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a(k) =-

(2sr) 4
dt dt'J '(s,P k,p .k, t, t')

XT*(s,t) T(s,t'), (A11)

s=P', J=2'Qfs(P, p, tf k),

A=det{(Po,p qoko)o'(P„,p„,I„t,k„)).

shell amplitude, the integrations on s& and s2 may be
performed immediatelv, fixing each at m' and taking the
residue. The result is

This result, which is only a model with no tt priori
justification, looks like a distorted elastic unitarity
integral, which carves out the contribution to the meson
field of the quasi-elastic scattering process.

Many other similar models are possible within this
framework. All may be tested by feeding into (A11), or
into other models, a tractable parametrization of the
off-shell elastic amplitude and treating the result as
indicated in the previous sections. This approach would
provide a completely covariant form for the investiga-
tion of uncorrelated, quasi-elastic meson production.
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General intermultiplet mass formulas between the decuplet and octet baryons are derived, based on
the chiral SU(3) SSU(3) charge algebra and the asymptotic SU(3) symmetry imposed only on the charge
operator Vz which is the SU(3) raising or lowering operator in the symmetry limit. In the absence of
particle mixing, the formulas take on a simple form and are useful as a first guide in deducing baryon mass
spectra. Inclusion of particle mixing is possible. The formulas imply that the equal squared-mass spacings
of decuplet states (S,)' (a specifies the quantum numbers of the a decuplet) are universal Li.e., (S,)'= const)
and, furthermore, equal to the universal spacings of the and Z members of any octet baryons. In the case
of the usual ~+ and $+ baryons, the formulas coincide with the well-known SU(6) mass formula. Broken-
SU(3) sum rules (in the absence of mixing) for general transitions of the form (octet baryon) ~ (octet
baryon)+7r (or l+P) are also obtained. In particular, the strong decays, -,'—+ —,'++v and —,

'+ ~ —',++-n, are
discussed in detail. The sum rules, in general, give rise to significant SU(3)-breaking effects. However,
for the familiar axial-vector -', + » —',++l+f transitions, our broken-SU(3) sum rules assume the same forms
as satisfied by the hypothetical exact SU(3) couplings. This justities the use of the original Cabibbo analysis
Pin broken-SU(3) symmetryg in determining the value of the axial-vector Cabibbo angle.

I. INTRODUCTION
' 'T now seems that we have infinite varieties of baryon
~ ~ excited states, and even the recurrence of baryons
with the same spin and parity has been confirmed. ' For
the SU(3) mass splitting, the Gell-Mann —Okubo
(GMO) mass formulas have been very successful. There,
particle mixing, if it exists, plays an important role. In
this paper, we are mainly concerned with the following
two questions: (i) Is there any simple intermultiplet
regularity among the complicated baryon mass spectra?
(ii) How far is the use of exact SU(3) symmetry for

*Supported in part by the National Science Foundation under
Grant No. NSF GU 2061.

t Supported in part by the National Science Foundation under
Grant No. NSF GP 6036.' See, for example, R. D. Tripp, in Proceedings of the Fourteenth
International Conference on High-Energy Physics, Vienna, 1968
(CERN, Geneva, 1968), p. 179;and also H. Harari, ibid , p. 195. .

the baryon couplings justified in the real world? We
approach these questions by using the well-known
chiral SU(3)CASU(3) charge algebra' and the asymp-
totic SU(3) symmetrys imposed only on the charge
operator Vx which is the SU(3) raising or lowering
operator in the symmetry limit. The VIt-. may be written
(for example, in a quark model) as

Vzo= i d'x V—p '(x) =-', g(x)yp(Xp+ikp)tI(x)d'x.

' M. Gell-Mann, Physics 1, 63 (1964).
3 S. Matsuda and S. Oneda, Phys. Rev. 1"l4, 1992 (1968). For

a review, see S. Matsuda and S. Oneda, Nucl. Phys. B9, 55
(1969). Our approach is not a saturation by low-lying states.
However, our asymptotic symmetry allows us to truncate the
sum over the complete set of intermediate states, though only
in the appropriate infinite-momentum limit. Although we work
in the infinite-momentum frame, the result is always manifestly
covariant.
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We also define other vector and axial-vector charges
V; and A; (i =7r, E, etc.) in an analogous way.

II. ASYMPTOTIC SU(3) SYMMETRY

Our asymptotic symmetry assumes that even in the
broken world the operator Vl~ behaves as an exact
SU(3) generator to a good approximation but only at
the appropriate zero-momentum-transfer limit. In the
presence of SU(3) mass splitting, this limit can only
be realized by taking an appropriate infinit mom-entum

limit. In this infinite limit, the Vz connects only the
members of the same SU(3) multiplet and the values
of its matrix elements are known. If particle mixing is
possible, then asymptotic symmetry will be applied
after we introduce the mixing angle in this limit. '
Together with the use of the usual current algebra, this
asymptotic symmetry can deduce many broken-SU(3)
sum rules. ' However, one now proceeds further and
asks: What are the commutators involving the time
derivative of the Vrr? If we write the SU(3)-breaking
Hamiltonian as eH', Vx =ei/Vx, H' j.The cornmutators
involving V~ will, in general, be complicated. However,
the following commutators are particularly convenient
and useful, since they are independent of the unknown
coupling constant e of octet SU(3) breaking:

Lvxo, Uxor=0 and LAxo Vx'j=0.
The latter is valid under a rather general class of models
of SU(3) breaking, ' i.e.,

eH' = g g(x)As'(x) d'x+ f ds;, V„'(x)V„'(x) dx

+ hds;, A„'(x)A„'(x)d'x.

Here g, f, and h are arbitrary constants, and d;, i, is the
SU(3) d symbol. Note that Lvxo, vxof=LAxo, vxo)=0
also holds. Therefore, these commutators may represent
the rather abstract nature (independent of e) of SU(3)
breaking.

III. DERIVATION OF INTERMULTIPLET
MASS FORMULAS

We now show that, together with these commutators,
our asymptotic symmetry leads to an interesting inter-
relation of masses, mixings, and coupling constants.
Since our result is general, let us denote the individual
baryon octets and decuplets by the symbols 8 '
(X„A„Z„,) and 8 "(A„F, ,*,Q,), respectively. The
subscript a specifies the quantum numbers such as J~,
etc. First we note that the commutator Lvxi, Vrroj=0
always leads to the quadratic GMO mass formulas. ' 4

4For similar but not identical approaches, see, for example,
S. Fubini and G. Furlan, Physics 1, 229 (1965); G. Furlan, F.
Lannoy, C. Rossetti, and C. Segrh, Xuovo Cimento 40, 597 t,'1965) „
K. ¹ishijima and L. J. Swank, Phys. Rev. 146, 1161 (1966).

Consider, for example, the matrix element

& .(q) ILv,v jl=-.o(q)&=0

with
I ql = 0e. Then if there is no mixiug, our asyrnp-

totic symmetry for the Vxo (denoting the mass of A„,
for example, simply as A,) gives

3(A 0)2+(g 0)s —2L(~ )s+(g e) j (o. is arbitrary). (2)

For the ground-state -',+ baryons (1V,A,Z, ), this «»tion
is well satisfied: 5.14 GeV' on the left, and 5.23 GeV'
on the right. Barring the possibility of complex mixing,
this indicates that the mixing between the usual ~+
octet and other higher lying ~~+ baryons is small.
Exactly in the same way, the assumption

I
Vxi, vrro) =0,

taken between the appropriate decuplet states with
infinite momentum, leads (again in the absence of
mixing) to the GMO formulas

(f~.') —(=.*)'=(=.*)'—(U.)'
= (V,)'—(6,)'= (8,)' (a is arbitrary), (3)

i.e., equal spacing in the squared-mass spectra. We
always obtain quadratic mass formulas for baryons as
well as for mesons. ' For the ground-state —,'+ decuplet

(D, U, *,0), Eq. (3) experimentally reads (we write
M'&I'M) 0.46+0.01=0.42+0.05 =0.39&0.16 in GeV'
Therefore, compared with the case of ground-state ~+

baryons, there seems to be a little more room for
mixing effects in the SU(3) formula for the ground-state
—,'+ baryons. This could be rather significant. There is
an experimental indication' of rather large SU(3)
breaking in the ground-state decuplet decays. Our sum

rules without mixing3 ~ are in the right direction to
explain experiment, but are not sufficient. However,
with mixing, the explanation is certainly feasible. We
also remark here that, as is shown below, the same

quadratic GMO mass formulas for octets and decuplets
can be derived (again in the absence of mixing) also
from the commutator Lvrro, Axo)=0, using the same

asymptotic symmetry. This demonstrates the internal
consistency of our asymptotic SU(3) symmetry.

We now wish to demonstrate that, if we discard
particle mixings, there exist simple interrnultiplet
regularities which hold in our approach on the same

footing as the GMO mass formulas without mixing. If
now we insert both the commutators, I Ufo (and
Vzo),A xoj =0, between the 0, (q) state of 8,"and the
Zs—

(q) state of Bss with lql =~, the asymptotic
symmetry implies

(fl. (q) I
Ax'l=s(q)&(=s(q) I

Vx'I» (q)&

=&n.-(q)
I
v. I™.*(q)&&=-.*(q) IA l»-(q)),

(fl;(q) IAx l=s(q)&&=. s(q) lvx l~s (q)&

=(fl;(q) I
Vx 1=..*(q)&&=".'(q) IArr'l~s (q)&.

5 For full details of decuplet ~ octet+z transitions, see' G,
Fourez, Nucl. Phys. (to be published).
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These two equations are compatible only if

E(- b)
—E(Zs) =E(Q,) —E(,*)

with
I q I

= ae, where E( s), for example, denotes

[fq I'+( s)'7'i'. Then we obtain an intermultiplet mass
formula between the a decuplet and the b octet,
(0 )' —(Z,)'= ("s)' —(Zs)' This, together with Eq. (3),
gives ("s)' —(Zs)'= (8,) . Since a and b are arbitrary, we
thus derive hybrid-type intermultiplet mass formulas,

(Ps) —(Zs) =(8 ) =const (aandb are arbitrary). (4)

Thus, neglecting the mixing, we predict that the equal
squared-mass spacings of decuplet states (8,)' are
universal [(5.)'=const7 and, furthermore, are equal to
the universal spacing of the ™and Z members of any
octet baryons. Thus we feel that the scale of baryon
mass spacings is established. ' Our intermultiplet mass
formula, Eq. (4), suggest that the squared mass of the
baryon with spin and parity J~, hypercharge I', and
isotopic spin I can be expressed as follows:

/if'(~, V,/) = 9 )+N+vV(l'+1) 'V'). —-

Here n is a constant independent of I and V. P and y are
the universal constants which take the values P 0.42
GeV' and y 0.086 GeV', respectively. Quadratic mass
formulas are, in fact, very natural. One naturally
expects that the linear mass splitting should become
small for higher-lying SU(3) multiplets. Our quadratic
mass formulas, Eq. (4), are consistent with this
expectation.

We note, however, that these intermultiplet mass
formulas will be modified more significantly than the
GMO formulas if particle mixing takes place. We have
shown that the GMO formulas are derived from the
commutators involving two Vz's, i.e., [Vzo,Vz'7=0.
If mixing arises, the formulas will be modified to involve
sin'8 and cos'8, where 8 is the mixing angle. However,
our intermultiplet formulas are based on the
[Az', Vz07=0 which involves only one Vz. Thus the
modifications of these formulas depend linearly on sine
and coso. Therefore, even a rather small mixing angle,
which hardly affects the GMO formulas, may modify
the intermultiplet formulas [Eq. (4)7 appreciably.
Nevertheless, we believe that the simple formulas

[Eq. (4)7 obtained without mixing are useful as a first
guide in determining the baryon mass spectra, as were
the GMO formulas without mixing. Once mixing is in-
volved, Eqs. (4) become sum rules which involve not
only the masses and mixing angles but also coupling
constants. These sum rules will not be very useful until
more experimental information becomes available. At
present, no higher-lying baryons are unambiguously es-
tablished. Nevertheless, we consider the octets ~ and
~+ of baryons, assuming that their present spin-parity

'Similar intermultiplet sum rules for the boson cases are
E —7f. =%+2—pm=A+ (1420)—A /=ED~ —A j2= ' gs~=m„, etc;
S. Matsnda and S. Oneda, Phys. Rev. 179, 1301 (1969).

assignments are correct. We use the following experi-
mental mass values and notation: ss [1V'(1688),
A'(1815), Z'(1/65), g'(1930)7 ' 7 s+ [cV"(1688),
A" (1815),Z" (1940), "(2030)7"For Eq. (4) we then
obtain (-)'—(Z)' =0.31, (- ')' —(Z')' =0.60a0.22, s

( ")'—(Z")s=0.36+0.22 in GeU', whereas the average
of the quadratic mass spacing of the ground-state ~3+

decuplet is (6)s=0.42&0.16 in GeUs. The result looks
rather reasonable considering the fact that the first-
order mixing eRect has been neglected.

IV. SUM RULES FOR TRANSITION
B s +Bss+p (OR l+v)

We now discuss the strong and weak axial-vector
semileptonic decays between octet baryons, 8,' —+

BssjP (or /+i). In exact SU(3), these couplings are
usually parametrized by the D and P couplings with a
unique D/P ratio. We show below that this parametri-
zation cannot be expected in general to work well in
broken symmetry, with the important exception of the
B,'~B,s+/+i7 decay with a=-,'+. We consider, for
example, the commutator Az+= —[Vzo,A +7 and in-
sert it between the appropriate &Bbs(q) I

and IB,'(q))
states with fq I

=~. With our asymptotic symmetry
we obtain six linearly independent sum rules which
are given, for example, by

&Ps I
A z'I ~.&

= &Zs'I A-' I~.&
—(&s)&Ps I

A-'I ~.&

&~, IAz IZ.-&= —(g-,')&Z,oIA. IZ.-&
+(Q-', )&A IA.+Iz,—),

IZ:&=&Z+IA-. IZ. &

+(v's)&PslA-'f~. ), (5)

« IA'I™;&=-(4-:)&=-"IA-.I™.-&

+&~,IA. IZ.-),
&Zs+IAz I=.')= —(&s)&Zs+IA- IZ.'&

+(v'l)&Z IA. I~.&,

I=-;&= (v'-', )&=- 'IA- I=-.-&

+(z,o
I
A ..I

z.-).
We also consider &tss(q) f

[VzaAz07
I
",(q)&=0 with

I q I

= ee, which gives

(Q-,')(ns' —Zs')&Zs IAz I
-.o)

—(g—')(tip' —Ag')&As IAzof/ ')
=-(4-')(Z'-=- s)&.sfAz IZ &

+ (Qs)(A —=- ')&n, IAz Ii1.o&. (6)

Equation (5) reduces to the exact SU(3) sum rules in
the symmetry limit, whereas in broken SU(3) Eq. (6)

7 We take '=1930+20 MeV from J. Alitti et al. , Phys. Rev.
Letters 21, 1119 (1968). See also K. Sarash-Schmidt et a/. , Rev.
Mod. Phys. 41, 109 (1969).

8 We take Z"=1940&20 MeV and ™I/=2030+10MeV from
V. K. Barnes et a/. , Phys. Rev. Letters 22, 479 (1969).

9 Here the discrepancy seems rather large. We note that Z'(A'
jg the present assignment.
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provides, in general, an additional constraint. '0 We
first consider the case u=b=~+ and note that, for
example, lim~~~ (p(q) I

A z+
I A(q)) =g„z.We have chosen

the spin states of (p(q)l and (A(q)I as (1,0,0, lql/
(E~+p)) and (1,0,0, lql/(EJ, +A)), respectively. g„z
denotes the axial-vector semileptonic coupling at zero
momentum transfer for the decay A'-+ p+l+v. Then
Eqs. (5) give broken-SU(3) sum ruless such as g~q

=gz+q —(Q$)g„„, etc. We emphasize the remarkable
fact that physical masses do not appear in these sum

rules and they assume the same forms as satisfied by
the hypothetical exact SU(3) couplings. However, this
is by no means true for other cases such as —,'+ —+ ~I+

+1+P. It implies that the usual way of determining

the axial-vector Cabibbo angle 8& by using exact
SU(3) sum rules is justified (rather accidentally) in
our asymptotic symmetry to the same degree of

accuracy as that of the vector angle 0&. There could be
small correction due to the neglect of mixing between
the usual 2+ octet and other higher-lying ~+ baryons.
However, as mentioned before, we expect that this
effect will not be very large, in view of the success of
the GMO mass formula for the usual ~+ octet. Thus the
present experimental indication 8& 8& (by using these
sum rules)" may indeed imply that we have only one

Cabbibo angle. We also remark that Eq. (6) does not
lead to new information in this case. Instead, Eqs. (5)
and (6) with a=b always lead to the GMO mass

formula, Eq. (2)—i.e., our sum rules are always

compatible with GMO mass splitting. We now use pion
PCAC (partially conserved axial-vector current) for
the A in Eq. (5). Since here we discuss only the pion

decays, it is more convenient to consider

does not provide additional information for the case
a =b, but it is always satis6ed if the GMO formula,
Eq. (2), is valid.

V. STRONG 2
—+ 2++m AND

~+ —+ —',++ ~ DECAYS

We now consider the cases a&b, for example,
—',——+ —',++a. and 2+~ —,'++~. The method can easily
be extended to other cases. We merely need to note, "
for example, that

lim (Z'+(q) IA..Iso(q))
Ill

=—Fis~(Z'+A)'Z' '(Z' A)gs—+~ for— Z'—=Z(~ )

lim (Z"+(q)
I A.+ I&V(q))

lel

=-',F (Z"—h)'Z" —'(Z"+A)gz-g, — for Z"—=Z(-,'+) .

Then the sum rules corresponding to Eqs. (7) and (8)
are given by

(~'+P) '(I' P)— , (Z'+Z)'(Z' —Z)
g".--+(v'-')— g~"~'~-

N"

(Z'+ A)'(Z' —A)-(v'-.') g'-.. =o, (9)
g/2

(="+=)'(-""—=),(Z'+Z)'(Z' —Z)
g=- =-'-' —(v'l)

g/2

and
&~~(q) IP xo,A.-jl Z.+(q)) =o

(z -(q) IL&,A.-HI"--.'(q)) =0
(A'+Z) '(h.' —Z)—(Q—') g ~ +„-=0, (10)

with Iql = m instead of Eqs. (5). For a=b=2+, noting,
for example, that

lim(, ) „(Z+(q) IA IA(q)) =F (Z+A)-'gz+p —,

we have obtained''0p, (2p~
g-..-+(C-:) —g.".--(4-:)I lg. —.- =o, (7)

Z Z+A

f 2"
g=. -=-.'—(v'l) —g~ "--—(~'l)l lg

'--=o (g)
Z Z+A

Here all the pion couplings are defined with a pion off

the mass shell (g '= —m ~=0). The appearance of

physical masses in Eqs. (7) and (8) no longer allows us

to use an exact SU(3) parametrization. Again Eq. (6)

The accuracy of Eqs. (5) and (6) can be different from that
of Eq. (4). If mixing is large for decuplets but small for octets,
Eqs. (4) will be affected while Eqs. (5) and (6) will not.

"S.P. Desai, S. Matsuda, and S. Oneda, Phys. Rev. 1'78, 2129
(1969l.

(&"—P)'(~"+P)
//2 g "u

, (Z"-Z) (Z-+Z)
+(v'k)- ger I +go

(Z" A.) '(Z"+/,)——(4-;) g.--,. =0, (»)
g//2

2 ~pf ll ~J

~0 +
~f/2

(Z"—Z) '(Z"+Z)—(v'2) g~"" .—

gff2

(A"—Z)'(A" +Z)
g~ z' -=0. (12)

g//2

~ For the technique of evaluation, see Ref. 5.
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Also from Eqs. (5) we can derive the relations

(~'-(q)
I
~.- IA (q)) =&A'(q)

I
~.

I
~-(q) &

and
(Z"-(q) ~A.-~Ao(q)) =(A"(q) ~A..~Z-(q))

with ~q ~

= ~, which lead to

(Z'+A) '(Z' —A) (A.'+Z) '(A' —Z)
gz x~= ——g~ z. , (13)

(5"—A) '(2"+h.) (A"—2) '(A"+2)
gz-~. = — — — -g~ '- (14)

g//2 g//2

gg" z ——(1.22) gz "~.,
respectively. The decimal numbers in parentheses will

be unity in the symmetry limit. The SU(3) breaking
indicated is of a reasonable order of magnitude and is
more conspicuous for the ~2+ —+ —,'++m decays since the
sum rules involve the squares of the mass differences.
Thus, the usual parametrization in terms of unique
D/F ratio is not expected to work very well.

Equation (6) now provides another constraint. In
order to use PCAC, we write Eq. (6) by expressing A&
in terms of 2 by using, for example, Eqs. (5):

t ( g' —nP) —( '—n ')](Zg+~A..~Z,')
=-'&3L(Z&' —At,2) —(Z '—A ')](Zp+~A~+~A. ). (15)

Thus physical masses always appear in these sum rules.
To obtain some feeling for numerical results, we write,
for example, Eqs. (9), (11), (13), and (14) by using
current experimental masses. They are

g„„+(0.88) (Q—')g ~ —(0.95) (V'$)gz.~ ——0,
g--n-+ (0 85) (&k)gz "z-—(o 83) (V'2) g' .-=o,

g~ z.= (0 98)gz ~. ,

Equation (15), together with Eqs. (9)—(14), enables
us to express all the couplings in terms of one in-
dependent coupling t in exact SU(3) one does this by
Axing the D/F ratio]. However, Eq. (15) involves
expressions like ( ~' —nq') —(,' —n,'), so that it is
very sensitive to the present experimental errors.
Therefore, at present, the two-parameter expressions

(9)—(14) will be more useful in comparisons with
experiment. '»' The above computations can be ex-
tended to other baryons in a straightforward way.

Pote added in proof If w. e apply the same approach
and kaon PCAC as well as pion PCAC to the

—+ -',++P transition, we see a more drastic effect of
SU(3) breaking. Namely, if the Yo*(1405) is a 2 SU(3)
singlet, our approach predicts for the ratio of the
Y~ pE and Y ~ Zvr couplings, R—= (gr„x/grz )
=(Y—p) (Y Z) '(F—x/F ) '~ —2.2, with Fx-F, . In
exact SU(3), R = 1.This result is also obtained recently
by Gell-Mann, Oakes, and Renner LM. Gell-Mann,
R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195
(1968)]by using a reasonable approximation in broken-
SU(3) symmetry. As a matter of fact, one can show
that this approximation can be derived from our asymp-
totic SU(3) symmetry. In the forthcoming paper we
discuss the broken-SU(3) sum rules for the general
transition 8'~ (-,')++P, where 8' is a nonet or octet
baryon with arbitrary spin and parity.
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