
PHYSICAL REVIEW D VOLUM E 10, NUMB E R 3 1 AUGUST 1974

Matrix Pade approximants of the nucleon-nucleon interaction

A. Gersten and Z. Solow
Deparrnent of Physics, University of the cVegev, Beer-Sheva, Israel

(Received 9 January 1974)

The matrix Pade approximants (with 16 X 16 matrices) and the scalar Pade approximants (with 4 X 4
matrices) of the nucleon-nucleon 5-matrix elements are calculated for total angular momentum J & 4
and for laboratory kinetic energy up to 425 MeV. The calculations are based on one- and two-pion

exchanges of the pseudoscalar interaction. The coupling constant g is the only parameter of the

interaction for which a value, consistent with experimental results, g-'/4m = 15 is assumed. A simplified

calculational scheme and formalism are presented. In order to interpret the results properly we give

estimates in which energy regions we expect the one- and two-pion exchanges to be significant. For
these energy regions we found that the matrix Pade approximants describe quite well the

nucleon-nucleon interaction and give better approximations to the experimental data as compared to
other methods of unitarization. The fact that in the framework of quantum field theory it is possible,
even in limited energy regions, to give a reasonable description of the nucleon-nucleon scattering gives

us more confidence in the pseudoscalar interaction as the fundamental interaction of nucleons and

pioiis.

I. INTRODUCTION

In recent years a considerable amount of effort
has been invested in calculating the amplitudes of
the nucleon-nucleon (N N) intera-ction. ' The large
number of experimental data and the reliable
phase-shift analyses (up to 400 MeV lab energy)
of the Yale' and Livermore' groups made possible
a detailed comparison between theory and experi-
ment.

The nucleon-nucleon interaction is peculiar, a-
mong other interactions, in that among the par-
ticles exchanged the pion has a mass much smaller
than other exchanged particles. As a consequence,
the partial waves with high angular mornenta are
dominated by the one-pion exchange (OPE). It is
expected that for intermediate angular rnomenta
the effect of the two-pion exchange (TPE) can be
isolated and in this way more information about
the form of the interaction can be supplied. The
most favorite seems to be the interaction de-
scribed by the interaction Lagrangian

L'i„t = zgg+5TQQ

where p is the nucleon field, (II) is the charged pion
field, and g is the coupling constant. In dealing
with this interaction one encounters several dif-
ficulties. It is impossible at present to calculate
the dressed propagators and vertices of the nucle-
ons and pions. Only amplitudes corresponding to
the skeleton TPE diagrams can be calculated. Thus
many diagrams having the range of the TPE can-
not be included in theoretical calculations. One

way of overcoming this difficulty was initiated by
Amati, Leader, and Vitale' (ALV) and by Gold-
berger, Grisaru, MacDowell, and Mong' {GGD%),

who through dispersion theory correlate the pion-
nucleon, pion-pion, and nucleon-nucleon scatter-
ing. The results obtained by using this approach
are very encouraging, ' ' but are based on addition-
al phenomenological assumptions and thus cannot
serve as a test of the fundamental interaction.

A direct test of a fundamental interaction is only
possible for intermediate and higher partial waves.
This can be done by calculating Feynman dia-
grams" or by solving the Bethe-Salpeter equation. "
Here again many difficulties are encountered. The
Bethe-Salpeter equation for the N-N interaction
was solved only for the 'S, and 'P, states in the
ladder approximation. " This work confirmed the
predictions of Mandelstam" that for the ladder ap-
proximation and for low partial waves, there are
no solutions for the pion-nucleon coupling constant
having a value close to the experimental one
(g'/4m= 15). For higher partial waves the conver-
gence properties improve with the increase of the
angular momentum.

The works of Gammel et al.""have demon-
strated the usefulness of the Pade approximants.
They have shown that accurate results can be ob-
tained and that the convergence rate is superior to
the perturbation expansion. The use of Pade ap-
proximants has many other advantages, ' "among
which we should mention that unitarity is satisfied,
and that bound states and resonances can be ob-
tained {in contrary to the usual perturbation the-
ory). Thus the Pade approximants seems to be a
powerful tool for extracting information out of the
perturbation expansion and, in this way, of testing
the form of the fundamental interaction.

Gammel ef a/. "have shown, for the case of the
Bethe-Salpeter equation, that the use of the so-
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called matrix Pads approximants has an advantage
over the usual Pads approximants, called 8-matrix
Pads approximants (SPA). Calculations with SPA
have beendone by Wortman' and by Bessis etal. ";
most recent calculations with the [1/1] matrix
Pads approximants have been done by Bessis,
Turchetti, and Wortman" for total angular momen-
tum J «4 and by Fleischer, Gammel, and Menzel"
for the 'S, and 'P, states. The formalism of Refs.
18 and 19 is somewhat different from ours (see
Sec. IV), and therefore there is some difference
between our results. Qur intermediate steps are
also done differently. In this respect our work is
complementary to Refs. 18 and 19. The calculated
Sp and Pp phase shifts differ in Refs . 18 and 19.

The behavior of our results is similar to those of
Ref. 19.

In our work we use the interaction Lagrangian
(1.1). Our considerations are based on the Bethe-
Salpeter equation. They are presented in Sec. II.
The next sections deal with the formulas needed
for computations, with presentation of the results
and their evaluation.

Throughout our work we use the four-vector no-
tation

x =- (x„x„x„x,) =- (x, x, ) =- (x, i x,),
and we use the Dirac y matrices in the Dirac rep-
resentation in which they are Hermitian. The
spinors are normalized according to u„u, = v„v,
= &r. ~

II. THE BETHE-SALPETER EQUATION

The scattering process is depicted in Fig. 1,
where p, and p, are the four-momenta of the in-
coming nucleons, having spin projections in the
direction of motion A., and A.„respectively. The
four-momenta of the outgoing nucleons are p3 and

p4, with spin projections in the direction of motion
A, 3 and A.„respective ly . In the c .m. system

P, = (k, 3P,o)» P, = (-k, 3P3o)»

p, = (q, ip„), p, = (-q, ip„) .

The Mandelstam variables s=-(p, +p, )', t
= -(p, -p, )' and A. = -', (p, -p, ), q = 3'(p 3-p, } will be
used.

We employ the following form of the Bethe-Sal-
peter equation" "for the M matrix (which is the
7 matrix stripped out of the spinors of the incoming
and outgoing nucleons):

FIG. 1, The scattering of the two nucleons. The
four-momenta of the incoming nucleons are p& and p&,
while p3 and p4 are the four-momenta of the outgoing
nucleons.

M(p, q; s}=V(p, q; s}

uy3 )=
uq(p} for e =1 (positive-energy spinor),

vz(p} for e = -1 (negative-energy spinor) .

(2.2)

The negative-energy spinors and conjugate spinors
are related to the positive-energy spinors via

v, (p) = -you~(p), v&(p) = u~(p)yo .

Equations (2.2) and (2.3}can be combined into

u~, (p) =[-,'(1+a)f —,'(1 —e)yo] u~(p), —

"~.(p) = "i(P)[~3(1+e)f+3(1 —s)ro]

(2.3)

(2.4)

where I is a unit matrix. Using these relations we
can construct the following matrix elements:

&~p4e3s4p IM(s}l~i) 3cisoq)

=u~, (p)u~, (-p}M(p, q; s)u~, (q)u~, (-q},
(2.5)

for which one can obtain" the coupled equations

+ d }t V(P, lt; s)G()3, s)M(k, q; s) .

(2.1)

Vis composed from all irreducible Feynman dia-
grams. The M matrix is a 16x 16 matrix in the
spin space. The above equation can be converted"
into a system of coupled matrix-element equations
if we sandwich it with the positive- or negative-en-
ergy spinors with the momenta of the incoming and
outgoing nucleons.

We introduce the following notation for the
spinors:

&&3&4~3~4p IM(s}l&,&3s,~oq) =&&3&.~3~4pl V(s)l»&3ei~oq)

~1~2~1~2
d 8 3 3~3e4p I VIp, u3p, pok)g(ksp, p3)&p, p3p, pong(s) I~, &3m, soq)

(2.6)
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If we use successive approximations, the iterated
solution (on the mass shell) can be written in the
following way:

ments with positive energies is not suitable in our
case. Instead, we introduce a new system of enu-
meration for the matrix elements:

&&,Z,e,e,P ~M(s) ~&, &,e,e,q) &~, z,s,e,~M'~~, ~,e,eg =-M,', . (3.1)

= g ~"&&3&.e~e.PIM2. (s)l&i& eie24 (2 'i)
n =1

where M2„are all contributions to the M matrix
coming from Feynman diagrams of order 2n, and

u =g'l4w,

where g is the coupling constant. Neither the ex-
istence of the solution nor the radius of conver-
gence of the series expansion is known. The case
when the radius of convergence is limited by poles
of the coupling constant can be treated successfully
by the use of Pade approximants. " The use of the
Pads approximants is usually limited to the par-
tial-wave equations with a definite total angular
momentum J. As was shown in the work of Qam-
mel et al. ,

""identical numerical solutions for
the Bethe-Salpeter equation can be obtained either
by using the matrix-inversion method or by Pads
approximants.

On the basis of Eqs. (2.4) and (2.5) we can employ
the Jacob and %ick23 expansion, using only posi-
tive-energy two-particle states,

&As X4e ss~klM(s) IA, A2s, @2'~

= —Q (~+1)&~s&4sse4]M'(s)l»~2eieP
1

4m ~,
(2.8)

y

where ~,. =A., -A.„A.&=A.3-A.„and 6) and f are the
polar angles of the scattered particles. Similar
expansions are obtained for the terms appearing
on the right-hand side of Eq. (2. 'l), from which we
obtain (we suppress the dependence on s)

The rules of correspondence between the number

j and the numbers A., A. 2E1E2 are as follows: %'e

write down the number j —1 in the binary system,

j —1=5,+b, x 2+b, x 2'+b, x 2',
and use the following rules of correspondence:

%0, for A. , =-,'

for A., = ——,';

IO,
b, = &

fOr X2= -2'

for X, =--, ;
1

b =
2

1, for e, =-1;

for e2=1

M3 =M33 =M22, 4 32 23 (3.2}

m'=, VS5 =~VS' =m' =ju' =in' =m' =m' =m' .5 13 42 12 43 31 24 21 34

Equation (2.9) can be replaced by

Mq= Q' M2}tJ7 E7j=1, 2, . . . , 16. (3 3)

for e, =-1 .

For instance, for the state
~

— -.„' -1 1) we have j =8.
The same rules hold for the state &a, X,e,e, ~

and the
number i in Eq. (1.1). The relation between our
system and that of Ref. 5, for 61:62:c3:E'4 is

~VS'=M' =m'
1 11 447 2 14 41

(2.9)
n =1

Thus, the solutions of the Bethe-Salpeter equation
can be expressed as power-series expansions with
16 x 16 matrix coefficients. The truncated expan-
sion can be replaced by a matrix Pade approxi-
mant. " Before doing this let us simplify the nota, -
tion.

III. ENUMERAI'ION OF STATES AND
THE PADE APPROXIMANT

In our work we deal with 16 x 16 =256 matrix ele-
ments characterized by different helicities and

signs of energies. The enumeration convention
used in Ref. 5 for the five independent matrix ele-

If we denote by M~ and M2~„ the 16 x 16 matrices,
which have the elements M, , and (M, „)... respec-
tively, then Eq. (3.3}can be replaced by

M =PnM, „.
n =1

(3.4)

The [1/1] matrix Padd approximant (MPA) is""
[1/1],~ = ~M;(M; oM,') -'M; —. (3.5)

The evaluation of AI2~ and M4 is the subject of Secs.
IV-VI. The submatrices of IVI~ and M, „, with ma-
trix elements corresponding to e, =e2=~3 64 1

(or M~, , with i,j = 1, 2, 3, 4), can be used to form
an S-matrix Pade approximant (SPA} in the form
identical to Eq. (3.5). This SPA was used in the
LS representation in Refs. 16 and 17. Our calcula-
tions with the MPA and SPA are made in the helic-
ity representation. The final result is transformed
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into the ~ representation. The results should be
independent of the representation used. "

IV. SECOND- AND FOURTH-ORDER TERMS

The M, and 3f, terms appearing in the iterated
solution of the M-matrix equation (2.1) were
worked out in Refs. 4, 7, and 16. The contributing
irreducible diagrams to V(P, q; s), and also to
M(p, q; s), are given in Fig. 2(a}, and the iterated
reducible diagram contributing to M(p, q; s) is
given in Fig. 2(b). The M, and M, terms are ex-
pressed with the aid of the ALV invariants" ",
P j P2 P3 P4 P5 which are 16 ~ 16 matrices built
up from a direct product of y matrices. In order
to calculate the matrix elements of M, and M„we
need the matrix elements of the invariants P, , i
=1, 2, 3, 4, 5. This will be done in Sec. V. In Sec.
VI the isospin factors will be included. The scalar
functions multiplying the invariants P,. were
worked out in Refs. 4, 7, and 16, and will not be
repeated here.

In our formalism, vrhich utilizes the Bethe-Sal-
peter equation with dressed propagators and ver-
tices, there is no place for the diagrams which are
given in Fig. 3(a) and which are used in Ref. 18.
These diagrams have zero matrix elements for
e, =q2 =a, =&4=1 and therefore have no contribution
to the SPA. If these diagrams would belong to
V(p, q; s) of Eq. (2.1) then the diagrams of Fig.
3(b) will appear three times in the iterated pertur-
bation expansion of Eq. (2.7). Therefore the dia-
grams of Fig. 3(a} do not belong to the irreducible
diagrams from which V(p, q; s) is composed" and
are not generated by the Bethe-Salpeter equation
with dressed propagators and vertices. Qn the
other hand, the diagrams of Fig. 3(a) are used
(with a factor of) in the Bethe-Salpeter equation
with free propagators which was successfully used
in bound-state problems of quantum electrody-
namics.

V. MATRIX ELEMENTS OF THE ALV INVARIANTS

The matrix elements of the P,. invariants can be
calculated according to Eq. (2.5). We shall use the
notation of Sec. II for the momenta p„P„P„P,of
the incoming and outgoing particles. If

(p, -p, ) =(k, ik, }. ,

q = '-(p3 -p4) = (q, &Vo),

then on the mass shell

ko=qo=0 .

%e shall define

E = (P-'+ iVf2)",

8'=M+ E,
where ~VI is the nucleon mass. For a concise
presentation of the lengthy results we shall intro-
duce the notation

X,, =(«, +«, )(W'-4P'I, ~, )

-2pW(«, . -«,.)(~,. -~,),
F,, =(«,. -«,}(W'-4p'x,. ~,}

—2pW(«, +«, )(x, —z,.),
X, , =(1-«, «,.)(W'+4p'I, . ~, )

+ 2pW(l +«,«, )(a, +A. ,),
V, , = (1+«,.«,.)(W'+4p'I, . I,}

+2pW(1 —«;«, }(A., +A, ),
X= 1/(4M IV)' .

With these notations and Eqs. (2.5) and (2.4), we

obtain after lengthy but straightforward calculations
(with polar angle P = 0)
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FlG. 2. Diagrams considered in our work. {a) The
irreducible diagrams, {b) The reducible box diagram.

FIG. 3. Reducible diagrams. {a}Diagrams not
included in our formalism. {b}The resulting sixth-order
diagram s.
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&&, li.e.e.klP, I&, &,e e.q& =[u,„(k)u ...(q)][u ...(-k)u1...(-q)j

NA13A24B(X 1/ X2y X3, X4, 8)

where

B(A. X X X 8)=y~i ei'3 ~ yi gti, e"3 ~
y 1,

= —,'(-,'+ 2Z, X3)(2'+ 2X2 )4)(1+cos 8) --2'(X3 —A, )(l14 —X2)(1 —cos 8)

+ z [(g -g )(2 + 2k 2 X 4) —(l14 - l12) (-,' +B., X3)J sin 8,
where X& and a, are Pauli spinors and matrices, respectively,

&~3 l14 & 3&4k IP2 l&1&2eis2q& = 23[ui„,(k)y ' (p2 +p4)ui„„(q)][ui,...(-k)u~„,(-q)]

+-2'z[ui„, (f)u„„,(g)][ui „(-k)y ~ (p, +p3)u~, (-q)j
= -lan{A„[P(X, +A,)X,+ EY„]+[P (X, A+, )X„+EY„]A,$B(X„A„A.„X„8),

&X,w,e,~4k~P3~w, li,e,~,q&=-[u, (k)y (p, +p,)u, (4)][ui, (-k)y (p, +p, )u „(-q)j
=fq[p(x, +x,)x„+zl'„][p(z,+z,)x„+ay„]B(z„x„z„z„e),

&A3X4e3e4k~P4~A. ,l122,e2q& = [uz„,(E)yuz„, (q)] [u&„„(-k)yui„,(-g)]
= fv [y„l.„B(~„~„~„~„e)+x„x,c(~„~„~„~„e)J,

where

= —,'(-,' -2X,X,)(-,' -2XP, ) --,'(A, +X,)(X, +X,)-,'[(X, —X,)(X, —X,)+(-,'+2k, X,)(-,'+2k, A, )Jcose

+ —,'[(g, —~, )(-,'+2~, ~,) —(~, -~,)(-,'+ n. , ),)j sine

&X3A4e 3e4k~P3 (X,X2e,s2q& = [uz...(k)y3ui„, (q)J[ui „(-k)y3u~„(-g)]
~1424B(~1& ~2t ~3$ ~4$

Vl. ISOTOPIC-SPIN CONSIDERATIONS

The exchange of charged particles leads to the
appearance of exchange diagrams. Equation (1.1)
can be written as

L», =3g(pps —nnw'+W nps +~p nn'),

(6.1)

&Z3X4e3e4~M~(Z, Z24:,eg d;, (8),
with X; =A, , -A., and A&=A, , -A, ~. The contribution of
the corresponding exchange diagram Af,„is ob-

(6.2)

where p and n are the proton and neutron fields,
respectively, and m', n, n are the charged-pion
fields. If the same mass is assumed for protons
and neutrons and the same mass for charged and
neutral pions, then the proton-neutron interaction,
up to the fourth order in the coupling constant, is
described by the sum of direct and exchange dia-
grams of Fig. 4.

Let us consider a contribution of a direct dia-
gram MD to the partial wave 4 (for the polar angle

y =0):

tained by interchanging the particles 3 and 4. This
leads to

(1) the interchange of all quantum numbers with
indices 3 by the index 4 and vice versa,

(2) the replacement of 8 by 8 —r [from the rela-
tion

we conclude that this has an effect of multiplying
the amplitude by a factor (-1) "fj, and

(2) a change in the Jacob-Wick" phase factor of
the two-particle states by (-1) ~.

The final relation is

&~ 3 ~4& 3&4 IM~~ I~i ~241&2&

=(-1) &~, Z,4,4, (M,'~~, Z,e,c,& . (6.2)

Thus we see that it is sufficient to calculate the
contributions of direct diagrams. The isotopic spin
factors are taken care of by using Fig. 4 and Eq.
(6.3). The partial-wave projections of the ampli-
tudes corresponding to direct diagrams are the
subject of Sec. VII.
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FIG. 4. The direct (P +n —P +n) and exchange (P +n-n+1) diagrams with proper factors.

VII. PARTIAL-%AVE PROJECTIONS

(7.1)

where the P, are the AI.V invariants discussed
in Sec. IV. The scalar coefficients c, (s, f) were
derived elsewhere"'" and will not be repeated
here. Their general form is

1
"

p, (t', s) dt'
t' —t

1 "
p, (t', s) dt'

,„2 t'+t+s+4m'

The contributions of the direct diagrams ap-
pearing in Fig. 4 can be presented in the following
way:

5

MD —— c,. s, t P],

The partial-wave projections in the form of Eq.
(6.2) can be obtained if first the partial-wave ex-
pansions are made for

(ft f)
(7 3)

afterwards the integrals of Eq. (7.2) can be eval-
uated numerically. The procedure of deriving the
partial-wave expansions of expressions like Eq.
(7.3) or those of Sec. V was developed in other
papers. ""'"'"'"%'e shall present the final re-
sults only. On the basis of the results of Sec. V
the expression of Eq. (7.3) has the following
general form:

(~,~.e,e.I I&;l~,~,~,e,e)/(&' —&) =[P,(&„&„~„~„~„e„~„~,)B(~„~, ~ ~ 8)

+ y, (X„X„A„X„&„e„e„e,) C (A„A, A.„a„8)]/(t' —f). (7.4)

In the center-of-mass system

t = -2p'(1 —cos8). (7.5)

and use the convention of Sec. III in order to sim-
plify the notation for B (A.„A.„A.„A.,) and

C~(X„A„X„&,), we obtain

B(X„A A.~, X24, 8)/(t' —t)

with

g(2&+1)B'(~„X„Z„~,) d', , (8),
4m

i f'

(7.6)

From Egs. (7.4) and (7.5) we see that only the
functions B, C, and (f' —f) depend on 8, but not

P,. nor y, It is therefore sufficient to make the
partial-wave expansions for

B,', =q[(x+1)q, (x) —&„],
C, , =~[(x -3)q, (x) -6„],
B,', =@[(x-1)q, (x) —6„],
C,'. =n[(x+3)qg(x) —&„],

J 4+1B,', =C,', =&
2& 1 q...( ) q, ( ) 2 1 q, , ( )

A, ] ——A,
~

—A. and /I(y ——A. —A. .
If we denote

x =1+t'/(2P'), q =v/p'

(7 7)

('1.6)

t+],
B32C$2g2J 1 qg+$(x)qJ(x)+2/ 1

qJ$(x)j

[J(4 + 1)]"'
2 g+ 1 [ q J +g(x) -q g g (x)],
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where Q ~(x) are the I egendre functions of the
second kind. The remaining values of the B~,
and Cf, are. obtained from Eq. (3.2).

With the aid of Eqs. (7.4) and (7.6)-('t.9) and by
using the explicit values of the coefficients I3, and

y,. of Eq. (7.4) from Sec. V, the partial-wave ex-
pansions are directly obtained. These partial-
wave expansions are given in. the helicity rep-
resentation. Thy transition to the I.S representa-
tion is straightforward and is described else-
where ""'"

VIII. UNITARITY AND THE IMAGINARY PART

n=l

(8.2)

In our calculations we used the normalization of
Ref. 7 for which (using the notation of Sec. V)

p =M'p/(16m'E).

Equations (8.1) and (8.2) allow a simple way of
computation of the imaginary parts of M2~„by in-
serting into them the expansions given by Eqs.
(3.3) and (3.4). The required relations are ob-
tained by comparing the terms appearing near the
same powers of a. Thus we obtain, for energies
above the elastic threshold,

Im(M, ) =0,

Im(M~) =pM~6'M~, (8.3)

Im(MB~) = pM~ t Re(M~) +p Re(M~) 6'M ~etc.

Ix. RESULTS AND DISCUSSION

Before presenting our results it would be de-
sirable to point out a few criteria which might be
helpful in the final analysis. It is well known that
the convergence of perturbation expansions is bet-
ter for increasing values of the angular momen-
tum I.. Also range considerations are important.
In a simplified way one can relate the impact pa-
rameter

b = [L(L+I )]'"/p (9.1)

In the M-matrix expansion given by Eq. (2.7) or
by Eq. (3.4) it is sufficient to calculate the real
parts of M,„. The imaginary parts of M,„can be
obtained by using the generalized unitarity condi-
tion"'"'" for the Bethe-Salpeter equation

(8.1)

where 6' denotes that only positive-energy inter-
mediate states are allowed, and p depends on the
normalization convention. In the notation of Sec.
III, Eq. (8.1) becomes

to the range of the multipion exchanges"

ft =I/n p, , (9.2)

where p is the c.m. momentum, p, the pion mass,
and n the multiplicity of exchanged pions. The
laboratory kinetic energy of the bombarding nu-
cleons T„~ is related to p via,

Tgb = 2p'/M, (9.3)

where M is the nucleon mass. Equating Eqs. (9.1)
and (9.2), we obtain that the characteristic kinetic
energy corresponding to the n-pion exchange is

(9.4)

where ~ =2g'/M =40 MeV. We shall assume, fol-
lowing the ideas of Taketani, "that it is possible
to separate the energy ranges below which the ex-
changes of more than n pions can be neglected.
We shall assume that this can be done, similarly
to Eq. (9.4), for energies

T„~«7'On'L(L+ I ) . (9.5)

In order to make a reasonable choice of the energy
v 0, we have studied the OPE contributions of
References 10 and 16 versus the experimental
data. It seems that for

To= 8 MeV (9.6}

and n =1 the condition (9.5) is more or less satis-
fied. Thus, if we accept the conditions (9.5) and
(9.6), we would expect the OPE+TPE to be sig-
nificant for T&,t, belom about 64 MeV for P waves,
200 MeV for D waves, 400 MeV for I waves, 640
MeV for t" waves, and below about 960 MeV for
H waves. We should not expect the OPE+TPE to
be significant for S waves and the mixing angle e, .
Unless the coupling betmeen the states with the
same J is very small, the 'D, amplitude should be
decoupled from the 'S, amplitude, the 'E, amplitude
should be decoupled above about 64 MeV from the
'P, amplitude, and the e, should not be significant
above that energy. The 'Q, amplitude should be
decoupled from the 'D, a,mplitude above about 200
MeV and the e, should not be significant above that
energy. In deriving relation (9.5) we did not take
into account whether the interaction is repulsive
or attractive. For attractive interactions, the
range becomes shorter; in this case we mould ex-
pect a smaller value of 7, (for example, for the
'P, and 'P, states). For repulsive interactions
{negative phase shifts) the range increases and a
bigger 7, should be expected. All these considera-
tions should be taken into account before compar-
ing the results with the experimental data.

Our results are presented in Fig. 5, where for
comparison the phase shifts of the Livermore'
and Yale' groups, up to T~,& =425 MeV, are given.



1038 A. GERS TEN AND Z. SOLOW

80'
20'

Oo K
g

I I

4Qo

204-
I I

!QO 200 500

T... in MeV

400

Qo

404

20O
I

l00 200 300
T~, b in MeV

I

400 20O

00

-20

IQQ 200 300
T „ in MeV

400

80

60'—

40

20
20

00

-20o—

l 1 l

l00 200 &00

T!,b in MeV

400
oo

0 too 200 500

T~„ in MeV

FIG. 5. (Continued on following page.)



10

0'—

MATRIX pADE Appl Q A O 4 ~

-204
60

-40

l2'

60o

0 IOO 200 300 400

Ti, b i& MeV po
0 lpp Zpp &00

T~.b i& Meq

Qo

I 0'
5 Qo

—2 Oo

4go

30o

2p'

-3 Qo

IO'

-4 QO 20'

' 50'
-4p o

JOO 200

Throb in Mey

300 400
-5po

tpp 20p

T~.b in MeV

400

FIG. 5. (Continued on following Page.)



A. GERS TEN AND Z. SOLO% 10

G4

2 0

0 0

4 0

QO

2'—

0 0 QO

40 4o

IGG ZGG 3GG

T~, b in MeV

-I 0 '—
l

I 00 200 300
Tt, t, in MeV

400

tQ'—

80

40

2'

QO

QO

I

i00 200
T „in MeV

300 100 200 500

Tt, I, in MeV

]
400

FIG. 5. Nucleon-nucleon nuclear-bar phase shifts calculated by using MPA's (solid line) and SPA's (dotted line). The

heavy error lines depict experimental phase shifts found by the Livermore gorup (Ref. 3), while the circles and thin

error lines correspond to an energy-dependent solution of the Yale group (Ref. 2). The phase shifts in degrees are
given as a function of the laboratory kinetic energy T~,b in MeV.

Included are all phase shifts with J =4. Our cal-
culations were done with p. =138 Me&, M =938.5
MeV, and g /4m =15. Our results using the SPA
agree completely with the results of Refs. 16 and
18. Our results using the MPA differ from the re-
sults of Ref. 18 for the reasons discussed in Sec.

IV.
As it was already point;ed out in Refs. 17 and 18,

the SPA has some def ic ienc ies, among which are
the facts that the 'D, and 'C, pass through 90' and

the 'S, has a bad threshold behavior. All these
deficiencies are remedied by the use of the MPA.
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Moreover, from the results presented, it appears
that the MPA's for the energy ranges selected by
us give a better approximation to the experimental
data than the SPA. Qur results should be corn-
pared with the results obtained by other methods
of unitarization, namely with geometrical uni-
tarization'~ (GU) and K-matrix unitarization'"
(KMU).

Below we summarize our findings:
Higher PartiaL soaues (L ~ 3). For the '8, , G,

and E waves there is almost no difference between
MPA's, GU, and KMU. The agreement with the
experimental results is rather good, with some
deviation in the 'E, phase shift which is coupled to
the 'P, wave.

D u}aves heloise 200 Me V. We find a rather good
agreement of the MPA with experimental phase
shifts. The MPA shows an improvement for the
'D, phase shift over GU, KMU, and SPA.

P uaves helot 64 MeV. The MPA of the 'P, and
'P, is in agreement with experimental phase shifts.
The 'p, and 'P, phase shifts (very similar to the
GU and EMU phases) are larger than the experi-
mental ones, but there is some quantitative agree-
ment in their behavior. The discrepancy might be
the result of a strong attraction, as discussed
above.

Mixing angles. The c„ the e, below 200 MeV,
and the e, below 64 MeV obtained by the MPA are
in perfect agreement with experimental phase
shifts. For the above energy ranges the MPA
phases are similar to the GU and KMU ones.
There is some improvement compared to the SPA.
The bad agreement of the c, should not be con-
sidered as a failure according to our previous
considerations.

S uaves. As we mentioned before, we should
not expect the S-wave phase shifts to agree with
the experimental data. However, it appears, at
least for small energies, that there is some rela-
tion to the experimental phase shifts. With the
SPA both S waves have a bound state: the 'S, with
binding energy of 4.7 MeV and the '8, with binding
energy of about 5 MeV, 0.0004 MeV above the
left-hand cut threshold of the QPE. The 'S, bound
state is problematic since its appearance is
caused by the singularity of the QPE at the left-
hand cut threshold. " The 'S, and 'So waves have
no bound states with the MPA, but the phase shifts
are quite large for small energies.

series expansion of the coupling constant. The ex-
pansion coefficients are 16x16 matrices. We
were able to calculate the first two terms of that
expansion due to previous work of Refs. 4, 7, and
16, where the M, and the M4 terms were obtained
using the Mandelstam representation. The explicit
calculation of the matrix elements and their par-
tial-wave expansion is done in Secs. III to VIII.
The use of the helicity representation and our
enumeration system of states of Sec. III greatly
simplified the calculations. To this we may add
Eq. (6.3) which in a simple way relates matrix
elements of exchange diagrams to matrix elements
of direct diagrams. This relation enabled us to
include the isotopic spin factors while working in
the helicity representation. The matrix Pade ap-
proximants were calculated in this representation;
only the final results were converted to the LS
representation. The nucleon-nucleon bar phase
shifts were calculated and compared with experi-
mental data up to 425 MeV laboratory kinetic en-
ergy.

The evaluation of the obtained results is a diffi-
cult task. The results are significant only if
higher-order effects can be eliminated. We tried
to attack this problem along the lines indicated by
Taketani and coworkers"" and to give estimates
for energy regions where the one- and two-pion
exchanges should dominate. This problem was
discussed extensively in Sec. IX. The semiclas-
sical concepts of impact-parameter relation to the
range of the interaction were used. The energy
regions were established by adopting the inequality
(9.5) to the one-pion exchange. Thus, we obtained
energy regions where the results are expected to
be significant. Inside the limits of these regions
we found that the phase shifts obtained with the

[1, lj matrix Pads approximants fit the experi-
mental data relatively well. Moreover, they are
in better agreement. with the experimental data
compared to other methods of unitarization. The
use of the matrix Pade approximant corrected the
failures of the 8-matrix (or scalar) Pade approxi-
mants.

The fact that it is possible to explain the experi-
mental data, even in restricted regions of energy,
with a single theory, where the only parameter is
the rather well-known coupling constant, give us
more confidence in the existence of a fundamental
interaction in the form of Eq. (1.1).
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