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Since the A2 couplings are rather crudely estimated,
we have plotted the As and the sr contributions to do/df
separately in Fig. 2 using gz&z&=1 and fr=1. The
differential cross section in this model for different
values of the A2 couplings can be determined from
Fig. 2.

From the differential cross sections shown in Fig. 1,
we estimate total cross sections of about 5, 2, and 1 pb
for incident photon energies of 4, 8, and 12 GeV,
respectively. Total cross sections of about 16, 7, and
3 pb (for v=4, 8, and 12 GeV, respectively) would be
indicated for g~sa~= 1 and fs= 1.

We would like to reemphasize our assumptions
(Sec. I) and point out again that our estimates of g~s~~
and fs have been made with some reservations. When
experimental cross sections are available it may be
possible to say something further about the unknown
couplings using a model such as the one presented here.
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The application of Regge-model ideas to high-energy semileptonic reactions is taken up in some detail for
the process ~+p -+ p, +p+s- (and its electroproduction analogs), and, qualitatively, for more complicated
processes of the sort p+p~ p, +p+X1+X~+. . . .

It is a familiar implication of Regge-pole dominance3
for strong two-body —+ two-body reactions that all
helicity amplitudes for a given process share a common
phase to leading order in energy, where this phase is
determined by the signature factor of the dominant
Regge traj ectory. For the diGerential cross-section
spectrum this entails the vanishing, to leading order
in the energy, of correlations that are odd under reversal
of all spin and momenta (e.g., correlations of the form
o kt Xks). Such quasi-2'-violating effects erst arise only
in an energy order corresponding to interference between
the leading and next ranking trajectories. It is this
"phase" property of Regge theory that we shall espec-
ially focus on here. We suppose that it, along with other
standard aspects on the theory, can be carried over to
weak and electromagnetic analogs of two-body —+ two-
body strong interactions, e.g. , p+X ~ fs+1V+sr,
e+1V~ e+E+7r. The experimental implications are
especially rich for the neutrino-induced reactions. Here,
because of the presence of parity-violating interactions,
odd correlation terms formed solely out of momentum
vectors (terms of the kind k~ ks)&ks) are now permis-

I. INTRODUCTION

~
~

N the standard assumption of locality for the weak
couplings of lepton pairs, ' high-energy neutrino

processes acquire a structure which is well suited to the
testing of Regge-model notions. ' In the simplest in-
elastic reaction, /+cV ~ f+N+7r, rather detailed
features of the theory become accessible for test in a
striking way. This is particularly true for the neutrino
reaction v+cV —+ p+1V+sr, which is the topic of Sec.
II. Results for the corresponding electroproduction
reactions (e or Is)+E~ (e or p)+X+sr are obtained
in Sec. III. Certain qualitative features suggest them-
selves also for generalization to more complicated
processes, again with definite observable consequences.
These are taken up in Sec. IV.

~ For delniteness we consider the Regge model to be a Regge-
pole model. In what follows the, reader will And comments at
appropriate places concerning the extent to which statements are
actually independent of speci6c pole properties.

*Work supported in part by the U. S. Air Force Once of Scien-
tific Research, under Grant No. AF-AFOSR-69-1629 and Contract
No. AF 49(638)-1545.

General implications of locality are discussed by T. D. Lee
and C. N. Yang, Phys. Rev. 126, 2239 (1962); A Pais, Phys. Rev.
Letters 9, 117 (1962); A Pais and S. B. Treiman (unpublished).
PIn the last paper the factor a on the left-hand-side of Eq (18).
should be replaced by d'o/dsdtj.

'Diffractive aspects of high-energy neutrino reactions have
been discussed by C. A. Piketty and L. Stodolsky, in Proceedings
of the Topical Conference on Weak Interactions, CERN, 1969
(unpublished).



908 A. PAIS AND S. B. TREIMAN

sible; and the question whether such correlations vanish
in leading order in the energy provides a critical test
of an important qualitative notion that derives from the
Regge-pole model, but perhaps transcends its other
more detailed features. It must immediately be stated
that in taking over these ideas to weak semileptonic
processes, we are explicitly assuming the validity of
time-reversal invariance.

In Sec. II we take up in some detail the particular
reaction4 i+p —&p +p+7r+, a process specified by
five independent variables (apart from spins, which are
to be summed over). On standard assumptions of local

V, A couplings of the leptons, the differential cross-
section spectrum takes on an explicit and simple
structure with respect to two of the variables. In its
dependence on these variables the spectrum decomposes
into nine distinctive terms, which. serve to probe dif-
ferent aspects of the dynamics. The structure is dis-

played in full generality. In our parametrization, two
distinct energy variables are dealt with. One of them,
the laboratory energy ~ of the incident neutrino, is a
"trivial" variable in the sense described above. The
other is the difference s between the incoming and out-
going lepton energies. We are interested in the situ-
ation where e and v are both very large, and, for
descriptive purposes, we count them as being of the
same order. Estimates of the p dependence of amplitudes
are obtained on the basis of standard notions of the
Regge-pole model. In leading approximation the reac-
tion is presumed to be dominated by Pomeranchuk ex-
change. From G-parity considerations, it then follows
that the leading amplitudes arise solely from the axial-
vector current. Among the terms that survive in leading
order there remains, so far as energy dependence alone
is concerned, a certain characteristic odd correlation in
the spectrum. However, its coefficient is supposed to
vanish in leading order according to the idea that all
helicity amplitudes arising from a single trajectory
share a common phase. This leads to the nontrivial
equation (18) given below. The correlation effect in
question therefore constitutes a useful candidate for the
testing of this qualitative feature of Regge-pole theory.

In lower order in the energy, this and other correlation
eGects can arise through interference from lower ranking
trajectories of appropriate quantum numbers. In
particular, the spectrum contains four distinctive corre-
lation terms characteristic of V-3 interference. These
erst arise in an energy order corresponding to inter-
ference between the Pomeranchuk trajectory and the
leading odd-G-parity trajectory of appropriate quantum
numbers. Here several remarkable circumstances are
seen to obtain. First, if the vector current matrix element
is dominated by a "natural-parity" trajectory /parity
=(—1)~g, then the contribution to V-2 interference

For electroproduction and weak single-pion production at
]ower energies see 5. 1.. Adler, Ann. Phys. (X. Y.) SO, 189 (1968).
This paper also contains detailed references to earlier
contributions.

has one more power of v as compared to a dominance by
an "unnatural-parity" trajectory Lparity= —(—1) ),
for comparable trajectory function. We therefore con-
sider the natural-parity case only. Secondly, we then
find that the diGerence in phase of the signature factors
associated with the interfering trajectories can be
deterlnined' from the relative strengths of the V-A
correlation terms. Indeed, there are two different
strength ratios which serve independently to determine
this phase difference as a function of nucleon momentum
transfer Lsee Eq. (22) below). Although the experi-
mental requirements here are very demanding, a unique
opportunity is afforded for the testing of rather detailed
features of the Regge-pole model.

In Sec. III we apply similar considerations to electro-
production of a single pion. It is noted there that the
assumption of dominance by a trajectory (or trajecto-
ries) with natural parity leads to an expression for the
diGerential cross section that contains only one un-
known "form factor" that depends on only two of the
five kinematic variables Lsee Eq. (28) below).

In Sec. IV we take up the application of Regge-like
notions to multiparticle-production reactions induced
by high-energy neutrinos, reactions of the sort v+p —+

p +p+Xi+X2+ +X„(N&2).Even for the strong-
interaction analog of multiparticle production, there is
no longer a well-established set of ideas to be taken over,
in particular, a lore which bears on the phases of ampli-
tudes at high energy. For the weak semileptonic reac-
tion it is of course true, so far as time-reversal invariance
is valid, that all amplitudes must be relatively real if all
final-state interactions can be ignored. Of course, these
surely cannot be ignored. Suppose, however, that in the
high-energy limit we restrict ourselves to the domain
where the momentum transfer between the nucleons is
held finite and the invariant mass of the system (X}
is also held finite, and consider the exchange of a given
trajectory between the nucleon vertex and the vertex
connecting the current to the system {X}.Under these
conditions it seems reasonable to conjecture that the
relative phase properties reQect final-state interactions
only among the particles in fX}.

This qualitative view enables us to give several
predictions that constitute checks for this uniperipheral
model for multiparticle production, conjectured under
the kinematical conditions just stated. These tests are
described in Sec. IV. Qualitatively, their nature is to
observe the existence of certain correlations which in
general are nonzero, but which should vanish if averaged
over certain kinematical variables, or if averaged over
certain channels, or if averaged over both. All correla-
tions in question are identically zero in electroproduc-
tion for unpolarized beams. Thus, they refer very
largely to reactions induced by neutrinos, which once
again appear as a vital tool to check on some aspects of

~ For another example of a trajectory phase determination, see
V. Barger and M. Olsson, Phys. Rev. 146, 1080 (1966).
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the dynamics of hadrons. As shall be seen, the consider-
able experimental demands are somewhat alleviated by
two circumstances: The consequences of these ideas
can be verified with beams that need not be monochro-
matic, while, furthermore, considerable phase-space
integrations can be made without washing out com-
pletely the effects in question.

~The consequences of trajectory dominances in single-
or multi-hadron production in neutrino reactions, dis-
cussed in this paper, are independent of the absolute
values of the cross sections for the various channels.
We can only hope that at least some channels will have
a cross section sufliciently large to be amenable to
analysis of this kind.

11. REACTION v+ P ~ p +P+ ~+

A. Kinematics

e= —q~. p~/m, p= —
q p~/m. (2)

We take these as two of the five independent variables
(apart from spins) that specify the reaction under dis-
cussion. Two further variables we take to be the invari-
ant momentum transfer q' between the leptons, and
6' between the nucleons. In terms of laboratory quanti-
ties, these are expressed by

q'=4ee' sin'(-,'8))0

~,=——&=2mT, &0,

where 8 is the angle in the laboratory frame between the
lepton three momentum vectors and T2 is the kinetic
energy of the outgoing nucleon. The fifth independent
variable we take to be an azimuthal angle p. In terms of
laboratory quantities, it is defined explicitly by the
equation

(qXn). (q&&L) =!qXn! !g&(ck!cos)f. . (4)

We may note immediately that it is with respect to the
variables e and )I/) that the spectrum has a simple and
explicit structure —if, as we suppose, the leptons couple
locally. The other three variables enter into the hadronic
matrix elements of the weak currents, and the behavior

I.et q~ and q2 be, respectively, the four-momenta of
incoming and outgoing leptons, pq and p2 the respective
momenta of incoming and outgoing nucleons, and k the
momentum of the pion. It is convenient to introduce
also the combinations

N=B+q~

P=p+p, ~=p p=q—
We shall systematically neglect the muon mass, so that
q~'=q2'=0, whereas, with m and y denoting, respec-
tively, the nucleon and pion masses, pp=p22= —m',
k'= —p'. Finally, let us denote by e and e' the respective
laboratory energies of incoming and outgoing leptons,
and let p= e —e' to be the energy difference. Hence,

with respect to these quantities is a matter of detailed
dynamics. However, for fixed values of the variables
q' and 6', the Regge model suggests the familiar asymp-
totic expansion appropriate to the domain where the
variable p is very large, and we shall be concerned with
effects to leading orders in this variable. But let us
first consider the most general structure of the spectrum
with respect to dependence on the "trivial" variables
e and/.

6 cos Og
d'0 =

2(4~)4 ~2(q2+ p2) 1/2

)(,8' (q )6 )v)E)$)dq dk d/)Z)i)) (6)

and

T„))=B))'S) q))qv+$)))q +E))))))p'// qp

T"=k Z (p2~IV+A Ip~)*(p~, /'! V.+A. lp~). (9)
SP lI18

Let us write T„„=T„„/+)+T„„&&), where T„„(+&refers
to the sum of pure vector and pure axial-vector con-
tributions, and T„„& & refers to V-A interference con-
tributions. We define the pseudovector

V„=e„p7I' Apq~. (10)

It is clear that the most general structures for T„„&+&

are given by

T„,'+'=Ail„,P„P.+A A„3A.+,'A4(A„P„+A„-P„)
+2iA5(A„P„—D„P„),

T„,( '=2Bg(V„P„V„P„)+2iB2(V„P„+—V„P„)
+2B3(V„D,—V,A„)+',iB4(V„5,+V,A„), (1-1)

where the A; and 8; are real scalar functions of the
variables g' 6' and u.

We are dealing here with a total of nine distinctive
terms, five of them coming from T,„&+&, four from the
V-A interference tensor X",„& &. For the spectral func-
tion 8", this leads to a corresponding decomposition
into nine terms with distinctive and explicit dependence
on the variables e and )i). With

W =W &+)+W/ —
&, (12)

B. Cross-Section Structure

On the assumption that, effectively, the leptons
couple locally to weak vector and axial-vector hadronic
currents, we write the invariant amplitude in the form

amp = (G/v2) cos8efl (q,)y„(1+y,)u (q,)
X(p.,~lV.+A. lp), (5)

where 6 is the usual weak-coupling constant and 8~ the
Cabibbo angle. The differential cross section, summed
over final and averaged over initial spins, is given by
the expression
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P
W(+) =o(4+o(2

6 —P

Xcos(t)+o(4
P2

~cos2$
4v2)

«(« P)

(+~4
p 2 )

~2 1/2

sing, (13)
4p2

26 p
W( ) =P)

«(« —) ) q'
+P2 —— cosp+P2

p2 4p2

26 P

('- —) ( —) 4')'"
+(22

p 2 v v' 4v'

1.Aria/ Ve-ctor Amplitude

The matrix element (p2k~A„~p2) decomposes in a
sum of eight distinct covariants, whose coefficients are
scalar functions of the variables q2) 62) and p. But two
of the eight terms vanish on contraction with the lepton
current u(I72)y„(1+y«)u(Il~) when the muon mass is
ignored. This much is general. However, one further
term is eliminated on specialization to Pomeranchuk
exchange —indeed, to exchange of any natural-parity
trajectory. For the five surviving scalar amplitudes,
the leading behavior in the energy variables p is specified
in the standard way by the Pomeranchuk traj ectory
function n~(LV). With

«(« —V) q2 "' «(« —) )
sinP+P4

p2 4p2 p 2

g2

sin2$,
4p2 we find for large p the structure

(14)

where the u; and P; are linear combinations, respec-
tively, of the 2; and 8; and depend only on the variables
g)6)arldp.

The structure of the spectrum is at this point fully
general and has interesting qualitative features in its
own right. The odd correlation term proportional to
sin2&, for example, uniquely arises from V-A inter-
ference, irrespective of its dependence on e and on the
other variables p, 62) and q2. The relative importance
of U-3 interference can thus be gauged from this term,
with statistical economy, by integrating over v, tV,
and g2 and, for that matter, integrating appropriately
also over the neutrino energy e for the realistic circum-
stance of nonmonochromatic beams.

C. Regge-Pole Analysis

Let us now focus on the asymptotic properties of weak
pion production at high energies, where we may appeal
to the Regge-pole model for guidance. The kinematic
domain in question corresponds to e & v))m and
q2&(2nsp, 62(&2mp. We are concerned here with leading
effects in the energy-transfer parameter p.

According to the standard classification, the domi-
nant contributions arise from Pomeranchuk exchange.
This is a trajectory with even G parity (and zero iso-
spin), and it therefore contributes solely to the axial-
vector matrix element. For the vector current, exchange
of odd-G-parity trajectories (with I=0 or 1) is required
and, for small lV, we suppose that all such trajectories
lie below the Pomeranchuk trajectory. The spectral
function lV&+& is therefore dominated to leading order
in v by Pomeranchuk exchange. Although it is of lower
order in p, we are also interested in the spectral function
TV( &. This is dominated by interference of the Pomer-
anchuk trajectory with the leading odd-G-parity tra-
jectory having other appropriate quantum numbers to
be specified below.

31 "= — agA y P

X[~ a2rp+a36)4 r ' (t+a4Pg r ' P]

( p 2

+~ —a«P y P (15)

where po is a scale factor and the a; are complex scalar
functions of q2 and A2.

It is a straightforward matter now to compute the
Pomeranchuk contribution to the coefficients n; in the
spectral function W(+) of Eq. (13).To leading order in
v, we find that all the n; display the same energy de-
pendence; for fixed q2 and 62,

all n; p' &

with the further restriction, to this order, that

+4= 2] . (17)

What is at issue, so far, is the natural-parity character
of the leading (Pomeranchuk) trajectory and the energy-
growth features of Regge theory. With only this much
input, we see that for large values of the energy-
transfer variable v, v & e, all of the four independent
terms Lsee Eq. (17)]in W(+& are formally of comparable
size, including the odd correlation term proportional to
sing. This odd correlation term, however, is of special
interest here in connection with another aspect of Regge-
pole theory: the feature that all of the helicity ampli-
tudes Lequivalently, all of the scalar amplitudes a, in
Eq. (15)] share a common phase in the high-energy
limit. It may well be that this feature transcends the
more specific details of the Regge-pole model that we
have been employing so far and which we may wish to
regard as only providing a guide to the relative sizes of
the various correlation terms at high energies. In any
event, on standard Regge-pole notions, the common
phase of the a; is determined by the Pomeranchuk
signature factor e ' ~p/sin22r«2~, and, as can be antici-
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e5/n, pg~ 0, v. (18)

pated, the coefficients ns of the odd correlation term in
8'(+& vanish if the amplitudes u; all have the same phase:

of the amplitudes a; in Eq. (15) have a common phase
(determined by the Pomeranchuk signature factor),
then we find the remarkable result that

Z. Vector Amplitude

We turn now to the vector matrix element

(p~,k ~ V„~pi). This is of interest not for its contribution
to 8'(+&, which we are presuming to be dominated at
high energies by the axial-vector current and Pomeran-
chuk exchange, but for its contribution to 8"& & via
interference with the axial-vector amplitude.

For the vector matrix element, we require trajectoiies
with the quantum numbers 6 parity= —1, isospin I=0
or 1.It is also necessary, however, to consider separately
the two spin-parity possibilities, i.e., natural or un-
natural spin-parity. In interference with the (natural-
parity) Pomeranchuk trajectory, it turns out that a
natural-parity trajectory contributing to the vector
current amplitude gives terms in 8'( ~ which are larger
by one whole power of v than an unnatural-parity tra-
jectory with comparable trajectory function. For the
vector current matrix element we therefore focuson the
leading trajectory with natural spin-parity. On present
evidence, we can perhaps identify this with the a&-

meson trajectory. At any rate, if only for notational
purposes, we shall denote the trajectory function by
~-(~') ~

The matrix element (p2, k
~ V„~pi) decomposes, most

generally, into a sum of six distinct covariants, whose
coefficients are scalar functions of q2, 62, and p. But on
specialization to natural-parity exchange we find that
only three terms survive. Again, we estimate their high-
energy dependence on the variable z according to the
standard rules. Define

and let
~pv &pvap~ugp p

(P„kI V„IP,)=u(P, )m„vu(P, ).
We find

X biii„,y, +b2V„y I'+ —~b3V„y q ) (20)
v

all P ~v~~~N (21)

Moreover, if all of the amplitudes b; in Kq. (20) have a
common phase (determined by the signature factor of
the a& trajectory) and if, as we have already assumed, all

where V„has been deiined in Eq. (10) and where the b;
are complex scalar functions of g2 and lP,

The V-A interference function W& ~ is now readily
computed, and one finds that all of the P; in Eq. (14)
display the same high-energy behavior for fixed q2 and
Q2 ~

i.e., the phase difference can be determined in two inde-
pendent ways from ratios of the V-A correlation func-
tions. Note that the factor nr n„+—1 refers specifi-
cally to the case that the trajectory dominating the
vector amplitude has odd signature (as for the co-meson

trajectory). If the trajectory in question were to have
even signature, one should drop the +1 term.

It is a critical test of Regge-pole theory that these
two ratios must agree with each other and must further-
more depend only on the nucleon momentum transfer
variable 62. We are, of course, always restricting dis-
cussion to the Regge domain where p is large, lV and
q2 small.

3. Comments

The key results for weak pion production are con-
tained in Eqs. (16)—(18), (21), and (22). The specific
form of the energy dependence implied by Eqs. (16)
and (21) rests on the standard assumptions associated
with exchange of Regge poles and would, for example,
be altered in detail if the J-plane singularities involved
Regge cuts. On the other hand, Eq. (17), which holds
to order 1/v, would not be affected to leading order by
mild alterations in the energy-dependence estimates.
However, this equation rests essentially on the natural-
parity character of the leading (Pomeranchuk) J-plane
singularity. As for Eq. (18), the only essential ingredient
is the assumption, consistent with Regge-pole notions
but perhaps of more general character, that the leading
amplitudes all share a common phase at high energy.
The relevance here of our more detailed appeal to
Regge-pole analysis, embodied in Eq. (16), is that the
coeScient ns might well be comparable in size to the
remaining nein the absence of this assumption on phases.
Similarly, the left-hand equality of Eq. (22) rests
essentially on the assumption that the leading axial-
vector amplitudes all share a common phase and again
that the leading vector amplitudes share a common
phase; this, together with the assumption that the
energy-dependence estimates provided by standard
Regge-pole analysis are at least roughly right (to
within corrections of order 1/v). The right-hand equality
of Eq. (22) goes farther, of course, in asserting that the
ratios depend only on the variable lV. This is more
peculiarly a feature of Regge theory. At this level of
detail, the phase difference 0.~—o.„can moreover be
independently determined on the basis of trajectory-
information obtainable from the exponents in Eqs. (16)
and (21), or from Regge-pole analysis of purely strong
reactions.

The various issues discussed here will involve varying
degrees of difficulty for their experimental testing,
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nothing being especially trivial. Some modest ameliori-
zation can, how'ever, be noted. For none of the matters
that we have focused on does the q' dependence of
amplitudes come into question, although for other
purposes this is an important issue. Here it is only
necessary that we be in the asymptotic domain
e& v&&m, q'&&2mv, 6 C&'2mv. One can therefore integrate
the spectrum in q' over some extensive fixed domain,
with upper limit small compared to the minimum values
of 2mp to be considered. If it should turn out that the
spectrum falls rapidly with q2) one could in fact inte-
grate over all values of this variable.

Now in connection with Eqs. (17), (18), and the left-
hand equality of Eq. (22), the dependence of correlation
functions on the variable 6' is also not in question. Thus
here one can likewise integrate over some Axed domain
in 6', with upper limit small compared to 2mv;„. If, as
we may anticipate, the correlation functions fall rapidly
with 6', it would in fact be safe to integrate over all
values of lV. We then consider the cross-section expres-
sion of Eq. (6) integrated over q2 and 62, and notice that
(g2+v')'I' i for v))222, q2((2222v. The integrated ex-
pression is

Q cos eg
do= —W(«, v,y) dvdy,

2(42r) ' «'v
(23)

where W has the decomposition of Eqs. (12)—(14), with

«2;, p; ~ «2;(v), p;(v), and where Eqs. (17), (18), and the
left-hand equality of Eq. (22) continue to hold for the
tilde qualities. Indeed, these equalities are supposed to
hold independently of the value of v, provided it is
suKciently large, suggesting that a further integration
is possible. However, as we see from Eqs. (13) and (14),
to disentangle the «22 from p2, «22 from p2, and «22, u2, pi
from one another, it is necessary to study the cross
section in its dependence on all three variables p, e, and
g. The experimental demands are therefore still con-
siderable, but perhaps not hopeless.

The simplest situation, qualitatively, is presented by
Eq. (18). Both W&+& and W& & contain a correlation
proportional to sin&. The coefficients depend differently
on the energies e and v, however, and for v=e, with ~

very large, the 8'&+& correlations predominate. Here
one can afford to integrate the spectrum over a range
of values v in the vicinity of e, and even over a modest
spread of neutrino energies in the case of nonmono-
chromatic beams. The question, for large energies, is
whether a sing correlation survives, with strength com-
parable to that of the other o,-type correlations.

Most demanding experimentally is the right-hand
equality of Eq. (22), which tests some rather detailed
features of Regge-pole theory. Here it is necessary to
retain the nucleon momentum transfer lV as a spectrum
variable.

Obviously, the preceding discussion applies equally
well to the corresponding antineutrino reactions. In
stead of the five u; and four P; of Eqs. (13) and (14), we

now have a corresponding set n; and P;. The speciali-
zation to Pomeranchuk exchange as the leading
mechanism to generate W'+~ and W&+& relates these
two distributions in a simple way in the high-v limit:

o.;=g;e;) q;= 1 &f z/5
lf

(24)

III. PION ELECTROPRODUCTION

Closely related to the weak pion production reaction
which we have been discussing are the pion electro-
production processes

I „+p I I +pc-',ss fei

«, |'e l
+p ~

I I +n+2r+, etc.
&i j

The general structure of the cross section is now
(for q2((v')

(4K) 4 g4«2($2+v2) i/2

«(« —v) 2« v(«(«v—)
X vi+v2- -+72

I

— —— cosy
v v p

v «(« —v) )"'
+y4 — cos2&+y2 — —

~

sing
p 2 v'

)«,'dq'dA'dvdP, (27)

where, again, y;=y, (dP, q2, v). Of course, for unpolarized
beams, the coefficient p5 also vanishes identically. On
the other hand, for longitudinally polarized muon
beams, the coeKcient y5 can make an appearance and,
indeed, for full longitudinal polarization the kinematic
analysis is exactly the same as for the weak-production
case (of course with P;=0).

In our discussion of weak pion production we did
not write out the contribution to 8'+) coming from the

Of course, all that is needed for this result is the fact
that the Pomeranchuk is isospin pure. Furthermore, if
the lV( & and 8'( ~ distributions come about through
interference of the Pomeranchuk-dominated axial-
vector amplitude with an isospin-pure-dominated
vector amplitude, then

P;=l P;; l, =&1 for 2=1, 2

for z=3) 4)

where the upper (lower) sign holds for dominance by
I=0 (1).

We finally note that the combination of Eqs. (24)
and (18) yields

d4~(vp + i2 p~+) —=d'0—(vp -+ p+pvr-), v ~~ . (26)
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vector current, since we presumed 8'&+& to be dominated
at large energies by the axial-vector contribution. Here,
for the vector current we are concerned with trajectories
with G=+1, 1=1 (for the isoscalar part of the electro-
magnetic current), and G= —1, I=O or 1 (for the iso-
vector current). Known candidates for such leading
trajectories (e.g. , &o, p) have natural spin-parity charac-
ter. If this is indeed the correct characterization, then
the structure of the matrix element is as in Eq. (20).
Without more detailed commitment to the identification
of the leading trajectory, we shall denote the leading-
trajectory function by nv(h'). For d'0, we then find in
the high-energy limit

a4f(q2 +2) ) v b'av(5&)

0=—
(4s )4q4e2(q2+ v 2) 1/2 5 v o

4e(e —v)
&&~ 1+ = sin'@ ~dq'dA'dv~, (28)

where f(q', 6') is a scalar function expressible in terms
of the b; of Eq. (20). In the notation of Eq. (27),|4 pg 2yi p3 p5 0. The absence of a cosP
correlation (y3

——0) in the high-energy limit should
perhaps not be too dificult to test. For unpolarized
lepton beams, the vanishing of y5 is, of course, an exact
statement, but for longitudinally polarized (muon)
beams, the (relative) vanishing of ys in the high-
energy limit is still automatic here, independent of
phase assumptions. The structure of Eq. (28) rests
essentially on the assumed natural-parity character of
the leading trajectory. If, instead, the leading trajectory
has unnatural spin-parity, we would find again the
results of Eqs. (16) and (17), of course with nv ~ nv,
and the further assumption of common phases would
again lead to

+5 ~ 0) p ~ |x)

in experiments with longitudinally polarized p beams.

IV. HIGHER-MULTIPLICITY NEUTRINO
PROCESSES

With increasing multiplicity, whether for strong,
electromagnetic, or weak processes, multiparticle pro-
duction reactions rapidly become too complex for fully
detailed experimental analysis. (Deta, iled theoretical
analysis of course fails at a much earlier level. ) In the
deep-inelastic region it is therefore natural to character-
ize happenings in cruder ways. For high-energy electro-
production and neutrino-induced processes, in particu-
lar, attention has fastened on the study of cross sections
summed over a,ll hadron channels open at a given invari-
ant mass. At issue here is the behavior of the cross
sections in their dependence on the lepton momentum-
transfer and energy-transfer variables.

We discuss here a potentially useful next step into
the details. Emphasis is pla, ced on some speculative

generalizations of the Regge notions that figured in
Sec.III.Let us first consider, in the example of neutrino-
induced processes, the production of a particular set of
final-state hadrons:

v+p ~/i ~p+Xi+X2+ (29)

A. Regge Matters

The formulation of Regge notions for multiparticle
production reactions is very much in an unsettled state.
The fashionable multiperipheral model for strong reac-
tions focuses on the domain where all subenergies are
large and all momentum transfers small, and one de-
scribes the amplitude here in terms of strings of ex-
changed trajectories. In the context of neutrino reac-
tions, let us in contrast con, sider the domain where the

where, to enhance applicability of Regge-dominance
notions, we insist on a nucleon in the final state and
restrict ourselves to the domain of small momentum
transfer 6' between the nucleons.

In our earlier example of weak pion production, where
the system {X}consisted of a single particle, the reac-
tion was specified, apart from spins, by the five variables
e, P, v, 6', and q'. With each additional particle in {X},
three new variables arise and matters soon get out of
hand. At any rate, one of the new varia, bles can be
taken to be the invariant mass M of the system {X},
and the others can be chosen, in an obvious sense, as
internal to the system {X}.Let us now consider the
differential cross section for reaction (29) summed over
all the internal variables, so that at given neutrino
energy e it is a function of v, LV, q', M', and P. The
structure is the same as given in Eqs. (6) and (12)—(14),
except that the correlation functions n; and P; now
depend also on 3P:
d'0 =$G'l~'(q'+v')'/']W(q' LV v M', e,y)

Xdq'dA'dvdM'dP, (30)

where the structure of 8" with respect to dependence
on the variables e and P is given by Eqs. (12)—(14),
with n, and P; now being functions of q', LV, v, and M'.
At this stage, the structure is general, resting only on
the assumption that the leptons couple locally to vector
and axial-vector hadron currents. It is clear that the
cross section do- and the various correlation functions
n; and P; should carry a label specifying the particular
channel under consideration, but we shall allow this
to remain implicit.

Once aga, in there are useful qualitative features to be
noticed at this general level. The angular correlation
term sin2&, irrespective of the dependence of its coeffi-
cient on the other variables, arises uniquely from V-A
interference. Thus, even upon integration over the
other final-state variables, it can serve to gauge the
importance of V-3 interference as a function of neutrino
energy for the particular channel under consideration.
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energy v is large, but the mass 3f of the system {X}is
small, as are also the nucleon and lepton momentum
transfer variables 6' and q'. This more closely resembles
the standard situation where we can imagine a descrip-
tion in terms of Regge trajectories, exchanged singly,
between the nucleon vertex and a vertex connecting the
current to the system {X}.For Regge purposes, this
is as if the system {X}were regarded, at given mass
M, as a superposition of single-particle states, dis-
tinguished by total angular momentum and other
internal variables.

To 6x ideas, let us first consider the example where

{X}is a, two-pion system, and assume initially that M
is below the threshold for inelastic 7r-m. reactions.
Suppose then that a partial-wave decomposition is
made in angular momentum of the two-pion system,
and consider, for a particular partial wave, the ampli-
tudes corresponding to exchange of a given trajectory.
If Regge ideas are to have any applicability, it seems
natural to suppose that the amplitude has the standard
structure corresponding to the spin and other quantum
numbers of the two-pion state in question and corre-
sponding also to the quantum numbers of the trajectory
being exchanged, and, moreover, that the various
helicity amplitudes to this state all share a common
phase. Here, however, we expect this phase to be de-
termined not only by the signature factor of the tra-
jectory, but also by the scattering phase for the two-
pion state in question. On this view, the variation of
phase from one parti31 wave to another reRects 6nal-
state interactions solely among the pions, as if the out-
going nucleon were noninteracting in the final state.

I et us now see, on this example, what the experi-
mental implications are. 'We imagine that the energy ~

is su%ciently large so that only the leading trajectory
need be considered. As it happens here, this means that
the vector current amplitudes will predominate over
the axial-vector current amplitudes so that all V-A
interference effects in the spectrum must be absent in
leading order. This is obvious enough. In addition, we
are concerned with the question whether odd (i.e.,
quasi-time-reversal-violating) correlations can survive
in leading order. In the presence of final-state inter-
actions such correlations can indeed appear in the full
spectrum, unintegrated over internal variables. (In the
present example these internal variables are the two
angles describing the orientation, in the dipion rest
frame, of the relative momentum vector of the pions. )
Upon integrating over internal variables, however, we
are in effect summing over a complete set of final states
connected by strong interactions, and odd correlations
must disappear in leading order LEqs. (18) and (13)j.

To recapitub, te: I.et us focus on two classes of corre-
lations in the unintegrated spectrum, namely, terms
arising from V-A interference, denoted by y;~ ~, and
terms y which are odd under reversal of all momenta.
These are partly overlapping sets. Upon integration over

P;=0, n~=0, spectrum integrated over
internal variables. (32)

By the same argument that led to Eq. (26), it follows
from Eq. (32) that

d'~(vp ~ pv, {~+~'}-;.,)
=d'0 (vp ~ pp+{m 7r'};.i), v ~~ (33)

where the subscript "int" means that the necessary
integrations over the internal variables have been
performed (for fixed M).

The conjectures illustrated above on a simple ex-
ample may now be generalized to arbitrary multihadron
systems {X},whether above or below inelastic thresh-
olds. Under the "Regge conditions" where 3f, lV, and
q' are all heM 6nite as the energy transfer v grows large,
the amplitudes arising from exchange of a given tra-
jectory all have a common phase factor determined by
the trajectory signature, and the phases otherwise vary
with internal variables of the system X in accordance
with standard final-state theorems —as if, however, the
outgoing nucleon were noninteracting. At large enough
energies, where only the single leading trajectory need
be considered, the phase arising from the signature
factor is irrelevant in the squared amplitude, and all
questions of phase in this limit depend solely on these
final-state interaction effects. The dominant trajectory,
we continue to suppose, is the Pomeranchuk (G=+1,
I=0).

B. IIII]P11Ga.tlOIIS

(a) An immediately obvious implication of the as-
sumption that a single trajectory of definite G parity
predominates at large energies is that all V-A inter-
ference effects vanish for systems {X}composed solely
of particles of definite G parity. Thus, for a system
composed of an even number of pions, the Pomeranchuk
contributes only to the vector current amplitudes; in
the case of an odd number of pions, only to the axial-
vector current amplitudes. Hence:

Example Z. {X}={m.}.To leading order in v:

y;~ "=0, unintegrated spectrum. (34)

In contrast, for a system such as E+K', which repre-
sents a superposition of even- and odd-G-parity states,
the Pomeranchuk"can contribute to both the V and A
amplitudes. However, if the spectrum is integrated over
internal variables, all interference effects between the
states of opposite G parity must vanish, as must also
therefore all V-A correlations. Therefore:

internal variables they reduce, respectively, to the sets
(P1 P9 P3 P4) and (n5A, P4) of Eqs. (13) and (14). Then,
to leading order in v.'

Exampte 1. {X}=2r;, 3II below inelastic threshold:

=0, p generally &0,
unintegrated spectrum, (31)
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Examp/e 3. {X)=(E+K') To. leading order in v.' so that' Lcf. Eqs. (26) and (33)j
y;~ A/0, unintegrated spectrum;

P;=0, spectrum integrated over internal
variables. (35)

d'4 «(vp~l P{X))
=d'4„«(vp —+ ii+p{X}), v ~~ . (40)

Finally, the most general situation is illustrated in
the example where we consider the three systems
{E+Ko~'), {E'K7r+), and {E+Eir+}. For any one of
the channels, V-2 interference effects can survive in
leading order even a,fter integration over all internal
variables. But on summing the differential cross section
over all three channels one clearly eliminates inter-
ference between states of opposite 6 parity, and hence
a,lso all V-3 interference correlations. Hence:

Example 4. (X)={EK7r)~~), where (A) labels the
(three) possible charge configurations. To leading order
in v, for given':

(36)
spectrum integrated over

P.(A) —0 internal variables. (37)

P, i")WO'

A=1

P'=0' (38)
,spectrum integrated over

n5 ——0 internal variables, (39)
all channels

Ie general', summation over all channels that diGer
only by the charge labels of the final-state particles in
(X) serves to eliminate V-A interference effects to
leading order.

(b) For a given channel (X}, integration over all
internal variables produces a reduced spectrum (Eqs.
(12)—(14)j which contains the odd correlation coeffi-
cients n4, P3, and P4. These last two arise from V-A
interference and vanish in leading order (along with
Pi and P2) when one sums over a related set of channels,
as just described. At this level the odd correlation term
o,,; ma, y still survive.

However, from our hypothesis on the effective non-
participation of the outgoing nucleon in final-state
interactions, it now follows that n5 must vanish in
leading order when one sums over a complete set of
channels (X} connected by strong interactions. To
leading order in v.'

It is of course permissible, and experimentally most
convenient, to sum over all systems {X},but the result
is supposed to hold separately for sums over zero-
strangeness and unit strangeness systems. (In still
greater refinement, for mass M below the EK threshold
it should also hold separately for sums over systems with
even and odd numbers of pions. ) For statistical econ-
omy, it is also permissible to integrate in the variables
lV, q', M', and v over a range restricted by 6 &&2mv,
q'&(2nsv, and v "comparable" to the neutrino energy ~,
and, in fact, strict neutrino-beam nonmonochromaticity
is not crucial.

Of course, Eq. (39) is also of value in testing single-
tra jectory dominance in electroproduction and p,

production with longitudinally polarized beams.
It must be reemphasized, in conclusion, that the

qualitative ideas discussed in this subsection do not
rest on the detailed structure of the Regge model, but
rather, for (a), on the presumed dominance at high
energies of exchange of definite G parity, and for (b)
on the notion that the relative phases of amplitudes
reQect final-state interactions in which the outgoing
nucleon does not effectively participat- under the
kinematic restrictions considered (q', lV, and M' all
held finite as the energy v grows very large). Confir-
mation would be most persuasive if it were found that
the odd correlation term n5 survives at high energy for
two or more individual channels, but vanishes, to
leading order, on summation over channels.

A.CKNOWLEDGMENTS

This work. was carried out in part during the authors'
stay at Brookhaven National Laboratory (summer,
1969) and during the Second Summer Study Program of
the National Accelerator Laboratory in Aspen, Colo.

' The subscript "tot" means that all summations and integra-
tions stipulated in Eqs. (38) and (39) have been performed. .


