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An approach to the measurement of static gravitational couplings is discussed. A plausible mathematical
treatment of the nongravitational interactions of particles in the presence of a small, constant, classical
tensor field without the assumption of universal coupling to the field is outlined. Some nonstandard features,
principally the breakdown of strict Lorentz covariance, are pointed out. Calculations based on this for-
malism, or, alternatively, on simple energy-momentum conservation, indicate that some particle processes
which are forbidden if the coupling to the tensor field is universal are allowed if it is not. The processes
considered in some detail are spontaneous emission of a photon by a free particle, spontaneous photo-
production of a particle-antiparticle pair, and spontaneous neutrino decay. These occur under certain
conditions involving the energies and the coupling constants to the tensor field. The tensor field is identified
with the local gravitational field and rates are estimated. Certain existing data on the absence of such
reactions give evidence that the gravitational coupling of the muon in particular is equal to that of the
photon to within parts per ten thousand, and that all particles with mc? less than a few GeV, excepting
possibly the neutrinos and the graviton itself, have gravitational coupling which is at most the normal
amount—to varying degrees of accuracy. The latter result is subject to an assumption that the algebraic

sign of the local gravitational field is what one expects on intuitive grounds.

I. INTRODUCTION

NE expects elementary particles to participate in
a fourth interaction in addition to the strong,
electromagnetic, and weak interactions. The theories of
this ‘“‘gravitational” interaction which have been put
forth! share one basic feature: All particles are to in-
teract with equal strength with a gravitational field.
(A possible exception would be the graviton itself.?)
I will call this principle “universal gravitation,” after
Isaac Newton.

In spite of the fact that universal gravitation is
widely believed, the actual evidence for it—or indeed
for any general statement about the gravitational inter-
action—is meager : The classical experiments which are
usually associated with general relativity, the Eotvos-

* Supported in part by NASA Grant No. NGR 21-002-010.

! Most such theories of course construe gravitation to be a
property of “matter” rather than of elementary particles. A
partial list is as follows: Newton’s original theory; Einstein’s
geometrical theory (general relativity); the operationally equiva-
lent tensor field theory [see W. Thirring, Ann. Phys. (N. Y.) 16,
96 (1961), containing references to earlier work]; scalar and/or
scalar-tensor theories [see C. Brans and R. H. Dicke, Phys. Rev.
124, 925 (1961), containing references to earlier work]; linear
tensor theory [see S. Deser and B. E. Laurent, Ann. Phys. (N. Y.)
50, 76 (1968)]. For a particle-physics approach using group
theory, see S. Weinberg, Phys. Rev. 138, BO88 (1965).

28S. Deser and B. E. Laurent (Ref. 1).
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type experiments, and a few scattered free-fall measure-
ments® tell us about the gravitational interaction of
the constituents of ordinary matter and of light rays,
namely, the electron, the proton, the neutron, and the
photon.* In addition, the Mercury perihelion effect is
generally considered to be evidence for the gravitational
interaction of the graviton itself, although it may be
possible to avoid this conclusion.? Also, there exists
very convincing evidence that the K° and the K° have
the same gravitational interaction, not necessarily the
normal one.? Finally, there is a single semiquantitative
argument by Schiff which concerns other particles.®
However, the number of species of known elementary
particles is enormous.” Thus, even though no deviations

3 For individual atoms, see I. Estermann, O. C. Simpson, and
O. Stern, Phys. Rev. 71, 238 (1947); for neutrons, A. W. Mc-
Reynolds, Phys. Rev. 83, 172 (1951); for electrons, F. C. Witte-
born and W. M. Fairbank, Phys. Rev. Letters 19, 1049 (1967).

4 Further, one only learns about the gravitational interaction
at zero momentum transfer to the field, as the gradient of a
laboratory classical field is always extremely small. This is true
also in the case of all conclusions derived from the present work.

5 M. L. Good, Phys. Rev. 121, 311 (1961).

6 L. I. Schiff, Proc. Natl. Acad. Sci. U. S. 45, 69 (1959).

7 For a listing of presently known particles and their properties,
see N. Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H.
Rosenfeld, P. Séding, C. G. Wohl, M. Roos, and G. Conforto,
Rev. Mod. Phys. 41, 109 (1969).
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from universal gravitation have been observed to date,
more experiments seem desirable, to say the least.?

Of course, it has been extremely difficult to devise
experiments on the gravitational interaction because the
experimental effects are in general so small as to be un-
observable. For example, one may consider measuring
the free fall of the longest-lived of the unstable par-
ticles, the muon, at the earth’s surface. If we assume
universal gravitation, then a typical horizontally travel-
ing muon turns out to fall of order 10~ cm during its
lifetime. Other particles with even shorter lifetimes of
course fall even less. It is hard to see how one can
measure such small distances in practice. Other, more
subtle schemes which one can devise seem no more
promising.’

The claim of this paper is that the experimental
problem of measuring gravitational couplings of ele-
mentary particles is essentially solved. The method is
to search for certain elementary-particle reactions at
high energies. It turns out that some reactions are for-
bidden if universal gravitation is valid, but are allowed
otherwise. One purpose of this work is to give a general
discussion of the method. Another is to point out that,
indeed, some specific experiments have already been
done (unknowingly), and to discuss the results.?

8 The following historical note seems apt. For some years it was
believed that the basic “bare” coupling constants responsible for
muon and nucleon 8 decay, respectively, are precisely the same.
Indeed, this belief persisted even though there was evidence of a
small discrepancy. At present, of course, it is reasonably well
verified that these constants differ by a factor cos§, where 8 is
the Cabibbo angle. N. Cabibbo, in Proceedings of the Thirteenth
International Conference on High-Energy Physics, Berkeley, 1966
(University of California Press, Berkeley, Calif., 1967).

® For example, a charged particle falling with an aenomalous
gravitational interaction turns out to produce a transverse electro-
magnetic field at large distances. Roughly speaking, this is
because the particle and the normally gravitating photons com-
prising its self-electromagnetic field fall at different rates. If we
have many particles, say, a short burst of them from an accel-
erator, then the net field is coherent at sufficiently low frequencies
and can be detected by a radio receiving antenna. The relative
effect of stray electromagnetic fields decreases with the energy of
the particle. However, even at an energy of 100 GeV, the earth’s
magnetic field turns out to cause an effect of order 108 times the
effect in question. In addition, there are severe problems of
apparatus alignment because one must isolate the effect from the
normal longitudinal induction field.

One may also consider a “double Stern-Gerlach” technique as
suggested by D. Greenberger (private communication): One
divides a horizontal beam of electrically neutral objects in half;
allows one beam to traverse some distance at a greater height
than the other, thereby causing a relative phase difference in the
de Broglie waves; recombines the beams; and measures the phase
difference by observing the rotation of the spin vector. It is clear
that one must know the difference in optical path lengths to well
within a wavelength. This may well be feasible for ordinary
molecules; however, it is not feasible for neutral combinations of
elementary particles in general: In the case of muonium, for
example, the largest wavelength one can get in practice is of
order 107 cm, and it is hard to see how one can measure the
difference in optical paths to anywhere near that figure.

10 The present work is a generalization of two earlier papers:
E. T. Beall, Phys. Rev. Letters 21, 1364 (1968); 21, 1507 (E)
(1968) ; University of Maryland Technical Report No. 927, 1968
(unpublished). The notations and procedures used in these two
papers differ considerably from those used in the present work.
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The basic idea can be simply put, and is as follows:

Let there be an elementary-particle reaction 4 — B,
where A and B represent the initial and final collections
of particles, respectively. We assume that energy and
momentum are conserved. If the invariant mass of the
initial state is less than the sum of the masses of the
final-state particles, then energy cannot be conserved
and the reaction is kinematically forbidden.

(If the initial invariant mass is equal to the sum of
the masses in the final state, then energy is conserved,
but momentum is not conserved with finite momenta
for the final-state particles. Thus the final-state phase
space is zero and the reaction is still forbidden.)

Now suppose that a classical gravitational field ¢ is
present.!! (We take it to be a scalar under Lorentz
transformations for this argument.) According to uni-
versal gravitation this adds a (negative) potential
energy —FE¢ for each particle, where E is the energy
of the particle.? Thus we multiply the initial- and final-
state energies by the same factor (1—¢). This does not
alter the energy inequality and the reaction is still
forbidden.

Now, however, suppose that universal gravitation
fails. If, say, one or more of the initial particles has an
anomalously small gravitational interaction, so that
its potential energy is —EC¢ with C <1, then less nega-
tive (or, equivalently, more positive) energy is added to
the initial state than to the final state. If, also, the
quantity EC¢ is large enough, then the energies balance
and the reaction is no longer kinematically forbidden.
If, on the other hand, one or more of the final particles
has an anomalously large interaction, then the same
conclusion follows.

If either of these two possibilities actually occurs and
if there is also a dynamical mechanism which would
cause the reaction 4 — B to proceed if only energy
and momentum could be conserved, then the reaction
does indeed proceed.

Thus we can in principle measure the gravitational
interaction by looking for the occurrrence, in a given
field ¢, of reactions which are normally forbidden only
by energy-momentum conservation. If we observe the
reaction in question, then we know either that one or
more of the initial particles is “too light”’*® to be de-
scribed by universal gravitation, or that one or more
of the final particles is “too heavy,” or both. Further,
we ought to be able to tell just which particles are

1 The word “field” rather than the word “potential” is used
throughout this work in accordance with contemporary usage.
To avoid confusion, the following is noted: What is ordinarily
called, for example, ‘“the earth’s gravitational field” is actually the
gradient of the “‘gravitational field”’ discussed here. The Riemann
tensor, also sometimes called a “field,” is obtained by a certain
second-order differential operation upon the “gravitational field”’
discussed here.

12 We neglect nonlinearities in this argument.

13 The phrases “too light”” and “too heavy’’ are frequently used
in this work to denote anomalously small and anomalously large
gravitational coupling, respectively. Thus the mnemonic refers
to gravitation and not to inertia.
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anomalous and by how much by investigating such
things as which portions of the final-state phase space
are enhanced. On the other hand, if we do not observe
the reaction under favorable conditions, we can set
limits on the amount of anomalous gravitational
interaction."

There is one difficulty with this method: We do not
really know the value of the gravitational field. We
could compute it from something like Einstein’s equa-
tions if the large-scale structure of the universe were
sufficiently understood and also if a prescription were
somehow given for assigning a gauge (or “coordinate
condition”). However, this is not the case in reality and
all we can do is set a plausible limit on the field. Thus,
if we were to actually observe one of the reactions under
study, we would only be able to say that there is an
anomaly, not measure it quantitatively.

Nonetheless, if we do not observe a reaction under
favorable conditions, we can still set limits on the
anomalous gravitational interaction of the particles
involved. It is in this sense that the experimental
problem is “essentially’’ solved, as stated earlier: The
experimental problem is not completely solved only if
there is an anomaly, in which case we cannot measure it
quantitatively.

A modest amount of formalism based upon the above
general considerations and upon relativistic quantum
mechanics is developed in Sec. II—to the point where
one can actually calculate reaction kinematics and
rates with some degree of confidence. Then calculations
are presented for the following basic types of process:

(1) The electromagnetic process P — P-++, where P
is any particle with appreciable electromagnetic cou-
pling. This process has a classical analog: the Cerenkov
effect. We know that the photon is described very
closely by universal gravitation.!> Therefore, we expect
from the earlier discussion that this process will proceed
if the initial particle P is “too light.” (The final-state
particle P is, of course, also too light. However, it has
less energy than does the initial particle and a little
thought shows that the argument still applies.) One

14 Tt should be clear that the particle processes discussed in the
present work have nothing to do with particle processes in
variable gravitational fields (see Ref. 11) which have often been
discussed. [For example, there is the old question of whether or
not radiation by a normally gravitating charged particle occurs
as a result of acceleration in a gravitational field. B. S. de Witt
and R. W. Brehme, Ann. Phys. (N. Y.) 9, 220 (1960); T. Fulton
and F. Rohrlich, 7bid. 9, 499 (1960).] Such processes can occur
under certain conditions even if universal gravitation is valid by
means of actual energy and momentum fransfer between the gravi-
tational field and the particles. In the present case the field is
constant to good approximation, thus its Fourier transform is
zero, and therefore there can be no energy-momentum exchange
to or from the field itself.

15 The gravitational coupling of the photon is known to within
about 19, from the terrestrial red-shift measurements. R. V.
Pound and J. L. Snider, Phys. Rev. 140, B788 (1965). In terms
of the coupling constant C, introduced later in the present work,
one has C,=0.999 with a statistical uncertainty of +-0.0076 and
a possible systematic error of 0.01.
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expects the reaction rates to be characterized by elec-
tromagnetic times, multiplied by some function of the
gravitational potential. Indeed, the rates for particles
in the TeV energy range turn out to be so large that,
in a given case, a particle with anomalously small
gravitational coupling would lose all of its excess energy
above a certain threshold in a time which is short in
comparison with lab times. Thus, in such a case one
only need investigate the stability of the energy of the
particle. If the particle is observed to retain its energy,
then it is not necessary to actually search for radiation
from the particle in order to set a lower limit on its
gravitational interaction.

On the basis of existing data, we will see that the
muon, in particular, is not in fact too light by any
appreciable amount.

(2) The related process y — P-+P. This process is
allowed for P or P or both too heavy. The rates are
again extremely large, and one may set upper limits on
the gravitational interaction of all particles to which
the photon couples by observing the very existence of a
sufficiently high-energy photon over appreciable lab
times.

Existing data show that, with the possible exceptions
of the neutrinos and the gravitons, no known particle
with mass mc? of order GeV or less is in fact too heavy
by any appreciable amount.

(3) The weak process v — e-+u-+1', where v and »’
denote generic neutrinos. There are actually four dis-
tinct reactions. They are described by the same matrix
element as is ordinary u decay. One expects the process
to occur if the initial neutrino is too light. The rates
are quite sensitive to the energy excess above a certain
threshold and can be extremely large or extremely small,
depending on details. Existing data do not allow any
conclusions in this case.

Brief attention is also given to processes involving
gravitons.

I make four general remarks before proceeding to the
main business of this work.

(i) The strict validity of energy-momentum con-
servation is assumed throughout this work, and all
conclusions are based on this assumption. This assump-
tion is made because it is known to apply to a vast
number of particle phenomena with no known viola-
tions. Indeed, it is frequently used in particle-physics
experiments essentially as engineering, in the same
way as it is used here.!

However, it has sometimes been argued that a break-
down of universal gravitation necessarily implies viola-
tion of energy conservation. Some discussion is therefore

16 For example, the existence of a highly unstable particle is
often inferred by observation of its decay products in a bubble
chamber and by then using energy-momentum conservation to
“measure’ its mass, energy, and direction.
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in order. A generalized version of this argument and a
criticism of it as follows.!”

Suppose a collection of particles 4 with energy F
converts into a collection of particles B, with the same
energy E, which couple to gravitation less than does
the collection 4. We may raise B in a gravitational field
to some point by exerting a certain amount of work.
Now let B reconvert to A with energy E at the new
point. Then lower 4 to the original point, thereby
getting back a certain amount of work. This work is
more than what was exerted in the raising operation
because we raised something which weighs less than
what we lowered. Thus we extract net work from a
closed cycle, energy is not conserved, we can make
perpetual motion machines, etc.

(If A weighs more than B, we just interchange 4 and
B in the above argument. The same result is obtained.)

Notice that the argument assumes the energy of 4
created at the upper point to be the same as that of 4
destroyed at the lower point, namely, Z. However, A
has a different gravitational potential energy at the
two points. Thus it is assumed that the potential energy
is not involved in the mechanism which causes 4 to
convert to B and vice versa. That is, it is assumed that
the energy which is transferred between 4 and B is
the total energy minus the gravitational potential
energy. The criticism is, then, that this is purely an
assumption; it need not be fulfilled in reality.

The present work assumes, for the reason stated
earlier, that the total energy is what is transferred in
A <> B. 1t is then easily shown that no net work is
obtained from the cycle in the above argument, to
first order in the gravitational field and, again, as-
suming it to be a scalar.

(ii) T discuss the Schiff argument® briefly here. In
response to a suggestion that antimatter is repelled by
gravitation, Schiff argues that “virtual” positrons are
present in an atomic nucleus by virtue of vacuum
polarization, and therefore may be ‘“weighed’” using the
E6tvos experiment: Virtual positrons are present in
differing amounts in different nuclei; thus the gravita-
tional/inertial mass ratios of different nuclei would be
different if the positron’s gravitational coupling were
anomalous. Schiff makes quantum-mechanical calcula-
tions of the expected effects and obtains finite results
under the assumption that the kinetic energy of the
positron is normal but that its rest mass is repelled by
gravitation. The effects are of order 107 as compared
with an Eotvos-experiment sensitivity of ~1078,
(Further, the latter has decreased to ~10~ since
Schiff’s article.’®) Schiff also notes that one can make

17 For versions of this argument see, for example, P. Morrison,
Am. J. Phys. 26, 358 (1958); H. Frauenfelder, The Mossbauer
Effect (W. A. Benjamin, Inc., New York, 1962), p. 62. For a
slightly different criticism of the argument, see P. Thieberger,
Nuovo Cimento 35, 688 (1965).

18 P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. (N. Y.)
26, 442 (1964).
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stronger, although necessarily qualitative, statements
about particles which are produced virtually by the
strong nuclear interactions, i.e., the hadrons.

I think that the Schiff argument gives good evidence
for universal gravitation for all presently known
particles except the muon, the neutrinos, and the
graviton.® T say this because other self-energy effects
are invariably of the order of magnitude one expects.
Nonetheless, self-energies in general are not theoreti-
cally understood at present. In particular, it is possible
that the effects discussed by Schiff are renormalized
away in each nucleus in the following manner.

In the context of ordinary first-order renormalization
theory with no gravitational field, one of course has a
self-energy term calculated by some theoretical pre-
scription involving intermediate states and a ‘“counter
term” in the free Hamiltonian. These terms may or
may not be divergent. It is well known that only the
sum of the two terms, i.e., the physical self-energy or
inertial mass, is strictly meaningful. In the present
case it is easily seen that there is also in general a term
calculated by some prescription which is proportional
to the gravitational field and which involves the
gravitational mass of particles present ‘“‘virtually,” and
a ‘““counter term” in the field-dependent part of the free
Hamiltonian. The sum of these two terms gives the
gravitational mass of the nucleus (multiplied by the
field), and again it is only this sum which is strictly
meaningful. There is no way to compute the finite part
of either of the two counter terms (field-dependent and
field-independent) without imposing some further as-
sumption. (One such assumption would be the imposi-
tion of universal gravitation itself. This would say, in
effect, that the four terms must be such that the sum
of the two field-dependent terms is equal to the sum of
the two field-independent terms. Other possibilities
arise if one has a believable theory of the internal
structure of the nucleus.) In particular, we do not know
that these two counter terms are the same, which is
what Schiff apparently assumes when he says that a
certain field-dependent divergent integral ‘‘cannot be
removed by renormalization.”®

Thus it is quite possible that the physical sum of the
two field-dependent terms is equal to the physical sum
of the two field-independent terms, thereby giving the
nucleus normal gravitation, independent of the field-
dependent term which is computed using the gravita-
tional mass of ‘“virtual” particles. In other words,
nature may be such that an anomaly in the gravitational
mass of a “virtual” particle is automatically canceled
by a corresponding anomaly in a counter term in the

19 The largest effect caused by muons is the muonic vacuum
polarization (virtual photoproduction of p*-u~ pairs). It gives
roughly the same order of magnitude as does the present Eotvos
experiment sensitivity (Ref. 18), and therefore any conclusion
would be marginal. ‘“Virtual” neutrinos are produced only by
second-order weak interactions, perhaps giving an effect of order
1074, The gravitational self-energy of a nucleus is of course
hopelessly small.
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free Hamiltonian of the parent nucleus. We cannot
exclude this possibility because we do not know how to
compute such counter terms.?

I frankly think that the occurrence of a situation
such as that just discussed in every nucleus is far-
fetched and that the Schiff argument is good evidence,
as stated earlier. Nonetheless, it is the only evidence we
have for the gravitational coupling of the great majority
of elementary particles (aside from the evidence ad-
duced in the present work). Accordingly, since it is not
at all conclusive, as argued above, it still leaves uni-
versal gravitation on a shaky experimental basis.

(iii) Weinberg has argued on very general grounds
that Lorentz covariance of the .S matrix for particle
processes requires universal gravitation.?! The argu-
ment is made by examination of the S matrix for
production of soft gravitons, i.e., classical linearized
gravitational waves, in accompaniment to elementary-
particle reactions. The formal development presented
later in the present work seems to bear out Weinberg’s
conclusion from a different direction: The S matrix for
particle processes in a static gravitational field violates
Lorentz covariance unless universal gravitation is
imposed. In the present case, the noncovariance appears
in a natural way as being associated with the Lorentz
frame in which the sources of the gravitational potential
are at rest. It is not at all clear that there is anything
objectionable about it in the present context. Discus-
sion of this point is deferred until the situation is
actually encountered in Sec. II.

(iv) Finally, for the sake of completeness, 1 give
two possible reasons why one might want universal
gravitaion to be violated.

There is, first, the well-known p—e puzzle: Their
strong, electromagnetic, and weak interactions are the
same to within experimental accuracy; yet their masses
differ by ~100 MeV. One could imagine that they
interact differently with gravitation. Alternatively,
perhaps their respective neutrinos interact differently
with gravitation. It is of course hard to explain 100 MeV
by means of a gravitational self-energy. However, self-
energies in general are not really understood and,
further, the gravitational interaction is highly divergent,
since it is proportional to the square of the momentum.

The present work presents evidence that the gravita-
tional interaction of the u and the e are indeed the same,
and the question of the neutrinos is left open.

Secondly, there is the problem of gravitational
collapse. As is well known, there arises a real, physical
singularity. If we take the philosophy that such a
singularity is intolerable, then we must find a way out.

® In a relativistic theory there are actually three self-energy
terms in general: a field-independent term, a term proportional
to the tensor gravitational field, and a term proportional to its
trace. In general the field-dependent and field-independent terms
diverge to different degrees. Thus it is clear that the corresponding
counter terms are not in any sense ‘‘the same.”
( 2AS, \)’Veinberg, Phys. Letters 9, 357 (1964). See also S. Weinberg
Ref. 1).
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Suppose that there is a particle which does not couple
to gravitation and which is produced copiously in hot
stars. As the star compresses, it becomes heated and
produces such particles, they escape, and energy is
carried away. If energy were carried away fast enough,
it would seem that the star could drop below critical
mass before the singularity occurs. Whether or not this
actually happens would of course depend upon details,
but it seems intuitively possible.?

II. PARTICLES IN CLASSICAL
GRAVITATIONAL FIELD

In this section I outline very briefly an elementary
mathematical description of the propagation and inter-
action of particles in a classical gravitational field—
without the assumption of universal gravitation.? The
procedure is essentially to (a) assume the existence of
a “background” field which is a second-rank tensor
under Lorentz transformations, (b) write down the
most general description of particles in the presence of
this field which is consistent with the usual invariance
requirements, and (c) quantize particle fields in the
usual canonical fashion.

We make two assumptions throughout this work
which greatly simplify the mathematics: (1) The gravi-
tational field in dimensionless units is much less than
unity, so that we may work to first order; (2) the
gravitational field is constant, meaning constant over
the deBroglie wavelengths of particles, and, indeed,
over the neighborhood of the earth.? The characteristic
dimension of the gravitational field is at least the radius
of the local cluster of galaxies, which is ~10! times the
radius of the earth, so that this is clearly a good approxi-
mation. The first approximation may or may not be
valid, depending on the large-scale structure of the
universe and the boundary conditions imposed upon
the field equation governing the gravitational field.

The notation throughout this paper is as follows:
h=c=1; Greek indices run from 0 to 3 and Latin
indices from 1 to 3; the summation convention is implied
for both types; the Minkowski tensor #** has signature
(—++-+); indices are raised and lowered using the
Minkowski tensor; Dirac matrices satisfy y#y*4*y*
=29#; and a comma denotes differentiation.

The gravitational field itself is taken to be a dimen-
sionless second-rank tensor, called #**. The sign con-
vention is such that %# is positive for such static solu-

2 A similar suggestion has been made by S. Deser and B. E.
Laurent (Ref. 1).

2 It should be clear that the purpose of the present work is not
to give a complete, sophisticated theory of particles in a classical
gravitational field. Such discussions exist; however, they in-
variably assume universal gravitation in the form of general
relativity or the universal tensor field approach. See, for example,
R. Utiyama, Phys. Rev. 125, 1727 (1962), and references therein.

2 In the present work we assume that all particle processes of
interest take place at or near the earth’s surface. This means that
we do not consider astrophysical data. This assumption can be
relaxed at the cost of increasing the number of parameters (cou-
pling constants) in the formalism.



966 E. F.
tions of the gravitational field equation as the Schwarzs-
child solution with a sufficiently small source.

A. Classical Free Particles

In the absence of a gravitational field, a classical
particle is of course described by a scalar characteristic
of the particle, called the mass (m), and by a vector
whose value depends upon the state of the particle,
called the momentum (p,), such that

Pup+m2=0. 1

In the presence of the field z*” we assume that the par-
ticle is still characterized by p, and m, and we write
the most general modification of Eq. (1) which is
bilinear in p, and m and which satisfies Lorentz co-
variance. It is

P#PV(")W_HW>+(A"*_mz)K:O: (2)

where the tensor H* and the scalars 4 and K are
arbitrary functions of 4#". In general, we expect these
quantities to be different for different types of particle.

Equation (2) simplifies considerably within the frame-
work of the approximations stated earlier: The quan-
tities A and K are constant all over the earth where we
measure particle masses.?* Then we see from Eq. (2)
that they merely correct the mass by an unobservable
amount.?’ Therefore we may as well set A=0, K=1.
Further, since ## is small, we may expand H* in a
power series. The zeroth-order term must be propor-
tional to »*" and also merely supplies a mass correction.
This is also true of that part of the first-order term
which is proportional to the trace of 4*. We keep the
rest of the first-order term only and are left with

P#PV(U"V—C/Z"”)+M2:0y (3)

where C is some constant characteristic of the particle.
Equation (3) is then the most general energy-momen-
tum-mass relation which has observable consequences
within the present framework of approximations.

We may identify the constant C by momentarily
assuming general relativity. The generally covariant
generalization of Eq. (1) is pu.p,g#+m?*=0, where g#
is the contravariant metric tensor and where we must
consider p, and m to be a vector and a scalar, re-
spectively, under general coordinate transformations.
Reinterpreting gravitation as a field, we may write
g =n*—h*. (Consideration of the linearized theory
with static sources shows that the minus sign is correct.)
Comparing with Eq. (3), we see that C=1 corresponds
to universal gravitation. Further, ##" turns out to be
proportional to Newton’s gravitational constant G in
lowest order. Thus we may interpret CG'? to be the

2 If any scalar field associated with gravitation were to exist,
as in the Brans-Dicke theory (see Ref. 1), then it would also
merely supply an unobservable mass correction within our frame-
work of approximations. Thus the conclusions of the present work
are independent of whether or not such a field exists.
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gravitational “coupling constant” of the particle in a
more conventional system of units.

One may identify the concept of “gravitational mass”
by appealing to the nonrelativistic approximation to
(3): Let the total energy minus the rest-mass energy,
po—m, be such that po—m<<m. Then if /# is sufficiently
small, one obtains from Eq. (3) the result

po—m=2p;p?/ 2m—FmCh®— p,Cho%. (4)
The first term is familiar. The gradient of the last term
is a “velocity-dependent force.” In the limit p,— 0,
the second term evidently gives the “gravitational po-
tential energy.” Thus it is easily seen that the ‘“gravita-
tional mass’ is

©)

Clearly, a particle which is “too light” has C<1, one
which is “too heavy” has C>1, a nongravitating par-
ticle has C=0, and a particle which is repelled rather
than attracted by gravitation has C'<0.

Notice that Eq. (3) in general allows spacelike mo-
menta. In particular, it is easily shown that this occurs
for C>0 if a Lorentz frame exists in which Z* is
diagonal, positive, and sufficiently large. Thus this
happens even if universal gravitation is valid. It can
be shown that the resulting causal anomalies are un-
observable to first order in z* provided that space and
time intervals are measured using instruments con-
structed of matter which has the same value of C. Thus
this problem disappears if universal gravitation is valid.
Nonetheless, real causal anomalies can occur if the
particle and the measuring instruments possess different
values of C. We will return to this point later in con-
nection with the quantum-mechanical formalism.

We take Eq. (3) with C characteristic of a given
particle to be the basic energy-momentum-mass rela-
tion for the particle, replacing Eq. (1). Now suppose we
have Ny initial particles and Np final particles under-
going a reaction. We would then wish to solve the set
of equations

purpor(n® —Crh*)+m2=0 (I=1,...,Ny),
Pw'PvF(’f)""—CFh"”)—i—mﬂ =0 (F——— 1, ceey A\vp) ,

mcsz.

Np

N1
Z p#l=z PM["7
I F

where the last expression reflects the assumption of
energy-momentum conservation. The reaction is al-
lowed if the set of equations has a solution. This solu-
tion gives the relevant energy threshold and other
kinematic constraints. As in the case of normal kine-
matics, solutions with some negative energies occur in
the solution unless they are eliminated by assumption.
In the present case one can require that all energies are
positive in some specified Lorentz frame, e.g., the
“laboratory frame.” This condition is not maintained
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in general in other Lorentz frames because spacelike
momenta are allowed in general, as noted above.

The kinematics which one obtains by solving sets of
equations such as the above for various processes is
quite similar to the kinematics involving faster-than-
light particles which has been discussed in detail by
Feinberg.26 The principal difference is that direction
dependence can exist in the present case. I do not give
further discussion here because the kinematics in a
specific case is automatically obtained from an S-matrix
treatment, as will be seen. However, it is important to
note that whether or not a reaction is allowed is inde-
pendent of any quantum-mechanical considerations.

Finally, it is necessary to note the following: As was
mentioned in the Introduction and as will be seen later,
the dynamics of particle interactions violates Lorentz
covariance in general. Thus there may be no good reason
to require Lorentz covariance in the kinematics of free
particles either. If we suppose that the kinematics
depends upon some specific Lorentz frame, then one
can show that Eq. (3) would be replaced by

pupy(n*—Ch*— Dhntw’)+m?=0, (6)

where D is a constant, z=#,* and n* is a unit timelike
vector with components (1,0,0,0) in the specified frame.
The analog of the nonrelativistic Eq. (4) would be

po—mpp/ 2m—m (3ChO+ 3 Dhn'n®)
— pi(Ch+ Dhnn?).  (7)

“Gravitational mass” becomes a somewhat tenuous
concept. For example, if we define it to be the coefficient
of —14%, then it would be instead of (5),

mg= (C—Dn’n)m (8)

and would thus be frame-dependent. Further, it would
not completely describe the gravitational properties
of the particle in the limit p;— 0, since an additional
residual term —LmD (B4 k24 13)5n%%° remains in (7)
in this limit.

Although there may be no reason to exclude the
possibility of noncovariance in the kinematics as well
as in the dynamics, neither does there seem to be any
reason to include it. In this paper, I assume that the
kinematics is covariant, so that Eq. (3), or Eq. (6)
with D=0, is valid.?

B. Quantum Mechanics, Second Quantization, S Matrix

A free scalar particle in the absence of gravitation is
described by the Klein-Gordon equation in the wave
function ¢(x):

D¢_m2¢5 ¢,;w77“y_ m2¢= 0.

26 G, Feinberg, Phys. Rev. 159, 1089 (1967).

27 More generally, processes which are ordinarily forbidden
would still occur if some values of C were not unity even if some
values of D were nonzero. However, the situation would obviously
be more complicated, and the quantitative (or semiquantitative)
conclusions of this work would have to be modified in such a case.
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The required generalization follows easily from the same
considerations as those leading to Eq. (3). It is

&, (0 —Ch) —m?¢=0, (9)

subject to the same approximations. Equation (9) has
plane-wave solutions of the form e®#s=*) provided that
P, satisfies Eq. (3). Evidently sharp wave packets which
satisfy (9) correspond to the classical particles just
discussed.

It can be shown that the momentum eigenfunctions
of (9) corresponding to real energies do not form a com-
plete set for arbitrary ##. However, there is no difficulty
if 4# is small in comparison with unity.

In the case of a spin-§ particle, the principal results
are as follows: The generalized Dirac equation is

ey +my=0, (10)
where the I" matrices satisfy
Terr 41T =2 (n* — Ch*) . (11)

Operation on (10) with the operator I'*d,—m just gives
back the generalized Klein-Gordon equation (9). Thus
plane-wave solutions of the form #(p) exp (ip,x*), where
#(p) is some four-component object, exist if p, satisfies
Eq. (3).

One possible representation of the I' matrices in terms
of ordinary y matrices is I'*=b,#y*, where to first order
by* is given by

b)\”ﬁé)\”—'%Ch)\“. (12)

The detailed properties of the spinor functions are
not needed here. However, one result is of interest: It
can be shown that the spinors may be chosen in such
a way that the generalizations of the usual “projection
operators” used in reducing spinor products to traces
are, to first order,

> P (Fp)us® (£p)

spins

« Loy (pu—3Chpr)Fmlva, (13)
where @ and & denote spinor indices. The proportionality
constant depends on one’s normalization convention.
This differs from the usual result by the factor propor-
tional to 7z, .

There are no “spin effects” manifested in Eq. (10).
This is a consequence of the neglect of the derivative
of hm.

We now consider second quantization. We confine
ourselves to the case of the scalar field. One might think
that it is easiest to first quantize the field with A## zero
and then apply some sort of perturbation theory. It
turns out that this is the hard way, and furthermore it
obscures the physics. Instead, we quantize directly the
scalar field in the presence of /#*, that is, the scalar field
which satisfies Eq. (9).

A Lagrangian density from which one can derive
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Eq. (9) using the Euler-Lagrange procedure is
L= —3[¢ub, (" —Ch*)+m¢*]. (14)

The canonical momentum density obtained from Eq.

(14) is
7=098L/3¢ 0= — (¢, —Ch%p ,). (15)

We will interpret ¢(x) and 7(x) to be operators satis-
fying canonical equal-time commutation rules in the
usual fashion.

At this point we assume that a Lorentz frame exists
in which all 2%=0. (As noted later, it is not at all clear
that this assumption is valid.) We quantize in precisely
this frame. The commutation rules are,-as usual, taken

to be
[¢ (x,xO) ,¢(ny0)] = I:W (x7x0) T (Y;xo):l =0,
[¢ (x,xo) )T (Y;xo)] =9 (X— y) .

We introduce the usual creation and destruction
operators

(16)

La(p),a(q)]="[a'(p),a'(¢)]=0,
[a(p),a’(q) ]=0pq-

We wish a plane-wave expansion of the operator
¢(x,2%) in terms of the ¢ and a operators above such
that the field equation (9) and the commutation rules
(16) are satisfied in the Lorentz frame with 4°=0. The
solution is easily obtained and is

i _ eimta(p)+eineral(p)
()= — :
VVE L2 —Chi) py i

where p and p, satisfy the energy-momentum-mass
relation (3) with the positive root for po and where V
is the normalization volume. Notice that this is quite
similar to the usual expansion and, indeed, reduces to
it as A — 0.

Although it is not necessary for the applications con-
sidered later, it is instructive to attempt the construc-
tion of an invariant A function satisfying the covariant
commutation rule [¢(x),0(y)]=—1A(x—y). In the
special Lorentz frame one may derive a differential
equation in A(x) using the field equation (9) and initial
conditions using the commutation rules (16). The solu-
tion of the Cauchy problem then turns out to be

(17)

(18)

Ax)=A%(x)+A(2), (19)
where )
+(x) = _1/_ / d4p eivuet
Ax(x) = 2 b e
XL pupy(nt* —Ch#)+m*10(%p0) . (20)

This expression is applicable at least in the Lorentz
frame where 4%%=0.

Now, the 8 function in (20) in general allows space-
like momenta, so that the step function (= p,), and
therefore expression (20) itself is not covariant in
general. In cases involving intermediate states, the
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S matrix contains the usual propagation function
Ac(x)=0(x)At () —0(—x) A (x), (21)

which is also not Lorentz-covariant since it involves
A= (x). Therefore the .S matrix, at least for processes
with intermediate states, is not Lorentz-covariant in
general.

One could in principle quantize in a different Lorentz
frame, but the result cannot be covariant since it
would have to apply to the A%=0 frame as well,
thereby reducing to (20). Thus we cannot obtain a
covariant theory by the canonical procedure unless
Ch* is such that the & function in (20) excludes space-
like momenta. We will return to this point later.

A formally covariant version of (20) may be written
with the introduction of a unit timelike vector n#* with
components (1,0,0,0) in the special Lorentz frame. It is

7 fd‘* ‘
P
X [ pupy (1% —Ch) FmZ (£ msp,)

In constructing the S matrix for some given process
we assume that .S contains the usual space-time integral
over field operators, positioned in such a way as to
destroy and create the initial and final particles, re-
spectively. We work in the special frame with all
7"=0. In obtaining reaction probabilities, extraction
of the result of the field operators (18) acting upon the
state vectors yields a factor for each particle which is,
for the Jth particle,

1/[=20"=Crh™®)pos].

With the exception of this result, the reduction is
exactly the same as usual.

For later applications we require the differential
probability per unit time that an initial state consisting
of a single particle 7 will convert to a final state consist-
ing of several particles F. The result is

(2m)* 1 By )

Ax(x) ==

(22)

T = (
— 2 —Crh)par\ F (2m)> —2(n®—Cph™) pop

><5(PI‘§ pr)| M2, (23)

where the various C values are obtained from Eq. (3)
applied to the various particles, and where the positive
roots are to be taken for the energies. The quantity M
is some matrix element left over in the .S matrix after
the kinematic factors are removed.

The formally covariant version of (23) is

2mr)* a*
dr = e < I pr
—2(n** —Crh®)pur\ ¥ (2m)?

B(WHPM") 6[?##‘1’”

X(W“"—CF}Z“")‘FMF?])(S({?I*%: pr)|M|2, (24)
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where we have again introduced the vector n* with
components (1,0,0,0) in the special Lorentz frame where
h%=0. Again, notice that one cannot reduce the step
function to 6(por) unless the corresponding é function
excludes spacelike momenta. Thus decay probabilities
are not in general Lorentz-covariant, independent of
whether or not intermediate-state propagators occur in
the matrix element M.

Equation (24), together with the relation obeyed by
the initial particle,

Purprr (n*—Crh*)+m?=0, (25)

and with knowledge of M, are all that is needed to com-
pute measurable quantities, in principle. Kinematic con-
straints turn out to result from the 6 and é functions as
usual. Notice that the entire formalism reduces to the
usual formalism?® in the limit 4# — 0.

One can also develop equations analogous to Eq. (24)
in cases where there are two or more initial particles,
but these are not needed for the calculations in Sec. ITI
and therefore are not given here.

At this point several remarks are in order.

(1) Negative energies and acausality in general seem
to be inherent in the propagation of free particles,
as noted earlier, and Lorentz covariance fails in the
S-matrix formalism governing interactions, as just
noted. One naturally wonders if these features can be
made to go away.

Indeed, one can fix up the formalism, provided that
h# has certain properties, in the following manner.
We note that surely there is no acausality, etc., if
universal gravitation is valid. In that case what one
does is to make a general coordinate transformation into
a coordinate system in which 4# disappears, or, equiv-
alently, in which all particles have zero effective
values of C.? Then we just have the usual nongravita-
tional S-matrix formalism, and there are no problems.
If all values of C are not the same, one can choose the
particle which has the largest value of C and make a
general transformation such that that particle is in
free fall. It turns out that all other particles are then
subject to a repulsive “inertial” field, or, equivalently,
have effective values of C<0. If %#* in the original
coordinate system is positive and diagonal (in some
Lorentz frame), then it can easily be shown that space-
like momenta are forbidden and that Lorentz covariance
is thereby assured.

The above prescription would suffice if we were
assured that ## has the requisite properties in the
gauge chosen by nature. As it turns out, however, we
are not so assured in general. Indeed, if the source of
the gravitational field is dynamic, so that we have a
gravitational wave, it is well known that in the linear
approximation %# is not both diagonal 'and positive in

28 See, for example, G. Killén, Elementary Particle Physics
(Addison-Wesley Publishing Co., Inc., Reading, Mass., 1964).

2 General coordinate transformations are discussed in the
Appendix.

969

all components. Thus the above prescription cannot be
considered a general theoretical panacea.

The alternative and more natural approach is simply
to live with the situation, since it is not at all clear that
it is objectionable. First, causal anomalies associated
with faster-than-light travel have been discussed and
seem to be tolerable.?’ Second, negative-energy quanta
and violation of Lorentz covariance do occur in the
case of the Cerenkov effect. That negative energies
occur is easily seen by considering the rest frame of the
initial particle. The particle recoils from rest and there-
fore must absorb energy when it emits the quantum.
As for covariance, there clearly is a preferred frame,
namely, the one in which the medium is at rest. A com-
plete theory of this situation has been given.*

In the present case we have every right to expect
gravitational physics to depend upon motion with
respect to the source. As it turns out, the preferred
Lorentz frame introduced earlier, in which all 4%=0,
is indeed the frame in which a nonrotating source is at
rest (in a certain gauge, as noted later). The vector n*
just turns out to be the four-velocity of the source.
Thus we merely have a situation in which the interac-
tion of a collection of particles depends upon motion
with respect to the source of a background field.

A more detailed analysis of the situation would of
course be desirable but will not be given here.

(2) If Lorentz covariance is lost, then one has a
right to suspect the loss of invariance under the transla-
tion subgroup of the Poincaré group as well: One expects
gravitational physics to depend upon the position with
respect to the source as well as the motion. Thus energy-
momentum conservation, which is generated by this
subgroup in the usual picture, is called into question.
However, one expects any such effects to be negligible
if the source is large enough in extent. This latter as-
sumption is of course part of the basic framework of
approximations used here.

(3) It has been assumed in the development of
Eq. (24) that a Lorentz frame with 4%=0 exists. This is
true for the gravitational sources considered in this
work in a certain gauge which is discussed later. How-
ever, gauge invariance is violated if universal gravita-
tion is violated, and the gauge chosen by nature may
be such that no such Lorentz frame exists with the
given sources. We still assume that (24) is valid in
lowest order for the purpose of estimating rates in
Sec. III in the hope that it is not far off. (It turns out
that the vector #* disappears in lowest order.) Clearly,
however, the purely theoretical problem of describing
anomalously gravitating particles is not solved until one
understands what to do about this point.

My perspective toward the development of Eq. (24)
and toward the difficulties referred to in the above
remarks is as follows. First, there is no question but

% J. M. Jauch and K. M. Watson, Phys. Rev. 74, 950 (1948);
74, 1485 (1948); 75, 1249 (1949).



970 E. F.

that particles are in fact created and destroyed in
accordance with the above basic formalism at least in
the limit 4# — 0, because this is just the ordinary
formalism which works very well.* Second, there must
be a first-order formalism if universal gravitation is
violated—which possibility we must assume if we are
to obtain evidence that it does not happen. Third,
Eq. (24) above was developed in the most natural
fashion imaginable (according to canonical quantiza-
tion, etc.). It is thus simplest to assume that it is
correct and that the difficulties are to be lived with.
Lastly, the classical development (the discussion in
Sec. IT A) is all that is needed to find out whether or
not a given reaction is allowed. Since we do not know
h* quantitatively anyway, Eq. (24) is really only useful
to estimate rates. It is hard to see how it could be very
far off the mark for this purpose.

(4) Ttis clear from Eq. (24) that one must know the
matrix element M for a given case in order to make
calculations. It is known to zeroth order in /#*’ in most
cases directly from experiment—up to a phase. How-
ever, we do not know it to first order without making
further assumptions. A first-order term in the matrix
element in some cases turns out to modify the rates by
factors of order unity.®

One approach to the problem would to be assume
some theoretical interaction Hamiltonian in each case
and to use Feynman-Dyson perturbation theory. The
alternative, which is used in the present work, is simply
to construct the matrix element from general principles
in the same way that Egs. (3) and (9) were constructed.
We will usually assume, for no really good reason, that
the frame-dependent vector #* does not occur, and that
the same combination of field operators occurs in the
first-order term as in the zeroth-order term. In this
way one obtains a term proportional to #* with an un-
known coefficient which corresponds, roughly speaking,
to the gravitational coupling constant of the ‘“interac-
tion energy.”%

Thus, for the purposes of this work, the lack of fully
developed theories of interacting particles in a gravita-
tional field is simply translated into an unknown con-
stant for each case.

This completes the discussion of the preceding formal
development. Now I show in a simple (and artificial)
case that one indeed obtains the results expected from
the discussion in the Introduction.

31 This is well known in the case of electrodynamics. In the case
of weak interactions, with the use of the semiphenomenological
V—A4 Hamiltonian (with such additions as the Cabibbo theory,
form factors, etc.) to compute the matrix element, Eq. (24) in the
limit 2# — 0 explains at least the leptonic and semileptonic decays
very well. In the case of strong interactions, in the absence of
“resonances’ final-state differential distributions usually conform
well with the predictions of “phase space.” See G. Killén (Ref. 28).

32 The statement made in the first paper of Ref. 10 to the effect
that the “phase space” itself is of first order in %#” is incorrect.

3 There is also a term proportional to #/, but it only serves to
correct the interaction coupling constant (e.g., the charge) within
the present framework of approximations.
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Let a zero-mass particle with C=—1 (so that it is
“repelled”) convert into two particles, each with mass
m, with C=0 (so that they are “weightless”). All three
particles are “too light” but the initial particle is more
so than are the final particles; thus we expect the reac-
tion to be allowed. In the normal case with #*=0 the
reaction is forbidden.

Let the momenta of the initial and two final particles
be k, p, and g, respectively. We assume that the matrix
element is constant and take the constant to be unity.
We take /# to be diagonal with all components positive
in some specified Lorentz frame. Equations (24) and
(25) become, respectively,

1 1

T=
(2m)® —2(g™ 4o\,
X8(pupon® +m2)6(ququm* -+m2)6(k— p—q)

d*pd*q 6(po)0(qo)

and
— ket =k,

The integral in the first equation depends on 4* only
through the vector &,. It is a standard Lorentz-invariant
integral and has the value

[ 1—4m2/ (— bl ) 120 (ko) 0 (— b ey
X OL (= kukyn#)12—2m].

From the second 6 function, %, must be timelike. The
quantity (—k,km*)!/2 in the third 6 function plays the
role of an effective mass. Its square is indeed positive
by virtue of the second equation above, the right-hand
side of which is positive because #** is diagonal with all
components positive in some frame. This “mass” must
be greater than 2m according to the third 6 function.
Thus the threshold in the special frame is given by

k02k00+ |k ] 2h1124m2 ,

where the 1 axis is the direction of propagation. To a
good approximation k¢~|k|, and we get the threshold
condition

ko> 2m (004 )11z

in the frame where 4 is diagonal.
Dropping a term of higher order in 4#, the rate is

I~ ———

167{‘]80

Ee i

1 /1—dm\ 12
( > 0(ko) 0k e, Jov)

X O (ukeu )12 —2m) ].

Notice that 1/T" does indeed transform like the zeroth
component of a vector so that the correct time-dilation
factor is ensured.

It is easily seen that the initial particle has a “rest
frame” in which the three momentum is zero, in spite
of its zero-mass value. One can work out the detailed
kinematics of the final particles in this frame in the
usual way: Each particle has energy %(k,k./4#")1/2, the
momenta are equal and opposite, and the direction of
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one of them is arbitrary. One may then transform into
the lab frame with a velocity parameter which is easily

shown to be
Bl — 5 (0247 1)

to first order with #* evaluated in the lab frame (not
necessarily the special frame). The 1 axis again refers
to the propagation direction.

Clearly the reaction occurs, as expected, and the
working out of further details would be straightforward.

III. SPECIFIC CASES

It is reasonably straightforward to apply the formal-
ism in Sec. II to the processes involving photons and
neutrinos mentioned in the Introduction. The compu-
tational techniques differ in only two ways from
standard ones: First, any 6 function of the form
0(pu+nl ) is expanded in a power series in z,*. The
zeroth order term is kept, while the first-order term,
proportional to a § function, and all higher orders are
dropped. (In this way it turns out that all noncovariance
goes away in practice, to first order.) Second, it is con-
venient to make general coordinate transformations
into systems in which certain particlesare in free fall.
This is discussed in the Appendix. Other than that, there
are no significant differences from ordinary particle-
physics computational techniques, and most of the
details are omitted in the following.

It is emphasized again that all thresholds and kine-
matic constraints quoted below depend only on the
energy-momentum-mass relations and on energy-mo-
mentum conservation. The expressions for the rates
themselves depend upon the validity of Eq. (24).

A. Estimation of Field

It is convenient first to discuss the numerical value
of w.

In spite of one’s intuition, it does not seem to be the
case that the field due to the entire universe can even
be estimated qualitatively from something like the
Robertson-Walker model with a knowledge of the
Hubble constant and the density of the universe. This
is independent of the question of whether or not the
universe is closed. Indeed, the algebraic sign itself is
not determined.?

# We may write the Robertson-Walker metric as ds?= —df?
+R2(t) (de2+-dn2+-de)[1+5ko? ]2, where £, 7, and { are dimen-
sionless markers, p?=£2+n2-+¢2 and k==1 or 0. The density of
the universe and the nebular red shift can be used in principle to
measure R (f) and & by a well-known procedure. This is all that is
interesting if general relativity is valid. However, if it is not then
we must relate £, 7, and { to some ‘“‘absolute” coordinates mea-
sured by “weightless” matter in order to express gt as n*—h#,
For example, it may be that £=x/7, etc., where w, y, and z are
the absolute coordinates and 7, is some characteristic length. In
that case there is no way to measure 7, using normal astronomical
matter (which gravitates normally). Therefore we cannot even
estimate #* by such means because the metric tensor contains a
completely unknown parameter. Some other, no doubt unusual
approach to the problem is needed before one can say anything.
T would like to thank E. Toton for a discussion of this point.
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The procedure I follow here is to compute the field
due to the largest local subunit of the universe and then
argue that this gives a limit on the magnitude, if not
the sign, of 4. If the sign is wrong, certain conclusions
are altered.

One obtains a differential equation in 4#* either from
the linear approximation to Einstein’s equations or
from the tensor field approach to gravitation. With the
present conventions it is

D h;w_i_nu)\,rlvuh ‘)\U_nv)\hua'a)‘__nu)\hua’a)\
= 167G (T*—»T)

where 7% is the energy-momentum tensor of the source
and T'=T,*. The equation is invariant under the gauge
transformation

h;w — hﬂy+7]l’)\£“,)\+n“)\£l’,)\ . (26)
We choose the gauge
(=) =0, @7)

where 2= /,*. One then finds that the above field equa-
tion becomes a standard wave equation

Q= 162G (T#—nT) .

We assume that 7'* refers to a nonrotating, homo-
geneous, uncompressed, spherical body with mass M
and radius R. With the boundary condition that /# — 0
at oo, the interior solution of (28) is

= (2GM /R) (2nrw~+-nw) |

where #* has components (1,0,0,0) in the rest frame of
the body. (n* is, in fact, the four-velocity of the body.)
Thus ## in the gauge (27) is indeed positive and
diagonal in the rest frame of the body. It is also iso-
tropic, and it is constant everywhere within the body.35

We take the body in question to be the local cluster
of galaxies. Using the experimental parameters, one
obtains

(28)

r<R (29)

2GM /R=8X10"">~10"°, (30)

Note that (30) is small, so that the linear approximation
is probably justified.

The solution (29) is subject to the gauge ambiguity
(26). Further, we do not really know the boundary
condition at infinity: If 2" — const at infinity, then the
constant is to be added to the above solution (assuming
that the constant is small). Whatever is the gauge
chosen by nature, we expect it to depend upon large
distances characteristic of the source so that any gauge

3 The gauge function which carried Eq. (29) into the linear
approximation to the normal Schwarzschild interior solution is
i\ ek = QGM /R)[ —} (1+s2)ntn?+-sts? —q#], where s* is
a spacelike vector with components si=x/R, s°=0 in the rest
frame of the body, with #* the coordinates of the field point mea-
sured from the center of the body.

36 The radius R is estimated from the volume and the latter is
given by C. W. Allen, Astrophysical Quantities (The Athlone
Press, University of London, London, England, 1963). The mass
M is calculated neglecting any mass other than the masses of the
galaxies themselves, and assuming 1.2)X10% solar masses per
galaxy.
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function added to the solution is also effectively con-
stant in the neighborhood of the earth. Thus we
expect (29) and (30) to be correct to within an additive
constant tensor. If we assume this constant to be non-
negative in all components, then we have a lower limit
on the field,

b2 1078 2ntn+q») . (31)

The magnitude of #* satisfies the limit (31) even if
the unknown additive constant tensor is negative in all
components, unless the constant is fortuitously of just
the right magnitude to cancel (or nearly cancel) the
numerical value on the right-hand side of (31). This
latter possibility is extremely unlikely, since the con-
stant depends at least in part on the large-scale struc-
ture of the universe. Further, a cancellation would
imply that the interior of the local cluster of galaxies
occupies a privileged position in the universe; the
same cancellation would not occur in some other cluster
with different values of M and R.3” We assume that no
such cancellation occurs.

If 7#* were to be negative rather than positive, the
conclusions of this work would be essentially reversed,
e.g., P — P-+v would be allowed if P were too heavy
rather than too light.8

Case 1: P — P+vy

We may call this process ‘“elastic decay,” after
Feinberg.?6 It turns out that it only proceeds if the
energy of P is above a certain threshold, as in the
Cerenkov effect. It is of course necessary that the
particle P have some kind of electromagnetic coupling.
In the following the rate is estimated to first order in
£* and in the fine-structure constant.

In this case, Eq. (24) is best transformed into a
general coordinate system where the particle P is in
free fall. (See the Appendix.) After dropping terms
explicitly proportional to %#**, one obtains

1
(27)2 2p0
Xa{knku[ﬁ'“"(l—c)h"”:]}a(ﬁ—q—k) |M‘ 2)

'~

f diqdh 0(g0)0(ke)3(gug, "+ m?)

with
Pupi*+mP~0.
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Here, p, ¢, and % refer to P initially, P finally, and the
photon, respectively, and m and C are the mass and
C value, respectively, of P.

If P is a point charge, itis well known that the matrix
element to zeroth order in % is, up to a sign,

M=e (PM+ Qu)"lwfv ’

where e is the charge® and where ¢ is the photon
polarization vector. In a Lagrangian theory this is the
matrix element of the operator 7,7*'4,. We assume that
the appropriate momentum space projections of j,
and 4, still occur to first order in 4#’, in which case the
appropriate generalization is to merely add a term in
h* to n#.% I'urther, in the case of an unpolarized spin-
particle, one picks up another factor in the matrix ele-
ment proportional to #* due to the properties of the
projection operators, Eq. (13). In summary, for either
spin 0 or spin 3, we have for a point-charge particle

M=6(P.M+gu) (n“”—Kh“”)fn (32)

where K is some constant. (We assume here and in the
following that the particle is unpolarized.)

If we do not have a point charge, then (32) be-
comes, neglecting magnetic and higher electromagnetic
moments,

M=eF (Q2) (pﬂ_*— (Iu) (n‘“’-Kh"”)ev )

where (2 is the invariant momentum transfer,

Q= (pu—q 0" (p—q) ,

and where F/(Q?) is the form factor. It could also be a
function of invariants formed using #* and, since one
has intermediate states, using the frame-dependent
vector n*.

From consideration of the properties of photons in a
constant static field, analogous to Egs. (9) and (10), it
can be shown that k.m*’, is zero as usual in the electro-
magnetic gauge we are using.

In a given Lorentz frame we define a unit vector x in
the direction of the photon momentum % and an aniso-
tropic “inverse index of refraction” #~!(x) such that
ko= |k|n(x). The quantity # is obtained from the

(33)

@i root of the second & function in the above rate formula.
ai: It is

=0 (=A%) +{(1=C)*(h*%:)*+ L+ (1= CO)h*J[1 = (1= C)hear; ]} 2

n

14(1—C)A%

Without specific assumptions concerning %##*, the rate
formula reduces to

/ kodkodQ10(ko)0(po—ko) | M | 2

X atk#kva —C)h — Zﬁnn“”kv] )

37 A similar argument has been given by M. L. Good (Ref. 5).

381t is of course possible in principle for some components of
h# to be positive and others negative. We assume that this does
not happen.

T~ ——— -
(27I') 24?0

1 —5(1=CO) A 2h% i+ bk ], (34)

and one obtains a kinematic condition on the photon-
emission angle and energy:

n! ko [1—(n1)2
costi= h(1+ _0[_<_>2> ,
B 2po (n71)?
where 8 is the initial velocity of P.

% The units are such that e?=4ra, where « is the fine-structure
constant.
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The quantity #»* is a function of angle, and it is not
necessarily the case that it is easiest to emit in the
forward direction. Nevertheless, the threshold for emis-
sion in the forward direction itself, which we label the
1 axis, is given by

B> gy~ — 1 (1—C) (B4 200+ 1) . (35)

Thus, since <1, emission in the forward direction, at
least, does not occur for positive ## unless C<1, as
expected.

For a point charge, the rest of the problem is easily
solved analytically if we assume that ## is diagonal and
isotropic in some Lorentz frame, as in Eq. (29). We
compute in this frame. It is the lab frame if we use
Eq. (29) with n#= (1,0,0,0) and if we neglect our motion
with respect to the local cluster, which we do. In this
case, Eq. (35) with #%=0 gives the true threshold; the
energy distribution is

dl~a sinddk, (36)
with maximum energy po; and the total rate is
I~ap[ (1—n)—(A=B)F/A—n""),  (37)

where higher orders in both 1—#"! and 1—3 have been
neglected. The quantity # ! is given by Eq. (35) with
=0 and cosf is determined above from £k, The
azimuthal distribution is of course uniform. Equation
(37) applies to the point-charge case only.

The above results are independent of the constant K
in Eq. (33). The radiation is polarized in the (pk)
plane, as in the Cerenkov effect. Both of these circum-
stances are a consequence of the assumption that %* is
isotropic.

We make numerical estimates in the lab frame as-
suming the limiting value ~107% from Eq. (31) for
W= = 2= }*. The velocity threshold is

1-851078(1—-C),

which with (1—C) of order unity corresponds to
energies in the 100-GeV range for particles with mass
in the 100-MeV range. Now consider as an example the
rate, Eq. (37), neglecting 1—8 and taking p, to be 1
TeV. One then obtains a mean radiation length

1/T~3X10~ cm/(1—C).

If C<1, the particle of course radiates energy until its
velocity drops to the threshold value. The above result
clearly shows that this happens in a distance which is
much smaller than what can be resolved with normal
measuring instruments. Therefore, for experimental
purposes the actual observation of the particle above
threshold shows that the reaction does not occur. In that
case we immediately obtain a lower limit on the value
of C for the particle.

It is easily seen that the above consideration is not
modified if the particle is not a point charge. Consider
a crude model in which the form factor in the matrix
element, Eq. (33), is a step function which cuts off at
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some reasonable momentum transfer, say, 0?~1 GeV2
It is easily seen from the kinematics that

@ =kel1—= ()] (n 7).

This gives 0*~2(1—C)107%,? with the present estimate
of ##. We cut off the integration of the differential
formula, Eq. (36), at the value of k¢ corresponding to
@?>=1 GeV2 This value is ky~103/(2(1—C))'? GeV.
With po~10? GeV as just discussed this cutoff is of the
same order as the limit imposed by conservation of
energy. Therefore the rate, Eq. (37), is modified by a
factor of order unity, the radiation length is still far too
small to be resolved normally, and we again need only
observe the particle above threshold to set a limit on C.

In the case of a neutral hadronic particle, we have a
form factor which is zero at small Q* but which acquires
appreciable structure at Q*~ (0.1 GeV)? and above.
An appreciable amount of the radiation occurs in this
range, and the same conclusion follows for this case
as well: We only need observe the particle above
threshold to set a limit on C.

All presently known particles except the neutrinos
and the graviton (and the photon) are either charged
or are hadrons. The above qualitative argument is also
inapplicable to those particles whose decay length is too
short to be resolved anyway (a% 7, N*, etc.). It is
applicable to all others.

It is easily seen from Eq. (35) that the higher is the
velocity at which we observe the particle, the smaller
is the limit we can set on 1—C.

The existing experimental situation is, in part, as
follows:

Except in the case of the electron, the threshold
energies are in the 100-GeV range, assuming the lower
limit (31) for 4. This is above the range of existing
particle accelerators and therefore, for the present, one
must turn to cosmic rays to see what may be said.

In practice the identification of charged particles
above ~100 GeV using techniques such as magnetic
spectroscopy is extremely difficult, if not impossible,
when the source is weak and not collimated, as is the
case with cosmic rays. Among the charged component
one can distinguish hadrons, electrons, and muons from
each other because of their qualitatively different inter-
actions in matter, and that is about all one can say
about an individual particle.

In the case of hadrons one could attempt some sort
of self-consistent analysis of existing hadronic shower
data: If the = or the K, say, had essentially zero decay
length because of a value of C less than unity, then the
development of a shower started by a proton might be
expected to have qualitatively different features. A
study along these lines appears worthwhile but it will
not be pursued here.®

In the case of the muon, we may actually set a limit
using the well-known underground experiment of

9T would like to thank G. B. Yodh for a discussion of the
cosmic-ray situation.
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Bergeson ef al.*' The maximum muon energy observed
in this experiment is ~10 TeV, which is well above
threshold.

The limit for the muon is sensitive enough so that
we must really take into account the possibility that
the photon itself is slightly anomalous.!® Consideration
of the formulas earlier in this section shows that one
must replace the quantity 1—C, where C refers to the
particle P, by C,—C, where C, refers to the photon.
(Thus the elastic decay process really measures the
difference between the gravitational coupling of the
particle and that of the photon.)

With the above proviso, one obtains a limit?

Cy—Cu=(1—C,)—(1—-C,)S5X1075. (38)
This assumes the existence of muons at 10 TeV and the
limit on %**, Eq. (31).

Evidently we have good evidence that the gravita-
tional coupling of the u is af least that of the photon,
provided that the boundary condition on /##” at infinity
does not turn out to change its sign. This latter possi-
bility is discussed later in connection with the process
v — P+P.

A study of existing electromagnetic and hadronic
shower data should allow one to put very precise lower
limits on C for electrons and protons (the latter because
the proton must be the primary object which starts
most of the hadronic showers).® Another interesting
possibility would be to obtain a limit for the electron
from the E6tvds experiment and to use air-shower data
together with the y — P+ P effect discussed next to set
a precise limit on C, itself. However, these questions
are not considered here.

Case 2: 7—>P+P

We will call this process “spontaneous pair produc-
tion.” It clearly is related to the preceding process. It
should proceed if either P or P or both is too heavy.
However, we assume here that the particle and anti-
particle have the same gravitation. We again calculate
to first order in %#** and in the fine-structure constant.

The decay rate may be written in a general coordi-
nate system where P and P are in free fall:

1 1

I~

C (2m)2 2k,

d*pdq 0($0)0(q0)6(puprn®+m?)

Xo(qugm*+m*)o(k—p—q) | M |2,

4 H. E. Bergeson, J. W. Keuffel, M. O. Larson, E. R. Martin,
and G. W. Mason, Phys. Rev. Letters 19, 1487 (1967). It should
be noted that higher muon energies than those quoted in this work
have been quoted elsewhere; however, I have not given the other
data the attention sufficient to feel justified in using it here.

4 The appropriate number quoted in the first paper of Ref. 10
is in error.

41 would like to thank C. W. Misner for suggesting these
possibilities.

(39)
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where the photon momentum %, satisfies
— k= (C— 1)k, ke, (40)

and where C refers to P and P. The problem is very
similar to the example discussed at the end of Sec. IT
and one can easily show that the “rest-frame” kine-
matics is the same if C>1 and if 4#* has reasonable
properties. However, the following formulas apply to
the Lorentz frame in which 4* is given, presumably
the lab frame.

The matrix element for a point charge is the same
as Eq. (32) except that the relative sign of p, and g, is
interchanged. We also assume for simplicity that the
unknown constant K is zero. Then the point-charge
solution with the incident photon traveling along the
1 axis for arbitrary h* is as follows: The threshold is

ko2 komin=2mn" (n1)2—17]71/2; 1)

the emission angle and energy of either final particle
satisfy
n~l
cosf = —(1
8

where 8 is the velocity of the particle; the energy dis-
tribution is

ko (n‘l)?—l>

dI‘E%a (,82?02/k02)dpo Sil’l20; (42)
the energy limits are
1 kOmin 12
e (59T
nt k()
and the total rate is
Fﬁ’.%k()a (1 - k()minz/koz):”2 (n_1—~ 1) . (43)

In the above formulas, #7 is to be evaluated using
Eq. (34) with x= (1,0,0), so that

1= 1003 (C— 1) (B4 200+ 1) (44)

We see from Eqgs. (41) and (44) that the reaction
proceeds for positive 4# if C>1, as expected.

The threshold for a final pair with mass in the
100-MeV range is in the 100-GeV range and the rates
are extremely large, just as in the electromagnetic
elastic decay case. If we neglect komin/ko in Eq. (43)
and take ko to be 1 TeV, say, then Eqgs. (43) and (44)
with the numerical limit Eq. (31) for /#* give a photon
decay length

1/I<1.6X108 cm/(C—1).

As in the elastic decay case, this circumstance is easily
seen to not be altered appreciably if the particle is a
hadron, charged or neutral, with appreciable charge
structure for (@2~ (0.1 GeV)? and above. Thus for
appreciable values of C—1 the photon would be so un-
stable that it would not be observed to travel any
appreciable lab distance. Therefore, if we observe a
single photon (in principle) at some energy, we can
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conclude with confidence that spontaneous pair pro-
duction does not occur at that energy or lower. This
allows us to set a limit on C—1 for any particle which
couples to a photon and whose mass is low enough so
that the threshold energy, Eq. (41), is exceeded.

Individual photons with energies up to 10 TeV, at
least, have in fact been observed.* Quite probably one
could find examples at higher energies by carefully
examining air-shower data; however, I shall use the
10-TeV figure. This indeed allows one to set good limits
for most of the known particles with reasonably small
mass. As in the electromagnetic elastic decay process,
one really sets limits on C—C, rather than C—1. The
limits using Eq. (31) are given in Table I for several
particles. Not all the known particles are listed, but
it is easy to add other entries since the limits given are
simply proportional to the square of the mass. A few of
the lighter of atomic nuclei are listed for completeness.

The only known particles to which the present effect
does not apply even in principle are the neutrinos and
the graviton. Thus, with inspection of Table I, we have
good evidence that the gravitational coupling of all
particles with mass a few GeV or less is af most that of
the photon, excepting possibly the neutrinos and the
graviton. This again assumes that we have the correct
algebraic sign for ##. If we have the wrong sign it is
easily seen from Eq. (44) that the conclusion is re-
versed: In that case there is good evidence that the
gravitational coupling of all particles with mass less
than a few GeV is at least that of the photon, excepting
possibly the neutrinos and the graviton.

We know that the muon, at least, neither undergoes
elastic decay nor is spontaneously photoproduced. Thus
we have evidence that the gravitational coupling of the
w is not far from normal, independent of the sign of /.
Quantitatively, the absolute value |C,—C,| is no
larger than the largest of the two limits, (38) and the
value from Table I. The largest number is the latter.
Thus, independent of the sign of #*” we have

C,—C, G,P—G,1?
C, G

=04+~2X10"4,  (45)

where distinct Newton constants have been intro-
duced to cast the result in a more conventional system
of units.

Equation (45) is the final result of this work con-
cerning the muon. The quoted “error” assumes that the
astrophysical quantities used to compute Eq. (30) are
correct, although one should probably not trust them
too closely.

4 See the review article by Y. Fujimoto and S. Hayakawa,
Handbuch der Physik (Springer-Verlag, Berlin, 1967), Vol. 46/2,
p. 115. The photons are observed in “emulsion chambers”; the
photon is produced, traverses some distance, and produces a
shower all in the same apparatus. There is no question but that
the particles are photons.
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TasLE I. Upper limits on C—C, from the formula
komin=2m/[ (C—Cy) (H0+r1) 12,
assuming Romin =10 TeV, /%= }1=1075,

Particle m (GeV/c?) (C—Cy)max
e 5.1X10™ 5.2X107°
u 0.106 2.2X10™
Tt 0.140 3.9X10*
K° 0.498 5.0X1073
p 0.77 0.012
P 0.94 0.018
A 1.12 0.025
Ny/s*(1238) 1.24 0.031
= 1.32 0.035
V:1*(1385) 1.39 0.039
o 1.67 0.056
d (H?) 1.88 0.071
a (HeY) 3.73 0.28
ce 11.2 2.5

Case 3: v — e+put+v’
This actually refers to four distinct reactions:

V#(’_’AJ - ei+.‘-‘:F+Ve(1_’e)
and

vo(9e) = eFuttv,(5,).

They are described by the same matrix element as is
ordinary u decay. The appropriate process is expected
to proceed if the respective initial neutrino is too light.

It turns out that no conclusion can be made on the
basis of existing data in this case. Further, the outlook
for further experiments is not promising. Nonetheless,
I give a short discussion in the hope that some clever
idea or another (or perhaps a better estimate of 4+**) will
eventually make an appropriate experiment feasible.

It is assumed for simplicity that the interaction is
described by the usual four-fermion V—4 interaction
in first order with no form factor effects, that the inter-
action energy is weightless in the general coordinate
system in which the problem is reduced, and that the
final-state neutrino, the muon, and the electron have
normal gravitation. We also neglect the electron mass
in comparison with the muon mass, and we neglect
radiative corrections. We compute as usual to first
order in Z*”.

The rate formula is best written in a general coordi-
nate system in which all but the initial neutrino are
in free fall. It is

I~ — [ d*p 0(po)s(pupn® +m?)d*qd*'6
2n)° 20 D 0(p0)8(pupum~+m?)d*qd*q'6(g0)
X0(q0")8(gug51*)0(q4’ g n**)
) Xo(k—p—g—q")|M|2, (46)
with
— Euhear(1— Ok b (47)

where %, ¢/, ¢, and p refer to the initial neutrino, final
neutrino, electron, and muon, respectively, C refers to
the initial neutrino, and m is the mass of the muon.
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The matrix element is assumed to be
M= (g/V2)n o ioyn(1+v5) b,y « (1475 20, 5

where g is the Fermi weak-interaction constant. Posi-
tive- and negative-energy spinor functions of the
appropriate three-momenta are to be used in the
standard way in accordance with which of the four
reactions is under consideration. We assume that no
polarizations are observed. Then, as usual, one squares
the above matrix element, and averages over initial
and sums over final spin states. This leads to an effective
| M |2 which is, to first order in %,

| M | etf~64g2ku— 5 (1— Ok 0" g3 po
if the initial neutrino is v, or #,, or
| M | ext~64g L hu— 3 (1—C) ke I pogrn g’

if the initial neutrino is », or 7,.

In the same way as in the simple case discussed at
the end of Sec. II, it is easily seen that the initial
neutrino has a Lorentz-invariant effective mass which,
from Eq. (47), is

M=LA=C)kuksh* ], (48)

and a “rest frame” in which the effective mass must be
greater than the sum of the final state masses in order
for the decay to be allowed. This in turn leads to a
lab threshold

ko m/[(1—C) (W 20"+ h™) ], (49)

with the neutrino traveling along the 1 axis.

Equation (46) is easily reduced in the ‘“rest frame.”
The detailed energy and angular distributions are some-
what complicated and only the total rate is given here.
It turns out to be independent of the type of initial
neutrino. We define a quantity

p=m/M (50)
and write the result to lowest order in /4*:
NE D0 51)
19273
70)=(1/p){ (1=p)[(14p%)?—10p2]—24p* Inp} . (52)

[The coefficient § in (51) would be unity if we had ne-
glected the term in /4* in the effective matrix element.]
There are two useful limiting expressions for f(p):

f(p) —1/p°

corresponding to a neutrino energy far above threshold,
and

as p—0, (53)

J(7) — (192/15)(1—1/p)® (54)

corresponding to a neutrino energy only slightly above
threshold.
The v factor which transforms (51) into the lab

asp—1,
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frame is easily seen to be, to lowest order,
Yo~ (1= C) (104 200 ) 17

We also make use of the fact that the expression in
large parentheses in (51) is just the V—A theoretical
expression for the p-decay rate, neglecting radiative
corrections. We take it to be the actual u-decay rate.
Then the lab mean life of the neutrino to lowest order
in /i is

Tp

2 __
T 3

[(1—C) (W4 2704112
1
>< N T b
f{m/ko[(l —0) (h(]O-I—ZhOl—}-h“)]l/Z}

where 7, is the muon mean life at rest, ~2.2X 1076 sec
=0.6X10* cm, and where f(p) is defined by (52)-(54).
The experimental situation is as follows:
We again assume the limit (31) for #* and the energy
threshold from (49) becomes

ko2 75/ (1—C)2 GeV.

(35)

Thus we again must consider cosmic rays.

Since neutrinos are so difficult to detect, the most
promising approach would be to actually search for
the decay in regions where neutrinos are known to
exist. It would have the appearance of two charged
particles being created in vacuum, or perhaps one
charged particle if the opening angle were too small
to be resolved. Alternatively, the lifetime (55) may be
so small that the decay occurs for practical purposes
right at the source of the neutrino, e.g., from a u decay.
In that case one would observe a charged particle be-
coming three charged particles. If the opening angle
were not resolvable, there would nevertheless be a
sudden increase in ionization in a medium. We examine
(55) in the high-energy limit p— 0. Using (53), this
gives

7= 21, (m /o) (1—C) (4 204 ) T

[This shows that, unlike the electromagnetic processes
previously considered, the neutrino lifetime (55) is
extremely sensitive both to 4* and to the neutrino
energy.| Let us imagine that we have a neutrino of
energy 750 GeV. Assuming (31), this gives a decay
length of ~300/(1—C)* cm, which is in a reasonable
range for observation. Of course %# could be much
larger, making = much smaller, but we can always ob-
serve the decay at the source of the neutrino as dis-
cussed above. However, one easily sees that there are
essentially zero neutrinos in existence at such energies
from, say, u decay because munons have too long a
lab decay length at such energies. Numerically, using
the known cosmic-ray muon flux near the earth,” one
estimates ~6X 10717 neutrino productions per cm? sr sec
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in a detector of length 1 meter above ~750 GeV. This
of course is hopeless.

At lower energies than ~750 GeV the neutrino pro-
duction improves rapidly. However, the neutrino decay
length rapidly becomes so long as to not be correlatable
with the source. For example, using the same figure
for ## and with C=0, one has at 150 GeV (p=0.5),
7~7X10% cm [using the exact expression (52) for f(p)].
In this case, we could simply look for isolated events.
All of the u decays in the atmosphere from appropriate

directions contribute to the neutrino flux at the earth’s '

surface. However, a rough numerical estimate shows
that even with a huge apparatus one would be lucky
to detect one event per year.

Thus it is clear that the experimental situation is
discouraging.

If there should arise some way of convincing oneself
that %*” is in fact much larger than what is assumed in
this work, then the experimental situation would im-
prove rapidly as one could consider neutrinos at much
lower energies.

One further remark is in order: If we believe that
the ‘“direct” elastic scattering interaction between e
and », and/or between u and v, exists, then the processes
v —e+é4v" and/or v — u+a+v are allowed if the
initial neutrino is too light. One could calculate the
rates in much the same way as above. The experimental
situation would still be discouraging for the », case but
not necessarily for the », case. There is at present no
laboratory evidence that the matrix element exists, and
for this reason I have not pursued the problem.

Case 4: Gravitons

The most promising method of testing the gravita-
tional coupling of the graviton itself is still probably
to observe anomalies in the orbits of the planets
(although to be sure that is not very promising®). None-
theless this would be a test involving “virtual” gravi-
tons in much the same way as the Eotvs experiment
involves ‘“virtual” photons. Since we now have evidence
that dynamic gravitational fields exist,* it would be
interesting to see if any of the techniques discussed in
the present work can be applied.
fz Processes such as g — y+v, y — g+v, v— g+, and
g — v+, where g denotes the graviton, are allowed
with respective appropriate C values. However, one
does not have to calculate anything to see that a lot
has to be overcome before one can discuss real experi-
ments. From simple dimensional analysis it is easily
shown that the rate for any of these processes is of the
form

T~GEf(h),

where £ is a characteristic energy and f is some dimen-
sionless function of #*”. At an energy corresponding to

% R. Sexl (private communication); S. Deser and B. E, Laurent
(Ref. 1).

46 J. Weber, Phys. Rev. Letters 22, 1320 (1969).
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1660 cps,*® the quantity 1/(GE?) is of order 1085 cm. At a
characteristic energy of 1 GeV it is of order 10* cm. If
we assume the function f to be proportional to %*” in
first order, the decay lengths are multiplied by ~10°.
The size of the universe itself is of order 102 cm. There-
fore it is clear that there is not much hope along these
lines.

IV. CONCLUSION

A greatly abbreviated phenomenological description
of the behavior of elementary particles in a constant,
small classical gravitational field has been given. While
far from rigorous, this description follows standard
lines which are known to apply elsewhere, and therefore
possesses plausibility. If only classical energy-momen-
tum conservation is valid, certain processes which are
normally forbidden are allowed if universal gravitation
is violated. If the validity of the straightforward quan-
tum-mechanical development is also assumed, then it
is easy to derive reaction rates. In the case of electro-
magnetic processes in particular, the rates turn out to
be such that any modifications of the formalism caused
by some hypothetical, more correct approach are not
likely to make any difference for practical experimental
purposes.

A class of experiments with which one can (in
principle) measure the gravitational coupling of ele-
mentary particles at zero momentum transfer has thus
been brought to light. (In practice, even though there
exists no prescription for calculating the gravitational
field precisely, one can at least set limits on the differ-
ence between the actual gravitational coupling constant
of a particle and that specified by universal gravitation.)
At the simplest level (the only one considered in any
detail here), one only need look for the presence or
absence of certain reactions at the requisite energies.

One sees that, indeed, some relevant experimental
data already exist. From these data, a concrete, quite
small limit on the anomalous gravitational interaction
of the muon has been given [Eq. (45)7], and limits which
are upper limits if the algebraic sign of the gravitational
field is what one expects intuitively have been given for
all particles with mass a few GeV or less which have
appreciable electromagnetic coupling (Table I).

Some future lines of effort immediately suggest them-
selves: (a) One could attempt an improved theoretical
estimate of the gravitational field by some means.
Experimental data in a much more reasonable energy
range become usable if the magnitude of the gravita-
tional field can be shown to be considerably larger than
the limit assumed here. (b) It would be useful to
examine existing hadronic air-shower data, contrasting
those features in the shower development that are ob-
served with those that would be expected if one or more
of the common hadrons (p, 7, and K, principally) had
an anomalously short decay length. In this way one
could possibly learn something about the gravitational
coupling of these particles. (c) A study of electromag-
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netic air-shower data should allow one to set extremely
precise limits on the gravitational coupling of the elec-
tron. (d) More thought could be given to the question
of the neutrinos.
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APPENDIX

The following method of making general coordinate
transformations is used to simplify rate calculations
based upon Eq. (24). (Actually, the transformations are
not completely general. One only needs general linear
transformations in consequence of the assumption that
the gravitational field is constant.)

Suppose we have a set of V particles. The energy-
momentum-mass relations, Eq. (3), are

pusbus " —Colt)+ms*=0 (J=1,...,N). (A1)
We define a set of vectors prs by
Pur=a prs, (A2)

where @, is some set of numbers. Then (A1) becomes

p_)\JﬁaJ (7)””_' CJhIw) an)‘avv_*' mJ2 = O

J=1,...,N). (A3

We choose @,* such that, for a particular particle X
p )

(' —Cxh*)a, a,"=n>. (A4)

Setting /=X in (A3) then gives a new energy-momen-
tum-mass relation for particle X :

DuxPrxn*+mx?=0. (A5)

A solution of (A4) which defines @, to within a Lorentz
transformation is the matrix

anx = (6M)‘_ CXhu)‘)_lm s

BEALL 1

which is defined by its power-series expansion
e =8 M3Cxh M-3C2h2h M - -

We substitute this expression into (A3), drop the higher-
order terms, and obtain

Puabvi[n*— (Cy—Cx)h* 4+ m 0

(J=1,...,N). (A6)

Equation (A6) defines a set of energy-momentum-
mass relations which to first order in %* is equivalent
to the original set. One can use whichever set is con-
venient in a specific case.

We may, if we wish, say that p,s and p,s denote the
same vector expressed in different general coordinate
systems. Equation (AS), or Eq. (A6) with J =X, shows
clearly that particle X is not subject to a gravitational
field in the barred coordinate system. That is to say,
particle X is in free fall in this system. Also, the magni-
tude of the effective gravitational field (or, equiva-
lently, of the appropriate coupling constant) acting
upon any other particle is reduced in accordance with
Eq. (A6).

Matrix elements which occur in calculations based
upon Eq. (24) transform as follows. If 4, and B, are
any two vectors, then

A“('r]""—f-Kh’“’)B,,E[I“ n*+ (CX+K)hW:IBV (A7)

to first order.

The Jacobian factors involved in the transformation
of differential elements d*p and § functions may be
approximated by unity, and calculations based upon
Eq. (24) are still valid to lowest nonvanishing order.
The same is true of transformed 6 functions, as noted
in the text.

The “bar” notation is not used in the text; the
general coordinate system in use in each case is stated
in the context,



