitude
is then defined to be -(-1)~A~'" exp(2ic~) for c =0.
The presence of c t0 has no measurable effect on
the cross section for plane electromagnetic
waves. " If &-&+c, &» - 0» +Ac and R» does not
change. It is simple to prove that if & w-l,

(A2)

Therefore, for 0& 6 & n,

(1 + eos 6))Q

=(1+cos&)g (28+1)A~"'exp(2io~)QI(cos& );
» —1,

(A3)
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hence x- x+c implies that (1+cose)Q is only multi-
plied by a phase factor exp(2ikc} and so the differ-
ential scattering cross section is independent of c.

It is of interest to investigate the behavior of 5~
in the classical limit for J» kp. » 1. Let Q
= (1 —2p, /&)"'g then

42+— 2p,

r

(A4)

and for a beam of photons (r» p, ) this equation re-
duces to

This is similar to the radial wave equation for the
Coulomb problem. ~4 Hence the phase shift for J'
» 4'p. » 1 is given by

5&=q~ + 2k' ln(4k' ) .

where the Coulomb phase shift q~ = -2k', ln( J+—', )
in this case. It is now simple to derive the Ruther-
ford formula for the classical small-angle scat-
tering. It is easily seen" that most of the contri-
bution to the sum in (9) comes from the values of
4 near J» J,+ & =4k'. , '6}. Then the scattering am-
plitude turns out to be

-(4p /6') exp(is),

with

s = 4kiJ. (1+in&) .
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