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Two Overlapping Resonances: Production and Decay in 8-Matrix Theory*
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We discuss the system of two overlapping resonances along two parallel lines: (A) the general restrictions
imposed on the S matrix by unitarity, and (B) the results of the Weisskopf-Wigner approximation. The
equivalence between the two is used to get a physical understanding of the formalism applicable to both
scattering and decay processes. We show that the connection between the overlap in channel space, xz,
and the overlap of the two resonances, y, is the unitarity sum rule.

' 'N a recent Letter' McGlinn and Polis raised the
& - question of constructing an 5 matrix for overlapping
resonances and its relation to the unitarity sum rule'
for the EI„E8 system. We disagree with the discussion
and results of Ref. 1 and present here a different treat-
ment of the subject. Our discussion proceeds along two
parallel lines: (A) the general restrictions imposed on
the S matrix by unitarity, and (8) the results of the
Weisskopf-Wigner' approximation.

Some of the important implications of the S matrix
unitarity for the EB-EI, system have in the meantime
been discussed by McVoy. 4 He treated the problem in
an approximate way suitable for the F8))FI, situations.
We present the general solution which is in principle
applicable to other interesting cases as well, e.g., the
A2 doublet. Upon completion of our work we were in-
formed of another discussion of the same subject by
Stodolsky, ' who follows a dynamical approach. Our
discussion necessarily overlaps with parts of Refs. 4
and 5; however, we try to follow a unified approach
along the two mentioned lines.

In the Secs. 1 and 2 we treat the well-known case of
the single resonance to establish notation and gain in-
sight into the problems involved. Sections 3 and 4 are
devoted to the analysis of the two-resonance problem
along the lines (A) and (B), respectively. In Sec. 5 we
discuss the connection between the overlap in channel
space and the overlap of the two resonances. This is,
in fact, the unitarity sum rule. The further discussion
of the discrete symmetries in Sec. 6 points out the
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equivalence between our scattering formalism and the
usual treatment of the decay system. Section 7 sum-
marizes the results and conclusions.

1. SINGLE-RESONANCE CASE

Let us treat first the well-known case of a single
resonance. In the neighborhood of this resonance, the
Smatrix can be written as an N XN matrix (for N open
channels with definite total angular momentum and
conserved internal quantum numbers) in the form

S=B—iI'Q/(E —e tr),

where both B and Q are energy-independent matrices
and e~ =M~ —~~il'~ is the position of the resonance pole.
One requires that Q be of rank 1 (which corresponds to
a single resonance at etr). Unitarity implies that

St(E*)S(E)= 1

and this imposes the following conditions on (1):
BtB=1, Q= BP,

where P is a Hermitian projection operator

P= Pt=P'.

A similar result follows from the Weisskopf-Wigner

(WW) approximation. ' Let us sketch it briefly. In the
interaction representation, one considers the effect of
an interaction Hamiltonian B' on the time development
of a wave function described by the eigenfunctions of
some Ho that consist of a discrete level with probability
amplitude atr(t) and a continuum with probability

amplitudes etc(t). The energy eigenvalue Ert is supposed
to be within the range of variation of Ec. One assumes
that H' has nonvanishing matrix elements only between
the resonance and the continuum. This is the WW
approximation. In other words, one looks at the pure
effects of the production and decay of the resonance.
This corresponds to setting 8=1 in our 5-matrix
discussion.

The Schrodinger equation turns into the following
set of equations:

io,c=El cg'a ge'"~R'

(5)
p ~c d+cHzc~ce ~~

& +ca =+ac
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If we choose the boundary conditions at t= —~ as
aii ~ 0, ac —+ f1/p(Ec)]b(Ec E)—, then the structure of
these coeKcients at t=+~ will tell us what the S
matrix is. The calculation proceeds with the usual
assumption about the slow variation of p(Ec) I

Hgc'I 2

as a function of Eg or C, and leads us to the solutions

With this definition we find that (12) leads to

S=1—irz'/(E —.), ~ =m —;ir
with I' being the Hermitian projection operator

I';; = (2~/r)(p, p~)'t'Hc g"Hgc''.

(15)

(16)

~i (iV—E) t

aR(t) HRC
E 3f+,'i—F-

(6)
e~(&c &)—i

ac(t) = -&(Ec—E)—
P E M+—2iir i (Ec E)—

The various exponentials in (6) have to be considered
as distributions obeying the well-known relation

e'*'/(ix+e) ~0 as t ~ —~
+ 2n-8(x)-as t + ~ -,

which leads to the result

2. PRODUCTION AND DECAY OF RESONANCE

The 5matrix is an Ega matrix in the channel space.
We will describe vectors in this space by I i) and their
Hermitian adjoints by (il. We do not use the usual
Dirac symbol li) in order not to confuse the vector li)
that just designates the ith channel with the wave
function ai that corresponds to the physical state.

Let us introduce now the concept of the eigenchannel
of the resonance. We describe the physical channels by
orthonormal vectors

I i),

in terms of which the resonance eigenchannel will be
defined as

ac~I 1—

r2
IE) =I —

I 2 (v'p')Hc~" Ii)Iri
(9)

ti(Ec E)—as t —+~. —
E—M+-,'irk p

We note that (El 8)= 1 and the projection operator P
defined by (16) can be rewritten as

Comparing (9) with (1), using the relation

ac(t=+ ~)=Sac(t= —~), (10)

leading to

a;c(t=+~)=l 8;;—
i2~p;H cubi"H ac")

la c(t= —")
E—m+-,'ir )

(12)

To compare (12) with (1) we have first to define the S
matrix in a form that ensures its unitarity. This is
readily achieved by the definition

(Qp)a;c(t=+~)=S,;(Qp)a;c(t= —~). (13)

The unitarity of 5 is implied by the conservation of the
norm of the wave function

p'(Ec) I a'c(Ec, t =+~) I-'dEc

we find the expected form of the 5 matrix of one
resonance in one channel. The generalization to the
E-channel problem is straightforward. One introduces
a,c with i = 1,. . . , X, as well as p;(Ec) and H~c". Herei
is a channel index. If we assume once again that all
p, (Ec) I

H&c"
I

' are essentially constants over the
relevant energy region &+I', then we can define

r;=2 p, lH„"I, r=g r,

z= IE)(EI. (19)

a (t) =e-r'~-'
gi (L"g—M+2i r) t

E.—u+-,'ir
(20)

We see that as t —+~, the distribution in the channel
space is the one specified by I

E). Thus we might say
that the resonance decays into the combination of
channels IR). Similarly, one might speak about the
production of the resonance. Using Eq. (6), one may
ask which distribution of cia at I,= —~ will lead to
aii(0) = 1 and ac(0) = 0 If

(v'p, )a,c(— ) = (gp~)Hc&"/(Ec M,'ir), (21)—
this goal is achieved.

In fact, starting with the wave function (21), we find

dg ~i(M—E)t2'
az(t) =—

I' (E—M —2iF)(E—M+pir)
= e+r~(2 (t(0)

(22)
=e r'i' (t)0)

The physical significance of IR) is the following:
Suppose that at t= 0, ag = 1 and u~ =0; then one can
solve Eqs. (5), and one finds

(E ) I
a (E t ) I

2dE (]4) which is the ideal description of the production and
decay of the resonance. It is also easy to see that the
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right distribution of a,c is achieved at t = +~, Eq. (20), background scattering, B=P;e"'I i) (i I, Eq. (3) leads
since the S matrix (15) can be rewritten as to Watson's final-state theorem

z—M —-,'ir
S=1—IR)(R I+ IR)(RI-

E cV+—',il'- (23)

Thus, starting with a state proportional to
I R)/

(E—M —sil') at t= —~, one has to end. up with a
state proportional to

I R)/(E —M+ —,'iF) at t=+ ~.
The definition of the eigenchannel of the resonance

was given in the absence of any background scattering.
The introduction of such a background spoils the
simplicity of the interpretation. Equation (1) can be
rewritten in the form

5=B
E 2Z—

(24)

Since B~=B ', any P =B I'B is also a Hermitian
projection operator. Writing Eq. (24) with any par-
ticular choice of OI corresponds to a certain choice of
splitting the scattering amplitude into an initial-state
interaction, a resonance scattering, and a 6nal-state
interaction. Each such resonance will have some specific
eigenchannel B

I
R) ~ This artificial breaking of S into

three processes is devoid of a physical meaning since all
the scattering occurs simultaneously.

We see that in the presence of a background scatter-
ing one cannot, and therefore one should not, attach
any particular physical meaning to the eigenchannel.
Nevertheless, we would still like to have a clear defini-

tion of what is meant by a partial width since it is
measured in experiments. Time-reversal invariance
simplifies matters a little bit. If we work in a basis
satisfying Tl i) =

I i), T invariance requires a symmetric
5 matrix:

(28)

We see, therefore, that a resonance can be identified

by its location c& as well as the partial widths p;,. how-

ever, the latter are intimately connected with the back. -

ground scattering. The arbitrariness in the definition of
the eigenchannel rejects the fact that the true physics
is given by the background plus the resonance and that
they have to be considered together. In this connection
let us mention the paper of Weidenmuller, ' who pointed
out that in the presence of a background term none of
the eigenphases of the 5 matrix increases by m. over the
resonance. Only the sum of the eigenphases increases
by x. This is another way of seeing that the analysis of
an S matrix in terms of its eigenchannels is unfruitful
in this case.

One has to emphasize that all that was said here
applies to an 5 matrix of de6nite total angular momen-
tum (usually denoted by S ). When an experimentalist
measures total cross sections, he encounters the in-
coherent sum of all these S~ amplitudes. Therefore, it is
hard to tell whether a resonance seen in some total
cross section, say, is or is not accompanied by a back-
ground in its own S~. This can be resolved by phase-
shift analysis. The recent CERN ~-E phase shifts show
that in many cases the background is small and the WW
conditions are met.

3. S MATRIX FOR TWO RESONANCES

In this section we construct an 5 matrix in the region
of two overlapping resonances. We consider the case
of B= 1. If a background amplitude has to be taken
into account, then it should multiply the 5 matrix
presented here. We begin by writing the S matrix in
the form

B=B=(B ')*, Q=BI'=I'B= lx)(xl*. (25)

In the case B= 1, we find I x) =
I
R). We can now define

the quantities y; .

v, =i'(ilx)(xli)*=i'(ilx)', 2 lv'I =I" (26)

«iQi i'sQs
S(E)=1——

8—~] P- —62

~g =My ——', iFg, g =3f2
——,'if', e W

(29)

(v'»)Qi=
I ~i)Pil, (&»)Qs= I ~s)(~. l (3o)can be inter pr eted as the partial-width amplitude.

Note, however, that y;, in contrast to F;, is in general a
complex quantity. Its phase reAects the existence of
background scattering. We can now rewrite

We choose all four vectors in the channel space to be
normalized to 1. gv; are normalization factors of Q,.
We assume here that ~ ~@e2. The case of degenerate
poles is treated in the Appendix.2

Q=-2 —ls)('Ir
(27)

' H. A. Weidenmiiiier, Phys. Letters 24B, 441 (1967).
~ A. Donnachie, R. G. Kirsopp, and C. Lovelace, Phys. Letters

and we notice that in the particular case of diagonal 26B, 161 (1968).
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Let us now impose unitarity, Eq. (2), on this S where I is the unit matrix in this two-dimensional space.
matrix. It results in the set of two equations Since xc——(g,

I
gi), we find the following solution:

h~ ») I gi) (bil —(gil gi) I bi)(bil

r2
+i (g2lgi)lb2)(bil =0,

I gi) —xg
I g2) I g~) —xg*

I gi)
lgi')= —,, Ig2')= —, (39)

(1—lx I')"' (1—lx I')"'

Using these properties, we find
(31)

(4») I g~)(b~
I

—(g~ I g~) Ib~)(b2I ir
(v' ) Ib ) =(i+ I~,)

Cl —C2I 1
+i —(g, lg.,) lb,)(b, l

=o.
E.2—61 &r2x, (1—

I x, I
2) i~2

-Ig '),
Since we chose all four vectors to be normalized to 1, i.e., el —e2

ir2
Xc

~

a.,) ),
6] —E2

iri!xcl'),
&g

—6i

ir,x;(1
I

x—, I

')'i'
I
gi').

e2 —el

(gil gi) = (g2l g~) = (bilbi) = (b2lb2) =1, (32)

we can easily solve Eq. (31) for lbi) and
I b2) in terms

bi —— 1+
of lgi) and Ig~), and find

(40)

where

1
Ib2) =—

I g2)+
gv

V1=V2 =V =1—

Pa*
I

~ )),
62 —61

I'lI'2 —Ixcl-',
rir~lxcl')

v= 1—— (41)(34)

(33) Note that for fixed xg each resonance becomes purer as
we let the distance &2*—ei grow. From Eq. (40), one can
easily check the norm of the vectors

I
bi) and

I b&). This
leads again to

xg ——(g. ! g,) . (33)

xc is the overlap between the two channel vectors
I
g2)

and
I
gi). Its relation to what is usually called the over-

lap between the two resonances will be discussed later.
The two quantities Xz and v obey the inequalities

(36)

The substitution of (33) back into (29) gives us the
desired solution for the S matrix. We conclude, there-
fore, that once the location of the two resonances in
the P. plane is given, then a unitary S(E) is determined
up to two vectors

I gi) and
I
g~) in the channel space.

Before going on to the physical interpretation of the
various quantities, which will be achieved by solving
the S matrix in the WW approximation, let us establish
some properties of the two-dimensional space en-
countered here. The vectors lgi) and Ig~) span a two-
dimensional space, but they are not orthogonal. Let us
dehne their reciprocal vectors' obeying

(g,'I g,)=o, (g,'I g, ') =1,
(g,'lg, )=o, (g, 'lg, ')=1, (37)

where both
I
gi') and

I
g~') are supposed to belong to the

two-dimensional space spanned by lgi) and lg~), i.e.,
I= lgi)(gil+Ig2')(g 'I = lg )(g I+ Igi')(gi'I,

The concept of reciprocal vectors is wideIy used in solid state
physics. See, e.g. , C. Kittel, IeI&p/pc@on 50 5oPd S/ad Shy~i~~
(Wiley, New York, 1968), p. 49.

as expected.
Still another way to represent the S matrix of the

two resonances would be in the form

S= 1— (4-')

4. WEISSKOPF-WIGNER APPROXIMATION
FOR TWO OVERLAPPING RESONANCES

We generalize Eq. (5) to the case of two resonance
levels. We replace a& by al and a2 designating the
probability amplitudes of these two levels. We allow H'
to have matrix elements between 1 and 2 as well as
between them and the continuum channels. Let us
assume that the original unperturbed masses of 1 and 2

were equal; thus Mlg=~2~-=cog|. . There is no loss of
generality here since we can always put the mass

9 S. Coleman, in 1968 International School of Physics "Ettore
Majorana" (unpublished).

since each bracket is unitary and, therefore, the whole

S matrix is unitary. I'1 and I'2 are Hermitian projection
operators and do not commute in general. We could,
of course, just as well reverse the order of the two
brackets, which would call for a redefinition of I'1
and I'2. This points out the fact that one cannot attach
a clear physical significance to I'1 and I'2 for the S
matrix of (42) unless PiP~=P2Pi. The form (42) in the
single-channel case was discussed by Coleman. '
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differences into B'. We assume, as before, that Eg lies
within the range of variation of Eg. The Schrodinger
equation now gives

pa;c=(Hci 'az+Hcp 'ap)e'"c+

The matrix M —~iF is usually referred to as the eAec-
tive Hamiltonian. Its eigenvalues are ~j ——M~ ——', iI'~
and ~2=&~—~il'2, the actual locations of the two
resonances. That this is the case can be seen by solving
Eq. (44) with the boundary conditions

iac P—— p;(Ec)dEcHxc"a'ce'""'

+Hgg'ag+Hgp'ap, (43)

ag ~0,
a c~ (1/p;)&(Ec E)b;p—, (48)

iap =P p;(Ec)dEcH pc"a ce'""'

+Hu'ai+Hn'ap.

It seems advantageous to group ajl. and a2 into a
two-dimensional column vector designated by ag'.

appropriate for the calculation of the 5 matrix. The
resultant equation for a~ is now an inhornogeneous one
and can be solved by standard methods to give

tH„' )
as(t) =e'&~~ e&'( E—M+-', ir)—

'I
I
. (49)

&H,."i
The distribution at t = +~ is then

Then Eqs. (43) reduce to

ia'c = (Hci"Hcp")are'"ce',

(Hu' Hgp'

kH„' H„'

t'Hpc")
+Z p (Ec)dEce''"" I,. Ia

kH pc"I

The solution to Eq. (44) is achieved in a similar way to
that of Eq. (5). a;c is obtained by formal integration of
the erst equation and then plugged into the second
equation. If one uses the boundary conditions a;t.-=0 at
t=0, then this substitution leads to the following
equation' for u~ at positive t:

kg = C~

Hxc"Hci" Hic"Hcp")

Hpc"Hcg" Hpc"Hcp"I

In order to write the solution in a compact form, one
deIIjnes the two Hermitian matrices

(3fp+Hu' Hg'.
M=l

Hpg Mp+Hpp j

p2~p;(H—„"H„")(E M+ ', ir—)-
H, c j

&&
—8;1,8(Ec—E), t~+~. (50)

From this we learn that t.~ and e2 are indeed the two
desired poles.

In order to bring the S matrix into a clear mathe-
matical form, we have to study the properties of the
effective Hamiltonian M ——,iF. As already mentioned,
we designate its eigenvalues by p~ and pp (assuming
6yW pp)& and thus

(M ——;i~)
I I)=.~

I I)
(M —-', iI')

I
II&= ep

I II&, egW pp (51)

where II) and III) are the two right eigenvectors. The
same matrix also has two left eigenvectors with the
same eigenvalues:

(I'
I (M ——'ir) = (I'

I ey, (II'
I (M —pir) = (II'

I
pp. (52)

Only when the two matrices M and F commute can
they be diagonalized simultaneously by a unitary
matrix. Since, in general, that is not the case, the
diagonalization cannot be achieved by a unitary trans-
formation, and the right eigenvectors are di6erent from
the left eigenvectors. The set

I
I')

I
II') is the reciprocal

set to
I I) I

II) in the same sense as in Sec. 3, i.e.,

(I'I II)=0, (II'l I)= 0. (53)

r=P 2prp;
II2c 'IIej ' Hmc LI|,-2 If we normalize all the eigenvectors to 1, and denote

ia g —3IIpag+ ——(M ——',ir)a~, t&0.
~~ &. D. Lee, R, Oehme, and C. N. Yang, Phys. Rev. 106, 340

(1957).

(47)

where Mo is the degenerate eigenvalue of IIO in the
resonance subspace. Then it follows that

x=(IIII&,

(I'lI) =(II'III) =(1—Ixl')'t' (ll'lI') = —x,

(54)
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I= lr&&1 I+ Irr')&rr'I = ln&&II I+ lr')&I'I

Comparing now the 5 matrices derived in the two
fashions, we conclude that

1
(Ir)&1' I+ ln)(n' I)

(1—IXI')'/'

1 1 1—(2[ ~1)(bil g) = —(vi'vi'")'/',
gp (1—[xi')'/' r

(63)

1—(II')(Il+ [II')(II[).
(1—[x[2)1/2

(56)

(2[~1)= (vi'/I 1)"', (2[~2) = (vri'/I'2)"',
(64)

( lb)=(v '/I')'", ( lb)=(v '/I')"'
lr&&r'I Irr&&n'I

M ——,'ir = &i--- +&2— — . (57)
(1—Ixl')"' (1—Ixl')"'

Moreover, comparing this with Eq. (41), we are led to
Kith these definitions at hand, it can be readily
established that

(65)

Since lui), Ia2), lbi), and lb2) were normalized to 1,
We can now represent the effective Hamiltonian in the we can set
form"

22&(/, /, )1/2 &2[+'Ir&&r'lls'li&
5;,=8;,——

(1 —IXI')'/' E—ei

(58)

Note that, in Eq. (64) we made a certain choice of the
phases of the various vectors that is not a necessary
outcome of Eq. (63). However, the phases of the v' are
still arbitrary. We will come back to this question in
Sec. 6.

Linear combinations of (57) and (59) lead us to

&I I
r

I
I&= &I'I I'[I'&= r„

&IIII'lrr) = &11'I I I»'&= I'

&1[M[1&=&r'[M[I&=~„
&11

I
M In) = &rr'I M[n'& =m2.

If we now define

(60)

(vi') "'= (2~~ )"'&2I &'Ir)
(vii') '/'= (22rp )"'&i

I
H'

I II&,

(v ')"'=(2~~~)1/2&2[&'Ir'&,

(v *)"'=(2 ')'"( I»'I»'&,

(61)

then, as a consequence of (60), the following identities
hold:

2 Ivi'I=K Ivi'l=l'1,

In order to establish the connection between Eqs. (58)
and (29), we have first to determine I'1 and I'2 in terms
of the various matrices defined above. This is simply
done by looking at the Hermitian conjugate of Eq. (57):

Ir')&rl In'&&n[
M+-', 2I' = &i*— —+&2* — . (59)

(1—Ixl')"' (1—lxl')"'

5. THE MEANING OF IT ALL

After working out the elaborate algebra, we are now
at a stage where we can relax and enjoy the beauty of
the formalism. Let us start with Eq. (65). It has a very
simple and intuitive meaning. There are two different
overlaps that one encounters in this game. One is the
overlap in the channel space xo——(a2[ a2); the other is
the overlap between the two resonance states x= (2 I

1&.

Unitarity assures us that the overlap X can be deter-
mined by the distribution of the decay products. There
it can be easily calculated by summing the overlaps of
the wave functions in each channel. In the WW approxi-
mation the wave function is a simple Breit-signer
(BW) distribution. Hence, x should be given by the
overlap of two normalized BW distributions multiplied
by Xg.

(p p )1/2
X—XQ

2'
dE

(E—e2*)(E—ei)

2(1 r)1/2
(66)

Eg

This leads then automatically to Eq. (65). This distinc-
tion between the two overlap functions is missing in
Ref. 1 and answers essentially the question that is
raised at the beginning of this paper: X~ is indeed
independent of the distance between the resonances;
however, X does depend on it. In fact,

2 I
v»'I =2

I v» *I = I'2. (62) (p p )1/2

Ixl&
&2 —61

(67)

~' A somewhat similar analysis from a di8erent approach can be
found in the paper of R. Jacob and R. G. Sachs, Phys. Rev. 121 the limit corresponding to that of identical channels,
350 (j.96j.). i.e., Pi P2 in Eq. (42). ——
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Equation (66) can be regarded as a concise form of
what is usually called the unitarity sum rule (USR).'
The reason for this is that the overlap xc= (a2 I ai) can
be simply calculated in terms of the quantities p' defined

by (61), namely,

then
ei (M—E) t

a/2(t) =p
2 (1—Ixl')'" &— *

/'l»lvr 'I l»)(vr *v **)"'
+ . (74)

+—El 8—E2

2' pi
(zI

a'II&(zlzz'Ill&*.

(Ie Ie )i/2

Hence Eq. (66) can be rewritten in the form

(69)

where p is a real phase defined by (b2I bi) =e'~(a2I ai).
We find then that

Now one can easily check that

(68) p (yi 'yri '*)'/'=(b2lbi)(I'il'2)'/'=(I'il'2)'/'Xae'&, (75)

which is a more familiar form of the USR.
An alternative way of deriving the USR from the

formalism developed in Sec. 4 is by noting that, in
addition to Eq. (60), one can also write

I a, (t) I'= —er~', t(0
1—Ixl2

——e ~" t)0
1—Ixl'

—2(III rl 1)=x(e,—~2*).

Now, by definition,

(70)

(III I'II&=g 22';(III JI'I2)(2I+'II& ("1)

which leads one back to the USR (69).
Let us now return to the question of what all the

various states are. If we start from some initial channel
at t= —~, say, lk), then we find the distribution in
channel space at t=+ ~ from Eq. (58) to be determined

by the states II) and III). Moreover, if we continue
analytically to the poles ei and e2, we find it to be

I ai)
and la2), respectively. On the other hand, we might
view this distribution as resulting from the decay of the
physical states II) and

I
II). Thus we may use

I I) and

I
II) to designate the physical decaying states. In the

same spirit, one might think about
I
I') and

I
II') as the

physical growing states since, if we reverse the time
direction, they exchange their roles with

I I) and
I
II),

respectively.
To understand things better, we look at the time-

dependent solution of a/2, Eq. (49). It can now be
rewritten as

l..(0) I2= 1+lxl'
(77)

61 62 61
+(x('(e'e +e 'e

61—&

Hence we conclude that la/2(0) I
=1, and

(b2 lb'i)
ei$

G2 8]
(78)

IXI'
e r2~ t)0

1—Ixl2

Since
I I) and

I II) are not orthogonal, the sum of their
norms can exceed unity. Nevertheless,

I a/2(t) I

' must
be smaller than or equal to 1. We find from (74) that

If we start at t= —~ with a normalized distribution
corresponding to

I
f/i), namely,

1(2

(V'/')a~a( — ) =
2K Eg—61

This is another relation that comes directly from
unitarity and we will, therefore, call it the unitarity
relation (UR). It can, of course, be derived directly
from Eq. (33).

From the preceding discussion we learn that the wave
function (73) is suitable for building up the resonance.
At t=0, laiil =1 and la;cl =0; thus it was absorbed
completely in the resonances. The relative sizes of the
resonances are

(73)
as expected.

Ie e i/2

=('Ifi) —
I

22r) Ea «*— (I I I):(IIIII)= 1:I" I

'
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Before concluding this section, let us remark that a
USR relating (b2I bi) to (II'l I') can be written in an
identical form to Eq. (66). The UR equation (78) tells
us that the phase of (b2I bi) is determined by the masses
and widths of the resonances, once the phase of Xc is
known.

One can pass directly from the UR equation (78) to
the USR equation (66). This can be achieved by using
the relation (55) between the I', II' and the I, II states
and the definitions (64) of the channel vectors. Then,
starting from (64), and using the UR (78), the USR
follows.

0. DISCRETE SYMMETRIES

I")( I*

P tl QP

where (ail* means that

il'g
I a2) (a2 I

*
(89)

P—& QP

I:(ail'jl j)=(ail j)*. (9o)

An alternative way of checking the time-reversal
property is by noting that the choice

So, with our choice of phases, T invariance leads to a
purely imaginary overlap. Note that the choice (84)
Axes the phase of Xc to be e '&~'.

The S matrix can then be written in the form

In this section we discuss the effects of T-invariance
and CET-invariance requirements on the formalism
developed in the Sec. 5.

If T invariance is to hold, then the S matrix has t
symmetric in the channel space. This means that

rl11&= in'), rl11'&= iII)

(ila1.2)(b1,2I j)=(jla1,2)(b1,2li)

obe
guarantees that if one looks at the matrices F and M
in a T-invariant basis (i.e., T

I 1)= I 1), T
I 2& =

I 2)), then
(79) they are symmetric:

which is equivalent to

QI,II QI', II' QI,II QI', II'

This can be rewritten as

QI, II & ' +I',Il' ~
i+

Note that we had also a freedom of phase in the
definition of ai 2, Eq. (64). We can specify all the phases
in the following way: Consider the matrix element
(iIH'lI). If H' commutes with the antiunitary time-
reversal operator T, then

(il &'II&= (» I
2'&'2' 'I 2'I)'= (» I

&'I 2'I)'
= ('l~'I 2'I&*. (82)

In the last equality we assumed that 7l i)=
I 2). This is

also necessary for obtaining P9) and can be achieved
easily. "This leads us to the conclusion that

~12 ~12 ~21 I 1 I 12 I 1 ~

This follows directly from the expansions (57) and (59),
since now

(1I»(I'I 2& = (2 I
I)(I'I »

The symmetry (92) guarantees the T-invariance
property of a/2(t) This is .the standard derivation of T
invariance. "

From this analysis it is quite obvious how to proceed
with CRT invariance. We have in mind, of course, the
EBICL, system that has mixed in it two different CP
eigenvalues. In this case we can simply choose

This assures us that

TII)=e "&II'), XIII&=e '"III'), (83)
ImX= 0; (94)

which is consistent with (82). We will now choose the
phases to be

(84)

Making this choice, we are led to

therefore, if both T and CP are conserved, X=O and
the two resonances are orthogonal. Equations (93)
assure us that if we expand M and j. in a basis obeying
CPT

I 1)=
I 1) and CPT

I 2) =
I 2), then

Q (~,s~, a+)1/2 —g (~ /4~ I)1/2

This means that

(b2I bi) = (ail a2), e*'=xc*/Xc,

which leads to

(85)

(86)

which are the usual conditions for CRT invariance. "
The continuum states

I i) in the EBKI, problem can be
chosen as eigenstates of CP with either +1 or —1 as
eigenvalues. For the eigenvalue +1, we find

V QI V+I' V'VII V'YII '*, CPIi) = Ii) (96)
Xc Xc 62 &1

1=—e'&=-
Xc Xc 62 61

(87) and, for the eigenvalue —1,

V'Vi'= —&Vi '" V'V»'= V'&11 '* CP
I j)= —

I j) (97)
(88)ReX=0.

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) V, 404 (1959).
"See, e.g. , T. D. Lee and C. S. Wu, Ann. Rev. Nucl. Sci. 16,

Sii (i966).
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Thus we can write

+1,2 ~1,2 ~1,2 p (98)

gvi' gyi'
Iai+)=& li) ~ lai ) =E

I j) ~
«c (99)

' QI'i s gr,

CPTli)= li), CPTlj)= —Ij),

vrhich leads us to

lai+)(ai+I* —lai )(ai I*S=i-
E—61 P

—
I .+)( +I*+la )(

(100)
E—& gv

exhibiting the CPT-invariance properties with the
specific choice of phases (93).

The forms of the S matrix in the tvro cases of T and
CPT invariance, Eqs. (89) and (100), are essentially
included in the discussion of Ref. 4. However, the
connection between them and the usual consequences
of these invariance principles in the decay formalism is
not worked out there. We stressed this point in the
present section in order to show that the two formalisms
are indeed equivalent.

The work carried out here is essentially an exercise
in quantum mechanics. This is so because no basic new
idea was introduced. We tried to exploit the basic
notions of quantum mechanics in order to establish a
mathematical framework that will enable us to gain
physical insight into related scattering and decay
problems.

As expected, the WW approximation gave us the
same S-matrix structure as the general approach based
on unitarity. Nevertheless, we have to rely on the WW
method in order to understand how the resonance
grows and decays and to relate this process to the
various parameters that appear in the S-matrix
formalism. This gives us the connection between the
channel-space vectors that appear in the S matrix and
the matrix elements of the interaction Hamiltonian H'.

The formalism developed here can be readily applied
to the EqEI, system. The results of the discrete
symmetries in Sec. 6 show clearly how this can be
achieved. In any particular basis vre can choose
II)= IEe), III)= I%i,), and obtain all usual results.
Since we cannot observe the weak-production mecha-
nism, we have no direct information about II') and

I
II'). Nevertheless, we do know all their scalar products

via Eq. (55).Thus, were we able to measure this process
in real scattering, we vrould have direct physical data

and could test, say, the UR (78). Since we have to rely
on Eq. (55), we gain practically nothing by dealing
with the II') and III') states. Therefore, the usual
treatment of the decay states is complete.

The same formalism can also apply to a strong
production and decay process. This is so since vre did
not assume anything about the strength of H'. Then,
in principle, the whole structure of the S matrix is
observable and all four channel vectors can be con-
structed. This formalism may be applied to the A2
doublet if both parts do have the same quantum num-

bers. In this case both Ho and H' belong to the strong
interactions.

Throughout the paper we used the assumption that
the number of open channels X is constant vrithin the
relevant energy range. Only if the various p; I

H oa"
I

'
factors are constant does one get our solutions. Should
a new channel open up and couple strongly to the
resonance, it vrill modify our results.

We introduced the concept of X& that plays a key role
in our formalism. Note that in the case of the EBEI.
system there is a difference of an order of magnitude
betvreen X and Xg. Inserting the known values of the
masses and widths, we find that X~4(1+i)X10 'Xo.
Both X and Xg are natural dimensionless parameters
that describe the system of overlapping resonances.
The distinction, as well as the relation between them,
helps us to understand the connection between the
scattering and the decay formalism.

Throughout our work we assumed a constant or no
background, and single or double poles. We did not
consider threshold e8ects or other possible variations
with energy vrhich may appear in diR'erent situations.
In addition, one has to emphasize that the work pre-
sented here is formulated in a way suitable for applica-
tions to particle physics. Other formulations may be
more suitable for applications in other 6elds of physics.
See, e.g., the work of Mower. '4

Note added in manuscript After this. paper was sub-
mitted for publication, a related vrork by G. C. Wick
appeared as a CERN report. This work was published
in the meantime in Phys. Letters 303, 126 (1969).The
discussion and results of Wick's paper are in complete
agreement with ours.
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APPENDIX: DEGENERATE RESONANCES

We treat here the case that &~=&2=e. Using the
formalism of Sec. 3 and going to this limit, we 6nd two
different possibilities. The Grst comes from the limit
of Eq. (29) that leads to

as before in the form

S;;=8;;—i2ir(p;p;)'~'(il O' H'I j&. (A6)
M—+ ',ir-

From (A5), we find

where
S= 1—il'Q/(E —e),

Q=Q'=Q'

(A1)
(I1&&1I+12&&2I)E—M+-,'iF E—e

(A2)

as in Eq. (3). The difference between (A1) and (1) is
that now Q will be of rank 2. This means that detS will
have a double pole. Each element of 8;, will have at
most a simple pole at E= e, but the residues no longer
obey factorization.

Going to the limit from Eq. (42), we find. the form

which leads to the 5 matrix

S; =5; . i2ir—(p;p ) 't'

+ -l»&21, (A7)
(E—e)'

(il H'
I 1&(1IH'

I j&+&i I
H'

I 2)&2 I
H'

I j&
X

iI (Pl+Ps) I P1Ps

(8 e)'— (A3) &'IH'I 1&&2IH'I j&
(AS)

(E—e)'
which is obviously different from (A2). The common
feature is that since I'& and I'2 are projection operators
of rank 1, it turns out that detS still has only a double
pole at E= e. However, here each individual 5;; may
have a double pole at this energy.

An alternative way of treating these two possibilities
arises from a discussion of the effective Hamiltonian
M ——,il . As is well known, if this matrix has degenerate
eigenvalues, then it is either proportional to the unit
matrix eI, or can be brought to the Jordan form

The equivalence with (A3) is obvious. If one defines

(il ai) = (ilH'I 1)(2irp;/I')"',

(ilas) = &ilH'I2&(2irp;/I')"',

then, in the notation of (A3),

(A9)

r,=
I
a,)(a, l, I',=

I
a,)(a, l. (A10)

It is trivial to see how the single pole matches in the
two formulas. The double pole matches too since

(A4)
(a la ) =(1/I')&111'12&=i /I', (A11)

by a similarity transformation. The first possibility
(p = 0) leads, of course, directly to Eq. (A1). I.et us now
see how the more general case (A4) leads to a structure
of the form (A3).

We may choose to describe the Jordan form in an
orthonormal basis, in which case the effective Hamil-
tonian can be written as

as can be easily verified from Eq. (AS).
The formula (A3) has a particularly simple form in

the case I'&= I'2=I', namely,

S= 1—I'2il'(E —M)/(8 —M+-', il')', (A12)

which is referred to in the literature as a dipole. ' "In
terms of the parameters of (A4), this situation is
achieved if

(A13)

M —si1'= e(l »(1I+ I »&2 I)+a I »(2 I

= eI+nl1&&2 I,
as can be seen from Eq. (A11).

"The application of this form to the 32 doublet is discussed by
~AS~

G. Chikovani et al. , Phys. Letters 2SB, 44 (196/); K. E. Lassila
which is equivalent to (A4). The S matrix will be given and P. V. Ruuskanen, Phys. Rev. Letters 19, 762 (t967).


