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The multiplicity distributions from high-energy pp collisions are analyzed using a Poisson-type
distribution which has two input parameters expressed in terms of the measures of the average

multiplicity and the width parameter. A discussion is presented on its statistical and physical properties,
as well as the mechanism of meson interaction in analogy with the photon statistics due to Scully and

Lamb.

One of the salient features of the multiparticle
production from high-energy hadron collisions is
that the multiplicity distribution appears to be of
the Poisson type. This is observed by plotting
log(n!o„) against n, o„being the cross section
for the multiplicity n. ' lt has been noticed that
the plot is close to a straight line; the latter is to
be expected in the case of a Poisson distribution.

In this paper me present results of a further
analysis of multiplicity distributions using the
following probability distribution for n particles:

+ft

(n+p)! '&n =&

mhere n and P are tmo input parameters to be
determined in the folloming, and N is the normal-
ization constant. We note that this distribution
reduces to Poisson's law in the case P=0.

We are led to consider this distribution because
of its specific properties, statistical as well as
physical. First, we note that the parameters
n and P can easily be expressed in terms of the
measures of the first and second moments of the
experimental distribution (cf. infra). This enables
us to analyze the data without any free paramet-
er ization. Such a procedure is statistically more
meaningful than the usual least-squares method.
In this regard, we note that mith our method the
conditions imposed by the moments on the param-
eters are identically satisfied a priori. Next,
from the physics point of viem, we note that this
kind of Poisson-type distribution has been derived

by Scully and Lamb for the photon statistics in
their quantum theory of a maser. ' Thus the
physics underlying such a distribution is well
known. We may interpret its departure from
Poisson's law, which, as is well known, holds
only for particles in a coherent state. '

We proceed to outline some properties of the
probability function under consideration. From
(1) we obtain for the average multiplicity

~n
n=O

is the total inelastic cross section. Since o,/v, .„„
&1, we note that ~& P.

As for the second moment, we find

( n-') = a + (n -p)' + (o.-p)e .

From (2) and (4) we deduce the width parameter
f, =(n(n-1)) -(n)' as follows:

f, = p e(a p+1)--e'.-

(4)

(n) = Q np„=(n-p)+e,
n= 0

where e =&&p/p! . Note that for n =0 we have p,
=N/P!, which represents the percentage of zero-
multiplicity events. Therefore we may express e
in terms of experimental cross sections as
follows:

e = poo/oinei

where
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Solving for u and P from (4) and (5), we obtain

n =(I+a)(n)+f, , P=f, +(1+ (n) )~,

where c is given by (3).
In order to simplify the computation, we note

that if we drop z in the above equations we have
for the first approximation n = (n) +f, and P= f, .
As f, is rather small according to the experi-
mental data, we write

e =f,cr,/o~„.
In this way, me simplify considerably the compu-
tations of o. and P. The validity of the approxi-
mation thus made will be justified a posteriori
by the consistency tests which mill be discussed
in detail afterwards.

We now proceed to analyze the multiplicity dis-
tributions from high-energy PP collisions. We
shall use the currently available data ranging from
303 to 39 GeV/c, ' ' and limit ourselves to the
negative prongs only. The characteristics of these
experiments are listed in Table I. For each set
of these data we compute e using (7), then u and
(1 by (5). The fits are performed by requiring
that the total inelastic cross section of the fitted
distribution be the same as that of the experi. -
mental value a,) as listed in Table I. This
amounts to multiplying (1) by cr „/X, X being the
normalization factor. The fitted curves are shown
in Fig. 1. The values of e, cr, P, o. „/N, and
X'/point are presented in Table I.

A comparison of the fitted curves mith the histo-
grams and an inspection of the values of y'/point
in Table I indicate that the fits we have obtained
without free parameters are indeed very satis-
factory.

As for self-consistency tests, me have evaluated
the average multiplicity (n) and the width pa-

rameter f, from the fitted distributions; we should
find the same values as the input ones computed
from the experimental data. For a further check,
we have also computed the third moment p, The
values thus obtained are listed in Table I. The
plots in Fig. 2 show the comparison of these
computed values with those from the experimental
data. The fact that all points lie very close to the
bisector verifies that the probability function (1)
here considered is indeed adequate and that our
method of analysis with no free parameterization
as well as our approximation as regards the
computation of c by (7) are both valid.

It is interesting to note that the scale factors
(see Table I) are practically constant for P,„
above 50 GeV/c; this behavior may be regarded
as the scaling property of the high-energy in-
elastic interaction.

It should be mentioned that the correction terms
involving e, although small in general, are essen-
tial for a faithful reproduction of moments higher
than the first order. We have investigated this
point by refitting the data with e = 0 and found
that although the values of (n) are not affected
much, both f, and p, , deviate significantly, as
much as 50%, from the expected values of the
experimental data.

Finally, we mention that if we treat o. and P as
free parameters and try to fit the multiplicity dis-
tributions with (1), we find that the estimates of
n and P thus obtained are consistent, within
statistical errors, with the values computed from
expressions (6}.

We nom turn to the physics content as revealed
by the multiplicity distributions which me have
analyzed using the probability function (1). For
this purpose, we use the analogy with the photon
distribution given by the theory of Scully and

TABLE I. Experimental data and results of analysis. e is a correction term for n and P;
see Eq. {9). f2 and p are input parameters for fits; see Eqs. {7) and {8).

P;„{GeV/c) 205 102

Experimental

50

o;„,) {mb)
0)

f2
Pg

31 ~ 80~ 0.79
3.43 + 0.06
1.37+ 0.59

96.7 + 1.7

32.70+ 1.20 32.79 + 1.50 31.32 + 0.31
2.83~0.08 2.19+0.07 1.96*0.02
0.94 + 0.21 0.33 + 0.10 0.12 + 0.06

58.8 ~1.7 29.6 ~1.0 21.7 ~0.2
Characteristics of fits

31.12 ~ 0.93 27.82+ 0.71
1.68*0.04 1.27 ~ 0.03

-0.04 + 0.12 -0.21 + 0.09
14.3 ~0.4 6.8 ~0.2

P
Scale factor
X'/point

f2
P,3

0.075
5.04
1.64

10.5
1.9
3.49
1.14

96.7

0.111
4.17
1.43
8.0
1.3
2, 87
0.84

60.0

0.046
2.62
0.48
8.5
0.5
2.20
0.24

29.2

0.019
2.12
0.18
7.2
2.3
1.96
0.09

21.7

-0.008
l.63

-0.06
5.3
1.8
1.67

—0.04
14.4

-0.062
1.67

-0.31

1.2
1.22

-0.17
6.5
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FIG. 1. Comparison of fits with experimental multiplicity distributions from pp collisions. The parameters and the
characteristics of the fits are listed in Table I.

(A'/aC)"
(n+ A/B)! (8)

which is formally identical with (l). We refer to
Ref. 2 for the derivation of (8), and recall that
A. , B, C are three coefficients characterizing
the transitions between neighboring states of n
and n+ 1 particles. They are as follows: A and
C are related to the emission and absorption of a
single particle, whereas B corresponds to a
double transition with an emission followed by an

Lamb. ' According to their result, the probability
for observing n particles is

absorption of one particle; this transition plays
the role of a damping.

The important point is that the distribution (8),
although originally derived on the basis of the
quantum electrodynamics, is indeed very general
and holds also for other kinds of interactions
proceeding through the similar transitions spec-
ified by three coefficients A, B, and C. This is
because, as pointed out by Scully and Lamb, ' this
distribution can be obtained in a straightforward
way by applying the detailed balance to the tran-
sitions between two neighboring states described
above.
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FIG. 2. Consistency tests for (n), f2, and p. 3. The values are listed in Table I.
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Thus, if we assume that the mechanism of
meson interaction proceeds through such tran-
sitions between neighboring states of n and na 1

mesons as is described by the theory of Scully and

Lamb, ' we obtain, pyggtgtis mgtandis, for the me-
son multiplicity distribution the same expression
as for the photon distribution (8). We may ex-
press the parameters o. and P, characteristics
of our meson multiplicity distribution (1), in
terms of the coefficients A, C, and B of the theory
of Scully and Lamb. ' For this purpose, we com-
pare (1) with (8) and find

Now we can interpret the physical meaning of
the distribution (1). Recalling that f2= p, we note
that the multiplicity distribution would be reduced
to Poisson's law, if B-~; this means no damping.
Clearly, P must be positive-definite. In this
regard we note that in Table I there are some
negative values for P; however, this should not be
taken literally, since all the P's would be positive
if instead of negative secondaries only, we con-
sidered both positive and negative prongs. We
refer to a previous paper for a discussion on this
point. '

Consider now the average multiplicity (n) = a-P;
we find

(10)

First, we note that A must be greater than C; this

indicates that in the second-order process the
creation dominates the annihilation of a meson.
Next, we note that the same damping factor A/B
appears also in the expression for (n). This may
remind us of the bremsstrahlung process of me-
son production. " However, we have to bear in
mind that the damping mechanism in the theory of
Scully and Lamb' is of a different nature; it is
due to the nonlinear gain. Note that the condition
mentioned before for observing a Poisson dis-
tribution, namely 8 =~, leads to a self-contra-
dictory result, because then (n) =0. This rules
out the Poisson distribution, which describes
idealistic processes without random fluctuations.

To sum up, guided by the analogy with the photon
statistics, we tentatively interpret the deviation
of multiplicity distributions from Poisson's law
as due to a damping characterized by the factor
A(B, its effect being to translate the number of
particles n by an amount P =B/A =f, and (n) to
(n) + f, It would be interesting to investigate
whether the analogy we have invoked also has
applications for other problems of multiparticle
production.

Finally, we note that although the distribution
(1) has the specific properties discussed above,
it does not satisfy the semi-inclusive scaling
postulated by Koba, Nielsen, and Olesen ii and
that it cannot be decomposed into two parts to fit
within the framework of a two-component model. '-*
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Assuming 0, = (n) + f2 and P = f2, we may expand {1)as
follows:

P„=&, - 1+f& —g{n+ 1)n! (n)

where g{x)= {d/dx) lnl"(x) denotes the digamxna f'unc-

tion. Clearly, the first part represents a pure Poisson
distribution. However, the second part in brackets
has no physical meaning because it has no definite sign
unless (n) is less than 0.48.
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Scalar contribution to the e+e annihilation in asymptotically free theories*
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The neutral scalar mesons are incorporated into the asymptotically free theories to see if this can

explain the experimental approach of the e+e total cross section to its possible scaling limit. The
corresponding fourth-order vacuum polarizations are calculated. The scalar contributions are found to be
unable to explain the experiments as the limiting behavior in the semiasymptotic region.

Recently much attention has been given to the
asymptotically free theories which exhibit Bjorken
scaling in the deep Euclidean region. " In these
theories the effective couplings vanish asymptot-
ically and scaling is attained up to logarithmic
corrections, which are explicitly calculable from
the perturbation expansion. Of particular interest
is the e'e annihilation cross section into hadrons,
where the leading term is scale-invariant and the
correction depends only on the group structure of
the theory. ' Unfortunately, the calculation indi-
cates an approach to the scaling limit from above,
while experimental cross sections are still rising. '

The purpose of this paper is to see if this dif-
ficulty can be overcome by the incorporation of
scalar mesons into the theory. Let us consider
a non-Abelian gauge theory of the strong inter-
actions which involves a number of fermion mul-
tiplets and scalar multiplets, limited in number
to preserve asymptotic freedom. Assuming the
strong gauge group to be electrically neutral, we
require that it commutes with the gauge group
of the weak and electromagnetic interactions.
Hence, the scalar mesons are neutral scalar
gluons. Since we have scalar mesons in the theory
we are led to the study of renormalimation-group
equations with three coupling constants: the strong
gauge coupling g, the scalar self-coupling A., and
the Yukawa coupling G. The equations for the
effective coupling constants X, g, and 6 are'

dX
+a,A. g'+ asg'+a4C'+ a,XG'

dg' 4

dt
= -bg + higher-order terms 7 (tb)

dG'
=c G'+c G'g'+c G'X'

+ higher-order terms. (1c)

a,=,(N, +8),
1

b =,[a (227 —87, —8,)] .
1 1

1
c~= 1«2b~+2&2+ ~3&

Higher-order terms can be obtained from higher-
order perturbation calculations. However, we do
not need them because the origin in the three-
dimensional coupling-constant space is an ultra-
violet-stable fixed point and they are not dominant
in the asymptotic limit. The various coefficients
a„b, c; can be calculated from the relevant Feyn-
man diagrams. For the purpose of our discussion,
however, we only need to know a„b, c„and c„
which are

+ higher -order terms,


